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DOUBLE POINTS AND THE ORNSTEIN-UHLENBECK
PROCESS ON WIENER SPACE

BY

T.S. MOUNTFORD

Introduction

The starting point for this paper is Lyons (1987) which proved that the
Ornstein-Uhlenbeck process

(Y(t)" - <t < )
on d-dimensional space hits states with double points if d < 6 but does not do
so if d > 6.

I wish to offer an alternative proof of the above results using ideas found in
works by Kahane and Geman, Horowitz and Rosen. Within their framework I
am able to also show:

(i) If d 5 then

dim {t" Y(t)( ) has double points} 1/2.

(ii) Ifd=4then

dim (t" Y(t)( ) has double points} 1.

The proof of these results draws heavily on the papers German, Horowitz
and Rosen (1984) and Berman (1970).

Section I

The Ornstein-Uhlenbeck process was introduced by Malliavin (1982). It is a
process

{Y(t)( )’t>0}
on the Wiener space of continuous functions C(R+, Rd) which has Wiener
measure as a stationary measure and such that for each s

{ Y(t)(sl)" > O} { Y(t)(s2) Y(t)(sl)" > O}
( Y(t)(sn) Y(t)(s_x)" > 0}
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are independent Rd valued Omstein-Uhlenbeck processes with respective
stationary measures given by

N(O, sx), N(O, s: sx),... ,N(O, Sn Sn-1)"

Meyer (1980) noted that if (W(t,s): (t,s) {(R+)2) is a standard d-
dimensional Brownian sheet then the process

Y( )( ) e-t/2W( e’,. ), oo < t< o0,

is a realization of the process. So every a.s. statement about the Omstein-
Uhlenbeck process can be considered as a statement concerning the d-dimen-
sional Brownian sheet. Thus for instance, the statement that a.s. Y(t)( ) hits

Rdpaths in C(R /, ) with double points is equivalent to the statement

a.s. :It, s, r with e-t/2W(et, r) e-t/2W(e t, s)

which in turn is trivially equivalent to the statement

a.s. :i t, s, r with W(t, r) W(t, s).

Section 2

By independence and similarity properties we can see that
If a.s. there does not exist [1, 2], s [1, 2] and r [3, 4] such that

W(t, s) W(t, r).

then a.s. there does not exist t, s, r R+\{0} satisfying

W(t, s) W(t, r).

If with positive probability there exists [1, 2], s [1, 2] and r [3, 4] such
that

W(t, s) W(t, r)

then a.s. there exists t, s, r R +\{0} satisfying

W(t, s) W(t, r).

Therefore to establish whether paths with double points are a.s. hit or not it
will be sufficient to consider

(t,s,r) - [1,2] X [1,21 X [3,41.
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Similarly to establish our Hausdorff dimension results it is only necessary to
consider times within this domain.

In the following we will denote the domain [1, 2] [1, 2] [3, 4] by A.

Section 3

Consider the Gaussian field { X(t, s, r): (t, s, r) A } defined by

X(t, s, r) W(t, s) W(t, r).

By the observations of Section 2 we can see that the question of whether
{Y(t)( ): t > 0} hits paths with double points or not is equivalent to the
question of whether

{ X(t, s, r): (t, s, r) A } hits the point 0 Rd with positive probability.

We now show that this is equivalent to a question about the range of the
process.

LEMMA 1. Consider a continuous Ra-valuedprocess { Z(i): I} where I is
a compact metric space. Suppose Z can be rewritten in the form

Z(i) Y(i) + N

where N is an Rd-valued random variable with strictly positive density and N and
{ Y(i): I ) are independent. Then

if and only if

[o z(I)l > o

> 0] > 0.

Proof Let us condition on the process {Y(i): I}:

P[0 Z(I)lY(i)i II f.f2v(u)I(-u Y(I)} du

where fN(’) is the density of N. Since fN(-) is strictly positive the above
integral is greater than zero if and only if

fI(-u Y(I)} du

is strictly positive. But the latter integral is equal Ad(Y(I)). When we integrate
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over the process Y we see that

P[0Z(I)] >0

if and only if d(Y(I)) > 0 with positive probability. But this occurs if and
only if ,d(Z(I)) > 0 with positive probability. This concludes the proof of
the lemma.

The process ( X(t, s, r): (t, s, r) A ) can be written as

X(t, s, r) W(1,2) W(1,3) + Y(t, s, r)

where W(1, 2) W(1, 3) is independent of the process (Y(t, s, r): (t, s, r)
A }. Because W(1,2)- W(1,3) has strictly positive density we can apply
Lemma 1 to show

( X(t, s, r): (t, s, r) A } hits the point 0 Rd with positive probability.

if and only if

X( A ) has positive Lebesgue measure in Rd with positive probability.

Case 1. d > 6.
It follows from the argument for Theorem 4.1 of Orey and Pruitt (1973) that

a.s. X(A) has zero Lebesgue measure. By the above observations this takes
care of this case.

Case 2. d< 5.
Following Kahane (1968) we define a random measure on Rd by

where h 3 is Lebesgue measure on A.
The Fourier transform of this measure is

(u) fAei(U’X(T)).3(dT).
Obviously if/ << hd a.s. then we will have shown the desired result. Kahane
(1968) shows that a sufficient condition for this is

E
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which in turn is equivalent to

fR,( YA2e Van u’ X(T) X(T’) A 3 ( dT ) , 3 ( dT’) ) ha ( du ) < oo

which in turn is equivalent to

1

[VAR(<(1,0,...O), X(T)- X(T’) >)1 a/2?t3(dT)h3(dT’) <

So it therefore only remains to estimate the integrand and bound the
integration. Given T(= (t, s, r)) and T’( (t’, s’, r’)) we can put a grid on the
time quadrant for the Brownian sheet W which has horizontal and vertical
lines through the points ((t, r), (t, s), (t, 2), (t, 3) (t’, r’).., etc} and through
the points with integer components.

(0, 4)

j/A
r

(0,3

(0,2)

(0,1)
/// t, s

(1,0)

(t’, r)

(t’, s’)

(3,0)
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These lines and the axes divide up the time quadrant into blocks (B ). If a
block has vertices b1, b2, b3, b4 then the random variable

w( x)

is an Rd normal random variable with mean 0 and componentwise variance
equal to the area of the block independent of the other random variables
corresponding to other blocks.
The value of W at a comer of the grid (m, n) is equal to the sum of the

random variables corresponding to blocks contained in the block with vertices
((0, 0), (0, n), (m, 0), (m, n)).
Given the above we can see that

X(T) X(T’) ( W(1, s) W(1, s’) }
+ (w(t,3)- w(t’,3)- w(t,:)+ w(t’,:))
+ (W(r,1) W(r’,l)}
+ other independent normal random variables.

Thus componentwise,

VAR(X(T) X(T’)) > (Ir- r’ + is- s’l).

Given this inequality,

1 f0 R

[VAR(((1,0,...0), X(T) x(r’)))] d/2h3(dT)h3(dT’)
< K Rd/2dR

which is less than infinity if d < 6.

Section 4

Consider time points T1, T2,..., Tk where Ti(-- (t i, s i, ri)) is in A for each
and

trt(1) _< t"t(2) < < trt(k)

S%(1) .< Srs(2) S’s(k)

r,(1) < rr,(2) < rr,(k)

for permutations rt, %, r4 of (1, 2,..., k }.
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In this section we wish to show that the component-wise variance of

j=l

u,,( (s"(+ s’(0)
j--1

E Urr,(j) (rrr(i) r*rr(i-1))
j--i

As in the previous section we shall split up the time domain of W into blocks
with vertices at the integer tuples and at the points ((t ,), s’s(J)), (t ’,(i), r’r(t))}
where and I vary over (0,1, 2,..., k} and j varies over (1, 2,..., k + 1}
and t ’,() 0, s ’s(k+l) 2, r"r(O) 3. By the remarks made in the previous
section the normal random variables

W(t’’(i),3) W(t"(i-),3) W(t"t(i),2) + W(t’’(i-),2) for i= 1 tO k,

W(s’(0,1) W(s’,(i-x), 1) for i= 2 to k + 1,

and

W(r",(’), 1) W(r",(i-), 1) for 1 to k

are all independent and have component-wise means equal to zero and
variances equal to the areas of the blocks corresponding to them.
Now let us consider the random variable

W(s(’), 1) W(s(’-), 1);

this random variable "contributes" to X(T’s(j)) for j < i. Similarly the
random variable

W(r’(i), 1) W(t",(’- ), 1)

"contributes" to X(T’‘(j)) for j > and the random variable

W(t",(i),3)- W(t,(i-1),3)- W(t,(i),2) + W(t,(i-1),2)

"contributes" to X(T"‘(j)) for j > i. From this we obtain our desired inequal-
ity.
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Section 5

Given the result of Section 3 we can apply the work of Rosen (1983) and
simply read off the following result

dim ( T( (t, r, s)) A" X(T)=O} <3-d/2 a.s.

Therefore projecting the above random time set onto the axis of the first
co-ordinate, we obtain

dim {t [1,21" W(t, s) w(t, r) for some (s, r) [1,21 [3, 4]}
< 3-d/2 a.s.

In particular, for the case d 5 this gives

dim (t [1,2]" W(t, s) W(t, r) for some (s, r) [1,2] [3,4])
< 1/2 a.s.

The result for d 4 is vacuous.

Section 6

For the other sides of the desired inequalities we use a technique from
Berman (1970). In this section we will again make use of the Gaussian process
X defined in Section 3. We will assume that Ra is either R4 or R5.
From the inequality of Section 4 it follows that for each set B c A we can

define a(x, B), the local time for X: B---, Ra. Let us make the following
definition:

k(x, t) a(x, [1, tl x [1,21 x [3,4]) for x Ra and [1,21.

It follows from standard methods that we can choose versions of (x, t) such
that:

(a) (x, t) is continuous in both x and t.
(b) (x, ) is a distribution function on [1, 2].
(c) For a.e. x Rd the measure with distribution function given by

(x, ) has support contained in

{t" X(t, s, r) x for some (r, s) [1,21 x [3,41}

In the following we shall work with such a version.
For (p, t) [1, 2] - we define the function
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By considering step functions and using monotone class arguments we see that
for positive g( ),

Now since (x, ) is positive and increasing and fRdrk2(X, 1)dx < oO we
obtain from Parseval’s formula that

f g(x, t) f(u, p)f(u, t) au

where f(u, p) (f(u, t)) is the Fourier transform of ( p) (( t)), i.e.,

f(u, p) f[1 ei(u’x(’’s’r)) drdtds,
vlxtl,2]x[3,41

so

fR ( f[o ei(u’ X(p" s’ r)- X(t" s" r’)H(s, t)
,plxtO,/]x(tl,2lx[3,4l)

X dr’ dt ds’ dr dp ds ) du.

From this we see that for a positive function g( )

,212
g

,212
g

xf(t dr ds dr’ ds’

1,21x[3,41) (IP tl + Ir- r’l + Is s’l) d/2

Kf[t,21g(p, t)lP tl 2-d/2 dpdt.

Now consider g(p, t) IP tl -.

Case 1. d 5. For A s a.e. x,

f[1,2] IP- tl
<o0

if a < 1/2. Frostmans Theorem tells us that therefore a.e. x which has q(x, 2)
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> 0 also has the support of q(x, dt) on a set of dimension greater than or
equal to 1/2. But the support of this measure is a.e. contained in the set

(t" X(t,s,r)= x for some (s, r) [1,2] [3,4]}.

Therefore the set

( x R5" dim ( t" ( } x [1, 21 x [3,41 c W-((x }) is nonempty} >_ x
2 )

has positive X 5 measure a.s. So by the argument after Lemma 1 in Section 3
we conclude that with positive probability dim(t: ( } x [1, 2] x [3, 4] c
W-t((0}) is non-empty} has dimension greater than or equal to 1/2. This is
equivalent to

dim (t [1,21" W(t, s) W(t, r) for some (s, r) [1,21 x [3,41} > 1/2

This completes the proof.

Case 2. d 4. The argument is essentially the same and we conclude that

dim(t [1,2]" W(t,s)= W(t,r) forsome(s,r)t [1,2] [3,4]} > 1.

Higher Multiplicities

One way to think of the problem of whether or not the Omstein-Uhlenbeck
process hits k-multiple paths is to treat it as a question of whether a k + 1
time parameter Gaussian process hits points in (Rd)k-1 space with positive
probability. Given this perspective Lyons results for higher dimensions seem
natural. The condition for k-multiple points can be written as"

k-multiple points have positive capacity if 2(k + 1) > (k 1)d.

In a private communication Rosen has shown how using the methods of
Rosen (1984) the results of the previous section can be rederived. He also
computes the Hausdorff dimension of times of multiple point paths for
multiplicities higher than two.
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