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AMENABILITY AND BOUNDED APPROXIMATE
IDENTITIES IN IDEALS OF .4(G)

BY

BRIAN FORRES

1. Introduction

Let G be a locally compact group. In [6], P. Eymand defined the Fourier
algebra A(G) of G to be the linear subspace of Co(G) (the continuous
complex-valued functions on G vanishing at infinity) consisting of all func-
tions (f’g) v, where f, g L2(G), f V(x) f(x -x) and jr(x) f(x-X). If
f L2(G) and x G define L,f(y) f(x-ly) for every y G. Let VN(G)
denote the closure in the weak operator topology of the linear span of"
{ Lx; x G} in B(L2(G)), the algebra of bounded linear operators on L2(G).
A(G) is the unique predual of the von Neumann algebra VN(G), [6, pp. 210
and 218]. Furthermore A(G) with pointwise multiplication and

Ilull(a) sup(l(Z, u)l; T VN(G), IITII 1}

is a commutative Banach algebra with spectrum A(A(G)) G [6, p. 222].
In case G is abe)ian, At(q) is isometrically isomohic, by means of the

Fourier transform to L (G), the group algebra of G, the dual group of G.
Liu, van Rooij and Wang proved in [22, p. 479] that if G is a locally compact
abelian group and I is a closed deal in LI(t) A(G), then 1 has a bounded
approximate identity if and only if

I I(A) { f Ll(d); fix) =0 for everyxA},

where A is dosed in G and A is an dement of the ring of subsets of G
generated by the left cosets of subgroups of G.

In this paper, we will attempt to determine which dosed ideals in A(G)
have bounded approximate identities for an arbitrary locally compact group
G. We shall show that the answer to this question is intimately related to the
amenability of G. We will also establish algebraic and topological criteria for a
dosed ideal to be a candidate to possess a bounded approximate identity.
We characterize the weak-, dosed ideals in A(G) with bounded approxi-

mate identities in {}4. In {}5 we undertake an investigation of the cofinite ideals
in A(G). A number of characterizations of amenable locally compact groups
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are given, including Theorem 5.9, which answers the analogue of Willis’ and
Dales’ "weak automatic continuity" question [4, p. 397].

In 6, we will examine Banach modules over a Banach algebra with a
bounded approximate identity. These results will be applied in 7 to study the
nature of VN(G) as a Banach A(G)-bimodule. The paper culminates in 8
with some applications to discrete groups.

This paper will form a portion of the author’s Ph.D. thesis, written under
the supervision of Professor Anthony T. Lau. The author wishes to express his
deep gratitude to Professor Lau, as well as to the Natural Sciences and
Engineering Research Council of Canada and the Alberta Heritage Scholar-
ship Fund for their financial support.

2. Definitions and notations

Throughout this paper, G denotes a locally compact group with a fixed left
Haar measure/. If A is a measurable subset of G, then IAI is the measure of
A. For any subset A of G, la denotes the characteristic function of A.
G is amenable if there exists rn L(G)* such that m > 0, m(l) 1 and

m(xf) m(f) for every x G, f L(G), where xf(y) f(xy), y G.
All abelian groups and all compact groups are amenable. The free group on
two generators is not amenable.

Let B(G) be the linear span of P(G), the continuous positive definite
functions on G. B(G) can be identified with the dual of C*(G), the group
C*-algebra of G [of. 6, p. 192]. With pointwise multiplication and the dual
norm, B(G) becomes a commutative Banach algebra, called the Fourier-
Stieltjes algebra of G. The Fourier algebra A(G), as defined in 1, is a dosed
ideal of B(G) [6, p. 208]. For further properties of A(G), VN(G) and B(G)
see [6].

Let ’ be a Banach algebra. A net (u} t in is called a bounded left
(resp. right) approximate identity if lim II u,u u II 0 (resp. lira II uu, u II

0) for every u , and if there exists an M such that Ilu.II < M for every
a . {u}a is a bounded approximate identity if it is both a left
bounded approximate identity and a fight bounded approximate identity.

Let be a commutative Banach algebra. Let A(.,) denote the maximal
ideal space of ’. By means of the Gelfand transform, . can be realized as a
subalgebra of C0(A(’)).

Let I be an ideal in .’. Define

Z(I) (x A(.u), u(x) 0 for every u I}.
Then Z(I) is a closed subset of A(.). If E is a closed subset of A(), define

I(E) ( u .’, u(x) 0 for every x E ),
Io(E ) ( u ’; supp u ,’()},
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where ’(E) { K c A(off); K is compact and K (3 E }. I0(E) and
I(E) are ideals in od. I(E) is closed. Furthermore, if I is any ideal in a
with Z(I) E, then Io(E )

_
1

_
I(E).

A closed subset E of A(.) is said to be a set of spectral synthesis, or simply
an S-set, if I(E) is the only closed ideal I for which Z(I)= E. This is
equivalent to the density of Io(E) in I(E) [cf. 14, Theorem 39.18].

oat’ is said to satisfy Ditkin’s Condition if:
(i) For every u o’ and x A(od) such that u(x) 0, there exists a

sequence (vn) in such that each on vanishes in some neighborhood of x
and

limlluv,, ull O.

(ii) If A() is not compact, then, in addition to (i), for every u there
exists a sequence (on) in such that each on has compact support and

lim ]] uv,, u ]] O.

3. Amenability and bounded approximate identifies

In this section, we establish the connection between amenability and the
existence of bounded approximate identities in ideals of A(G). For a dosed
ideal I in A(G), we will see that the existence of a bounded approximate
identity in I is dependent on the algebraic and topological properties of the
set Z(I) of common zeros of I.

DEFINITION 3.1. Let A, B be dosed subsets of G. Let

Sa(A, B) (u B(G); u(A) 1, u(B) =- 0),

[ inf(llulln<); u 6"(a, e)} if Sa(A, B) :
B)

oo if Y’(A, B) ,,
’(A) { K c G; K is compact, K A },

(A) g

Since Io B(G) and Illalln(o)
s(B, A) < o and

1 it is dear that if s(A, B)< oo, then

Is(A, B) s(B, A)I < 1.

If K is compact and A is a closed subset of G disjoint from K, then
s(A, K) < oo by the regularity of A(G).
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Our principal tools in the identification of dosed ideals with bounded
approximate identities are the next two propositions.

PROPOSITION 3.2. Let G be amenable. Let A be a closed set of spectral
synthesis. If s(A) < oo, then I(A) has an approximate identity (u,J,a which

satisfies:
(i) Iluallato < 2 + s(A)for eoery ot ,
(ii) u A(G) c Coo(G) for every a ,
(iii) if K ’(A), there exists a sequence ( ur. } - (u} a such that

1

for every v A(G) with supp v K.

Proof. Let K ’(A) and e > 0. Since G is amenable, by a result of
H. Leptin [20], there exists a compact set U Ur,, G such that

and KUI < (l + e) 9-

UI
Define

Then ur, A(G) and Iluc,lla( 1. Also supp Uk, KUU- is compact.
If v A(G) with supp v

__
K, then

0
uK,*v= l+e

Suppose that s(A) < c. Then there exists wr 6"(A, K) with

Define

Then VK, I(A) and

IIWKII<G) s(a) + 1.

OK, UK, UK, ,WK"

IIVK,II,a<G) IlUK,II<G) + IluK,IIA(G)IIwKII<G) 2 + s(A).

If x K, vr,,(x ) ur,,(x). Therefore, if supp v

___
K,

0

OK’eO= l+e
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Define a partial order on ar(A) x R+ by (K, e) > (Kt, et) if and only if
K__cK and e>q.

Let u I(A) and e > 0. Since A is a set of spectral synthesis, Io(A) is
dense in I(A) [14, Theorem 39.18]. Therefore, there exists v A(G) with

supp v K -(A), Iloll() 211ullw), Ilu ollw) < e.

Let (K1, ex) >_ (K, e). Then

Ilu o,ull() Ilu- o11<) + Ilu- oq,yll<) + IIoq,y-
<_ (s(A) + 2 + 211ull,w))e.

Hence { vc, }sr()xn/ is the desired approximate identity.

LEMMA 3.3. Let A be a closed subset of G. Suppose that I(A) has a bounded
approximate identity { u}a with Ilu.ll<) -< Mfor every a 91. Then 1\
and 1a belong to B(Gd), where Gd denotes the algebraic group G with the
discrete topology. Furthermore, IIl\llw) <- M and Illallw) -< M + 1.

Proof. Let u I(A). Since lim,llu,u ullw)= 0,

limll u.u u ll oo 0.

Therefore, (u.}.a converges to lo\a in the pointwise topology. For each

u, B(Gd) and Ilu.ll<) Ilu.ll<) M [6, p. 199].

Since the set { v B(Gd); Ilvll<a) M} is dosed in the pointwise topology
[6, p. 2021,

lo\a B(Gd) and 111,\.411z,,) M.

Consequently, Ia 1o lo\a B(Ga)and Illallw) M + 1. rn

DEFINITION 3.4. For any locally compact group G, let YC(G) denote the
ring of subsets of G generated by the left cosets of open subgroups G. #(G)
is called the coset ring of G. Define

c(G) ( A G, A (Ga) and A is closed in G }.

PROPOSITION 3.5. Let A be a closed subset of G. If I(A) has a bounded
approximate identity, then A tc(G).
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Proof. Apply Lemma 3.3, followed by Host’s non-commutative generaliza-
tion of Cohen’s Idempotent Theorem [15]. r

LEMMA 3.6. Let G be a locally compact group. Let H be a closed subgroup of
G which is either (i) open, 0i) compact or Off) normal. Then s(H) 1.

Proof (i) If H is an open subgroup of G, then In B(G) and
[[ 1nil B() 12 [6, p. 205].

(ii) Assume that H is compact. Let K ’(H). Since H is a subgroup, we
can find an open symmetric neighborhood V of the identity such that V- is
compact and

K- H n HV2=.
Let

Uv(X ) lnv * lv(X)
IHVI

Ix-XHV HVI
IHVI

1 fl,,(xy)lnv(y ) dy

Since u v is positive definite (cf. [6, p. 189]) and uv(e) 1, Iluvlln() 1. If
x H, Uv(X ) 1, whereas if x K, Ur(X) O. Hence uV S’(H, K).

(iii) Assume that H is normal. Let r" G G/H be the canonical homo-
morphism. Assume that K ’(H). Then

r(K ) ;c/n( { eH } ).

By (ii), there exists uo B(G/H) with Iluollw/m 1 and uo(eH) 1,
while Uo(XH) 0 for every x K. Let

Then u B(G), IlulI<G)
xK.

=l[6, p. 199],u(x)=lifx Handu(x)=0if

PROPOSITION 3.7. Let G be an amenable locally compact group. Let H be a
closed subgroup of G which is either (i) open, (ii) compact or (iJJ) normal. Then
I(H) has a bounded approximate identity.

Proof Closed subgroups are S-sets [33, Theorem 3]. If H satisfies (i), (ii) or
(iii), then s(H)= 1. By Proposition 3.2, I(H) has a bounded approximate
identity, ra
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For non-amenable groups, Proposition 3.7 is no longer valid. In fact,
Proposition 3.7 serves to characterize the amenable locally compact groups
(see Theorem 3.9).

LEMMA 3.8. Let H be a closed subgroup of G. Then the quotient Banach
algebra A(G)/I(H) is isometrically isomorphic to A(H).

Proof Let u B(G). Let u lz denote the restriction of u to H. Then
UlH B(H) [6, p. 199]. If u A(G), then ultt A(H) [6, p. 199]. Further-
more, if v A(H), then there exists u A(G) such that v u H and

Ilvlla<m inf{llull<); ul o }

with the infimum actually attained [12, Theorem 16].
Define : A(G)/I(H) A(H) by

/(u + I(n)) ul, foruA(G).

If u + I(H) v + I(H), then u v I(H). Therefore UlH- VlH 0 and
k is well defined. Clearly, is an algebra homomorphism. If U lH----O,
U I(H) so is 1-1. Since A(G)IH A(H), is an algebra isomorphism.

Let u A(G). Let II IIQ be the quotient norm on A(G)/I(H). Then

Ilu + ](H)IIQ inf{lloll<G); OIH UlH ) IlUlHII<H)" ra

THEOREM 3.9. Let G be a locally compact group. Then the following are
equivalent:

(i) G is amenable.
(ii) I(H) has a bounded approximate identity for some amenable closed

subgroup H of G.

Proof. Assume that G is amenable. Let H {e}. Then I(H) has a
bounded approximate identity by Proposition 3.7.

Conversely, assume that H is an amenable dosed subgroup of G such that
I(H) has a bounded approximate identity. Leptin’s theorem [21] implies that
A(H) has a bounded approximate identity and hence that A(G)/I(H) has a
bounded approximate identity. If I(H) and A(G)/I(H) both have bounded
approximate identities, so does A(G) (of. [5, p. 173]). Therefore G is amenable.

COROLLARY 3.10. Let G be a locally compact group. Then G is amenable if
and only if I({ e }) has a bounded approximate identity.
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Corollary 3.10 is due to A.T. Lau [18, Corollary 4.11]. His techniques are
entirely different from ours, in that they rely heavily on the fact that A(G) is a
Banach algebra which is also the predual of avon Neumann algebra.

PROPOSITION 3.11. Let G be a locally compact group. Let A be a compact
subset of G. If Io(A) has a bounded approximate identity, then G is amenable.

Proof. If G is compact, G is amenable. Therefore we may assume that G is
non-compact.

Let K c G be compact. Let V be a compact neighborhood of e. Let

1o(x) Iv*lv-,r(x )

I flv(xyllv-,:(y-:) dy.

If x K, v(x)= 1. Also supp o is compact. Let { ua)a be a bounded
approximate identity for Io(A) with IlUIIA(G)< M. By translating A if
necessary, we may assume that A N suppv=.Therefore v lo(A) and
limlluo vll<) 0. Let > 0. There exists ao g such that

inf(Re U,o(X); x K } > 1 e.

Let tp Coo(G), q0 > 0 and supp q0

___
K. Then

I(Uo, q>l -< IILqgll,ollUollw) MIILPllco,

where II Lq II
However

is the norm of q as a left convolution operator on L2(G).

Re(uo, qo) f:(Re Uo(X))(x ) dx > (I e)llqoll,

and

II qllx -< MII Lq0 II
As K was arbitrary,

IIllx MIILllco for every Coo(G), >_ O.

Given 6 Coo(G), tk > 0, we have
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Therefore,

11411 < Mx/IIL4IIo for every n.

It follows that IIllx IlL’lifo for every k Coo(G), > O. This implies that
G is amenable (cf. [27, p. 85]). []

It appears that the Fourier algebra of an amenable group is rich in dosed
ideals with bounded approximate identifies while for non-amenable groups
many potential candidates are eliminated. Indeed, for non-amenable groups, if
I(A) has a bounded approximate identity, then A must be "topologically
large."
We cannot remove completely the topological restrictions imposed on A in

the statement of Proposition 3.11. For example, if G is any discrete group, 1{ e)
is an identity for I(G \ (e }).

Leptin’s theorem [21] shows that if G is amenable, then A(G) has a
bounded approximate identity (ua) a with Ilu.llw) 1 for each a 9A.
For ideals in A(G), this is seldom true. In fact, we have:

PROPOSITION 3.12. Let A be a closed subset of G. Then I(A) has a bounded
approximate identity ( ua}a with Ilu.ll < ) < 1 for every a 9 if and only if
G \ A xH for some x G and some open amenable subgroup H of G.

Proof Suppose that G \ A xH, where H is an open amenable subgroup
of G. Since H is an open subgroup, I(x-lA) can be identified with A(H). As
H is amenable, A(H) has a bounded approximate identity {c,}a with

IIvIIH) --< 1.
Conversely, assume that I(A) has a bounded approximate identity { u } a

with [[ u [l (6) -< 1 for every a . By Lemma 3.3, lo\a B(Gd) and
II1\ I1) 1. Let x G \ A. Then G \A xH, where H is a subgroup of
G [cf. 9, p. 377]. Since A is closed, H is open. Again, we identify A(H) with
l(x-IA). As I(x-lA) has a bounded approximate identity, H must be
amenable, ra

In case A H is a closed subgroup, Proposition 3.12 shows that I(H) has
a bounded approximate identity {u}a with Ilu.llw -< 1 if and only if H
is an amenable group and H has index two in G. In particular, I({ e }) has
such an approximate identity if and only if G { e, x ).

4. Bounded approximate identifies in weak-, closed ideals

Recall that B(G) is the dual of C*(G). The purpose of this section is to
characterize the ideals in A(G) which are closed in the relative weak-.
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topology that A(G) inherits as a closed subspace of B(G) and at the same
time possess bounded approximate identities.

DEFINITION 4.1. Let K c G be compact. Define

Ag(G) { u A(G),suppu K}.

It is easy to see that Ar(G) is a closed ideal in A(G).
It is also easy to show that Ar(G) is closed in the weak-, topology on

B(G) [cf. 38, p. 464].

LEMMA 4.2. Let K G be compact. If K is open, then K is the union of
finitely many cosets of an open compact subgroup H of G.

Proof. For every x K, let V be a symmetric neighborhood of e such
that xVxz c_ K. As K is compact, there exists { Xl,..., xn } such that

n

K=
i--1

Let W f’)’_ xV,. Let y K. Then

y xiooio for some Xio

Hence

and some viv V,o.

yW c_ x,oVx,oW c_ x,oVx2,o c_ K.

It follows that W generates an open compact subgroup H with KH K. As
H is open and K is compact, K is the union of finitely many cosets of H. ra

We now state the main result of this section.

THEOREM 4.3. Let I be a closed non-zero ideal in A(G) which is weak-,
closed in B(G). Then the following are equivalent:

(i) I has an identity.
(ii) I has a bounded approximate identity.
(iii) I AK(G) for some compact open subset K of G.

Furthermore, if any of the above holds, then

i=1

for some compact open subgroup H of G and (xl,..., x }
_

G.
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Proof. Clearly (i) implies (ii).
Assume that I has a bounded approximate identity ( Ua}a a" We may

assume that (u,} converges in the weak-, topology to some u I. Let
A Z(1). Since u I, u I(A). As I is non-zero, G\A is non-empty.

If x G \ A, there exists o I and an open neighborhood U of x such that
Iv(y)I > 0 for every y U. Since limllu,v- VlIA()----0, (U} converges
uniformly to 1 on U. It follows that u 1G\,. Let K G \ A. Then K is
open. But lc A(G)c_. Co(G), so K is also compact. It is dear that I
Ac(G) 1cA(G). Therefore (ii) (iii).
Assume that K is compact and open and that I Ac(G). By Lemma 3.2.2,

r

K= JxiH
i---1

for some open subgroup H of G. It follows that K (G) and hence that
1K A(G) [15]. Therefore 1K is an identity for ! so (iii) implies (i).

In each case

n

K= JxiH
i--1

is the disjoint union of finitely many cosets of a compact open subgroup H of
G. It is easy to see that

If G is compact, then A(G) B(G) and A(G) is itself a dual Banach space.
In [34], K. Taylor showed that if G is a separable group with a completely
reducible left regular representation, then A(G) is a dual space. The "ax + b"
group, which consists of matrices of the form

0 1
;aR

is separable and has a completely reducible left regular representation, but it is
not compact (el. [16]). Therefore, if G is the "ax + b" group, then A(G) is a
dual space. As G is also amenable, we shall see that this implies that
multiplication on A(G) is not weak-, to weak-, separately continuous on
bounded spheres.

PROPOSITION 4.4. Let G be a locally compact group for which A(G) is the
dual of a Banach space A,(G). Let A be a closed subset of G for which I(A) has
a bounded approximate identity. If for each u A(G) the map v uv is
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weak-, to weak-, continuous on bounded spheres, then

n

G\A [,.J xiH
i--1

for some open compact subgroup H of G.

Proof. Let { u}a a be a bounded approximate identity in I(A). We may
assume that w* lim ua u for some u A(G).

Let T A,(G). Let v I(A). Then

(,) I(uv, T) (o, T>I l(uo, T) (ud2, T>I + I(uav, T> (v, T)I.

As limalluav vii 0 and w* lim uv uv, (,) can be made as small as
we like. Hence

< uv, T) < v, T > for every T A,(G) and. every v I(A).

It follows that u(G \ A) 1.
Let x A. There exists v A(G) with supp o __. A and v(x) 1. Let

T A,(G). Then

(uv, T) lim (uv, T) O.

Therefore, uv 0 and u l\Ao. As u A(G)

_
Co(G), G \A is compact

and open. Now apply Lemma 4.2. ra

COROLLARY 4.5. Let G be an amenabale locally compact group. Assume that
A(G) is a dual Banach space. Then the multiplication on A(G) is weak-, to
weak-, separately continuous on bounded spheres if and only if G is compact.

Proof If G is compact, A(G)= B(G). It is an easy task to verify that
multiplication on B(G) is always weak-, to weak-, separately continuous on
bounded spheres.

Conversely, since G is amenable, I({e}) has a bounded approximate
identity (Corollary 3.10). If multiplication on A(G) is weak-, to weak-,

separately continuous on bounded spheres, then G\ {e} is compact by
Proposition 4.4. Hence G is compact, ra

COROLLARY 4.6. Let G be the "ax + b" group. Let A,(G) be a predual of
A(G). Then multiplication on A(G) is not weak-, to weak-, separately
continuous on bounded spheres.
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5. Cofinite ideals in A(G)

DEFINITION 5.1. Let , be a Banach algebra. An ideal I in sO’ is called
cofinite if the dimension of a’/I is finite. The dimension of /I is called the
codimension of I.

Let 12 (E’.tuo; u, o I). Then 12 is an ideal of s contained in I.
I is said to factorize weakly if 12 I. Such ideals are also called idempotents.
Our interest in cofinite ideals in A(G) was motivated by three papers of

G. Willis [35], [36] and [37]. Willis succeeded in showing that if G is
non-amenable, then no closed cofinite left ideal in Lt(G) has a bounded
approximate identity [35]. In contrast to this result, he proved in [36] and [37]
that for every locally compact group, every closed codimension one ideal is
idempotent and for a large class of groups every codimension two ideal is
idempotent. In this section, we will show that while the analogue of Willis’ first
result holds true for A(G), if G is non-amenable, no closed cofinite ideal in
A(G) is idempotent.
We begin with a lemma that may be part of folklore.

LEMMA 5.2. Let G be an amenable locally compact group. Then A(G)
satisfies Ditkin’s condition.

Proof Condition (i) follows immediately from Lemma 3.6 and the proof of
Proposition 3.2. For non-compact G, condition (ii) follows from Leptin’s
theorem [21]. rn

PROPOSITION 5.3. Let G be an amenable group. Let A be a closed subset of
G. If bdy (A) contains no non-empty perfect set, then A is an S-set.

Proof. The proposition follows immediately from Lemma 5.2 and Ditkin’s
theorem (cf. [14, p. 497]). rn

COROLLARY 5.4. Let G be an amenable locally compact group. Let A be a
closed discrete subset of G. Then A is an S-set. In particular, every finite subset
of G is an S-set and if G is discrete, every subset is an S-set.

Proof. This is immediate from Proposition 5.3.

COROLLARY 5.5. Let G be an amenable discrete group. Let A c G. Then
s(A) < if and only if 1 B(G).

Proof. If 1A B(G), then s(A) Illalls().
If S(A) < oo, then I(A) has a bounded approximate identity (Proposition

3.2) and la B(G) by Lemma 3.3.
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COROLLARY 5.6. Let G be an amenable locally compact group. Let I be a
closed cofinite ideal in A(G). Then I I(A) for somefinite setA { Xl, x, },
where n is the codimension of I. Furthermore I2 I.

Proof. Let A Z(I). Since I is cofinite, A must be finite. Therefore A is
an S-set by Corollary 5.4 and I I(A). If A (xl,..., x,), let u A(G)
be such that ui(xi) 1, ui(xy) 0 if 4: j. Then (ui + I(A)) is a basis for
A(G)/I(A).

Proposition .2 implies that I(A) has a bounded approximate identity. By
Cohen’s factorization theorem [14, p. 268], I2(A) I(A). [3

LEMMA 5.7. Let G be a non-amenable locally compact group. Let I I(( e }).
Then I2 is not closed in A(G).

Proof. { e} is an S-set [14, p. 229] and Z(I2) {e). Therefore if 12 is
closed, 12 I. Assume that 12 I. Let v A(G). Let u A(G) t Coo(G)
with u(e) 1. Then v uv + (v uv) with v uv I. Hence

v uv }_j, wiv forw,v I.
iffil

As G is non-compact, there exists x G\ supp u. Since uv I(( x }) and
i2(( x )) I(( x )),

m

tlV E tjmj for ty, my I(( x }).
y--1

Thus

n m

V E WVi + E tjmj A2(G)
i----1 j=l

which is impossible by a result of Losert [23, p. 139].

The proof of this lemma can be easily modified to show that if G is a
non-amenable locally compact group, no ideal of the form I({ x,..., x }) can
be idempotent.

THEOREM 5.8. Let G be a locally compact group. Then G is amenable if and
only if every cofinite ideal is of the form I(A) where A is a finite subset of G.

Proof If G is amenable, then every closed cofinite ideal is idempotent by
Corollary 5.6. By [4, Theorem 2.3], every cofinite ideal is closed and hence is of
the form I(A) for some finite subset A of G.
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Conversely, if every cofinite ideal is dosed, [4, Theorem 2.3] implies that
i2({ e }) is dosed. Therefore G is amenable by Lemma 5.7. r3

We can now answer the analogue of Willis and Dales’
continuity question [4, p. 397].

weak" automatic

THEOREM 5.9. Let G be a locally compact group. Then the following are
equivalent:

(i) G is amenable.
(ii) Each homomorphism from A(G) with finite dimensional range is

continuous.

Proof
orem 2.3].

This follows immediately from Theorem 6.8 and from [4, The-

6. Banach modules

DEFINITION 6.1. Let be a Banach algebra. By a left Banach--module
(resp. right Banach--module, Banach--bimodule) we will mean an algebraic
left-module (resp. fight-module, bimodule) X which is itself a Banach space
and is such that

(resp. IIx-all < Ilxll Ilall,

Ila" xll Ilall Ilxll
Ila" xll Ilall Ilxll and IIx" all Ilxll Ilall)

for every x X, a z.
Let X and Y be left (resp. fight) Banach -modules. A linear map I’:

X ---} Y is called a left (resp. right) module homomorphism if

r(u. u. (resp. r(x. u) r(x). u)

for every u , x X.
Let Hom(X, Y) (resp. Hom(X, Y)) denote the continuous left (resp.

fight) module homomorphisms of X into Y. With respect to the usual operator
norm, Hom(X, Y) (resp. Hom(X, Y)) is a Banach space. If X and Y are
Banach -bimodules, then we denote

Horn’S( X, Y) t3 Hom( X, Y)

by Hom’(X, Y). In case X--.’, Hom(z, Y) (resp. Hom(..q, Y)) is the
space of left (resp. right) (gO, Y)-multipliers. If Y is a Banach zC’-bimodule,
then Hom’(, Y) is the space of (’, Y)-multipliers.
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Let X be a left (resp. right) Banach z#module. Then X* becomes a right
(resp. left) Banach zd-module as follows:

(T.u,x) (T,u.x) for everyuC,xX,TX*
(resp.(u. T,x) (T,x-u) for everyuC,xX,TX*).

Furthermore, a simple calculation shows that if

F Hom(X, Y) (resp. I’ Hom(X, Y)),
then

r, Hom(Y*, x*) (resp. r* Homf(X*, Y*)).

PROPOSITION 6.2. Let be a Banach algebra with a bounded right (resp.
left) approximate identity { u } t. Let X be a right ( resp. left) Banach
rid-module. Let

r Hom(z, X*) (resp. I" Hom(, X*)).
Then there exists T X* such that

r(u) u. T (resp. r(u) r. u)

for every u dd.

Proof. r(u) lim,, I’(uu,) for every u zd. As (u},t is bounded, we
may assume that r(u,) converges in the weak-, topology to some T X*.
Let x X. Then

(r(u), x) (limr(uu), x)

lim(r(uu), x)

lim(u r(uo), x>
lim(r(u.), x. u>
<r, x. u>

=<u.T,x>.
Therefore, F(u) u T. The proof of the second statement is identical.

DEFINITION 6.3. Let X be a left (resp. right) Banach at-module. Let Y be
a left (resp. right) Banach -submodule of X. We say that Y is left (resp.
right) inoariantly complemented if there exists a projection P from X onto Y
such that

P Hom’(X, Y) (resp. P Hom(X, Y)).
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If X and Y are both Banach -bimodules, Y is called inoariantly comple-
mented in X if there exists a projection P from X onto Y with P
Hom(X, Y).

Let I be a closed subspace of . Let

I +/-- (q0*;(p(u) -0 for everyuI).

Let X be a closed subspace of a’*. Let

+/-X= (u; (u) =0 for everyX).

If I is a closed left [resp. right] ideal in , then I +/- is a weak-, closed right
(resp. left) submodule of * and conversely.

PROPOSITION 6.4. Let / be a Banach algebra with a bounded right (resp.
left) approximate identity. Let I be a closed left (resp. right) ideal in ’. Then I
has a bounded right (resp. left) approximate identity if and only if I +/- is right
( resp. left) inoariantly complemented.

Proof. Let (ua}, a be a bounded right approximate identity in I. We
may assume that { Ua)a a converges in the weak-, topology of a’**. Define

(PT, u) (T, u) lim (ua, T u) forTC*,uA.

P is a continuous operator on * with

II PII 1 + sup {11 u.II ).

If uI, lima(ua,T.u) (T,u),soPTI’.
Suppose T I +/-. Then, if u z’, (UUa, T) 0 for every a 9. Hence

(PT, u) (T, u) for every u e ’
and PT T. Therefore, P is a projection of ae* onto

Finally, if u, v and T *, then

<( PT) u, v) <PT, uv)
(T, uv) lim (ua, T. uv)

(T. u, v) lim (u, (T. u)v)

=(P(T.u),v).

Therefore, P Hom(*, I ").
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Conversely, assume that I’L is fight invariantly complemented and that
{ u,}a is a bounded fight approximate identity for .. Let P
Hom(*, I x) be a projection of * onto 1 +/-. Then

(1 P) Hom(..4*, M’*),

where 1 denotes the identity operator on *. We have

(1 P)* Hom’’(..m’**, ..4**)

and (1 P)* is a projection of ** onto (I -).L
of 1 in **. Since

I-’*, the weak-, closure

(1 P)* Hom(..m, M’**),

by Proposition 7.2, there exists ro A** such that

(1 P)*(u) u. ro for every u e’.

Furthermore, we may assume that Fo w* lima(1 P)*(ua) and Fo
(I +/-) .L. Let u I. If T *, then

<u. to, T) <to, T. )
lim <(1 P)*(u,), T. u>
lim<u=, (1 P)(T.

lim(uu,, (1 P)T)

(.,( e)T)

Therefore, Fo is a right identity for I-’*.
There exists a bounded net {o#}#n which converges in the weak-,

topology of F0. Therefore (v#}/ is a bounded weak right approximate
identity in I. Hence I must also have a bounded approximate identity (cf. [2,
p. 58]).

LEMMA 6.5. Let / be a Banach algebra with a right (resp. left) bounded
approximate identity ( u,},. Let F HOmL(J, X) (resp. F
Hom’(, X)). Let be a weak-, limit point of (ua},t in x/**. If r"

X -, X** is the canonical embedding, then

.(r(.)) .. r**() (resp..(r(.)) r**(), u)

for every u .
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Proof Let I’ Hom(,’, X). Then

w* lim F**(r(u.)) I’**(i).

Hence, for every u ,’ and T X*,

(u. I’**(i), T) lim(u T).

Therefore,

w* limr(I’(u, u,)) w* limr(u. I’(u,)) u. I’**(i).

The next proposition is due to Gulick, Liu and van Rooij [11, p. 142] for
’= Lt(G). It is easy to see that their proof carries over to any Banach algebra
,’ with a bounded approximate identity.

PROPOSITION 6.6. Let off be a Banach algebra with a right (resp. left)
approximate identity ( ua } such that II u, II < C for every a 91. Then
there exists a linear map ,t’: Hom(’, X) (X* .zC)* (resp. (’. X*)*)
such that

Ilrll < II/rll ClIFII

for every I" Hom(,’, X). Furthermore, [ is onto if and only if off. X** c_
r( X) ( resp. X**,’ c_ r( X)).

7. Invariant projections on VN(G)

We now apply the results of Section 6 to the algebra A(G).

PROPOSITION 7.1. Let A c G be closed. Suppose that I(A) has a bounded
approximate identity. Then there exists a projection P of VN(G) onto I(A) +/-

such that u P(T) P(u T) for eoery u A(G), T VN(G).

Proof This is simply Proposition 6.4, if we observe that the existence of a
bounded approximate identity for 0’ is not used in the "only if" direction of
the proof, ra

M. Bekka showed that if G is any locally compact group and I is any closed
ideal in LX(G), then I has a bounded approximate identity if and only if

I+/-= {g L(G); fg(x)f(x) d#o(x ) 0 for every f I }
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is the range of a continuous projection on L(G) which commutes with the
left module action of LI(G) on L(G) [1]. We show that the analogue of
Bekka’s theorem holds for A(G) when G is an amenable group. Moreover, the
class of amenable groups can be characterized by the equivalence of these two
statements.

THEOREM 7.2. Let G be an amenable locally compact group. Let X be a
weak-, closed A(G)-submodule of VN(G). Then the following are equivalent:

(i) X is inoariantly complemented.
(ii) +/- X has a bounded approximate identity.

Furthermore, if G is any locally compact group for which +/-X has a bounded
approximate identity whenever X is a weak-, closed inoariantly complemented
submodule of VN(G), then G is amenable.

Proof. The first statement is Proposition 6.4. The second statement follows
from the observation that X {0} is weak-, dosed and invariantly comple-
mented, while A(G) +/- X has a bounded approximate identity if and only if
G is amenable, ra

DEFINITION 7.3. We denote (A(G) VN(G))- by UCB(a). The C*-alge-
bra UCB() was introduced by E. Granirer, who studied its properties in [10].
If G is amenable, Cohen’s factorization theorem implies that UCB(G) A(G)
VN(G).

PROPOSITION 7.4. Let G be amenable. Let

r Hom(UCB(d), UCB(d)).

Then there exists Fo Homa()(VN(G), VN(G)) such that

and Ilrll Ilroll.

Proof Let {ua)a be a bounded approximate identity for A(G) with

Ilullw) -< 1 for each a. Given a 9/define a bilinear form

A.: C

by

A.(T, u) <r(u. T), u>.
Then IIAII -< III’11 for each a 9/. It follows from an argument similar to the
proof of the Banach-Alaoglu theorem (of. [31, p. 66]) that there exists a subnet
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{Ak } of (A} and a bilinear form Ao: VN(G)x A(G)--)C such that
IIAoll -< IIrll and Ak converges pointwise to Ao.

Define I’o: VN(G) ---) VN(G) by

(Fo(T), u) Ao(T, u) for every T VN(G), u A(G).

Then IIFoll -< Ilrll. If T UCB((), then Ilu." T- TII vr<) -> 0. Hence,

lim(F(u, T), u> (F(T), u>,

so Fol vcs(#) F. t3

PROPOSITION 7.5. Let G be an amenable locally compact group. Let X be a
weak-, closed A (G)-submodule of VN(G). Then X is invariantly complemented
in VN(G) if and only if X UCB(G) is invariantly complemented in UCB(G).

Proof. Let P be an invariant projection of VN(G) onto X. Let

Then

T= u. T UCB(d).

P(T) P(u. T1) u. P(T1) (A(G) VN(G)) t3 X

and hence PI uc(d) is an invariant projection of UCB() onto UCB() t3 X.
Conversely, let P be an invariant projection of UCB(G) onto UCB(G) (3 X.

Let P0 be the extension of P to VN(G) constructed in the proof of Proposi-
tion 7.4 with respect to the bounded approximate identity { u,}, a of A(G).

Let u z X and T VN(G). Then P(u,T) X and

<Po(T), u) lim <P(u, T), u> O.

Therefore, PoT ("X) +/- X.
If T X, then u,T UCB() t3 X. Therefore,

<Po(T), u) lim <P(u,. T), u>
lim (u,. T, u>
<T,u> for everyuA(G).

Hence Po is a projection of VN(G) onto X. O
We do not know whether the assumption that G be amenable is necessary

in either Proposition 7.4 or 7.5.
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8. Applications to discrete groups

We close this chapter with some applications to discrete groups. The first
result is an analogue of Lau and Losert’s [19, Corollary 4].

PROPOSITION 8.1. Let G be a discrete amenable group. Then G has the
following property.

(,) If X is a weak-, closed invariantly complemented subspace of VN(G),
then there exists a weak-, to weak-, continuous projetion P from VN(G) onto
X such that

P(u T) u P(T) for everyu A(G), T VN(G).

Conversely, if G is a locally compact group with property (,), then G is discrete.

Proof. Let G be discrete and amenable. Let X be a weak-, closed
invariantly complemented subspace of VN(G). By Theorem 7.2, aX has a
bounded approximate identity, so "X I(A) for some A (G) and 1,
B(G). Define P" VN(G) X by

P(T) I. T.

P is indeed the desired projection.
Suppose that G has property (,). As (L,), the 1-dimensional linear span of

{L }, is invariantly complemented [19, Theorem 2], property (,) implies that
there exists a weak-, to weak-, continuous invadant projection P0 of VN(G)
onto (L). If u, v A(G), Pg’(u) A(G) and

<P’(uc), T) <Po(T), uv) <Po(u T), o) (u P’(o), T>.

Therefore, P0*IA<) Hom’t)(A(G), A(G)). There exists a continuous func-
tion u0 on G such that

P’ (u) UoU for every u A(G).

Let x0 G. Then

<eo(L o), u> <eo,(u), Z,xo>
(UUo, Lxo)
Uo( o)U( o)
Uo(Xo)<Z o, u>.
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As Po is a projection onto <L,) and Lo <Le), we have Uo(Xo)= O.
Therefore uo l{e} and G is discrete. D

LEMMA 8.2. Let G be an amenable discrete group and let

F Hom’4(a)(VN(G), VN(G)).

Then F is weak-, to weak-, continuous.

Proof. Let u A(G). Since G is amenable, u wv for some w, v A(G).
Let T VN(G). Then

(r,(u), T) (r,(wo), T)
=(w, or(T))
=(o.r*(w),T).

By [17, Theorem 3.7], F*(u) o F*(w) A(G). D

PROPOSITION 8.3. Let G be an amenable discrete group. Let P be a continu-
ous projection of VN(G) onto a weak-, closed A(G)-submodule X of VN(G). If

V - Hom’(a)(VN(O), VN(G)),

then X"= I(A) for some A R(G). Furthermore,

P(T) 1a T for every T VN(G).

Proof Since G is amenable and discrete, P is weak-, to weak-, continu-
ous by Lemma 8.2. Therefore, there exists a function uo on G such that

P*(u) UoU for every u A(O).

Let u A(G), T VN(G). Then

(P(T), u) (V*(u), T) (UoU, T) (u, uo T),

so P(T)= uo T. Since P is a projection, u0 Ia for some A and A
Z( - X). As X is invariantly complemented and G is amenable, Theorem 7.2
shows that I(A) has a bounded approximate identity. By Proposition 3.5,

(G). D
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