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AMENABILITY AND BOUNDED APPROXIMATE
IDENTITIES IN IDEALS OF 4(G)

BY
BRIAN FORREST

1. Introduction

Let G be a locally compact group. In [6], P. Eymand defined the Fourier
algebra A(G) of G to be the linear subspace of Cy,(G) (the continuous
complex-valued functions on G vanishing at infinity) consisting of all func-
tions (f*g)V, where f, g € L%G), f V(x) = f(x!) and f(x) = f(x7D). If
f€ L¥G) and x € G define L, f(y) = f(x~'y) for every y € G. Let VN(G)
denote the closure in the weak operator topology of the linear span of
{L,; x € G} in B(L*(G)), the algebra of bounded linear operators on L*(G).
A(G) is the unique predual of the von Neumann algebra VN(G), [6, pp. 210
and 218]. Furthermore A(G) with pointwise multiplication and

lull 4y = sup{|{T, u)|; T € VN(G),||T|| <1}

is a commutative Banach algebra with spectrum A(A4(G)) = G [6, p. 222].

In case G is abelian, A(G) is isometrically isomorphic, by means of the
Fourier transform , to Ll(G), the group algebra of G, the dual group of G.
Liu, van Rooij and Wang proved in [22, p. 479] that if G is a locally compact
abelian group and I is a closed deal in Ll(G) = A(G), then I has a bounded
approximate identity if and only if

I=1(4) = {fe LXG); f(x) =0 forevery x € 4},

where A is closed in G and A is an element of the ring of subsets of G
generated by the left cosets of subgroups of G.

In this paper, we will attempt to determine which closed ideals in A(G)
have bounded approximate identities for an arbitrary locally compact group
G. We shall show that the answer to this question is intimately related to the
amenability of G. We will also establish algebraic and topological criteria for a
closed ideal to be a candidate to possess a bounded approximate identity.

We characterize the weak-* closed ideals in 4(G) with bounded approxi-
mate identities in §4. In §5 we undertake an investigation of the cofinite ideals
in A(G). A number of characterizations of amenable locally compact groups
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2 BRIAN FORREST

are given, including Theorem 5.9, which answers the analogue of Willis’ and
Dales’ “weak automatic continuity” question [4, p. 397].

In §6, we will examine Banach modules over a Banach algebra with a
bounded approximate identity. These results will be applied in §7 to study the
nature of VN(G) as a Banach 4(G)-bimodule. The paper culminates in §8
with some applications to discrete groups.

This paper will form a portion of the author’s Ph.D. thesis, written under
the supervision of Professor Anthony T. Lau. The author wishes to express his
deep gratitude to Professor Lau, as well as to the Natural Sciences and
Engineering Research Council of Canada and the Alberta Heritage Scholar-
ship Fund for their financial support.

2. Definitions and notations

Throughout this paper, G denotes a locally compact group with a fixed left
Haar measure p. If 4 is a measurable subset of G, then |4 | is the measure of
A. For any subset 4 of G, 1, denotes the characteristic function of A.

G is amenable if there exists m € L*(G)* such that m > 0, m(1;) = 1 and
m(xf) = m(f) for every x € G, f € L*(G), where xf(y) = f(xy), y € G.
All abelian groups and all compact groups are amenable. The free group on
two generators is not amenable.

Let B(G) be the linear span of P(G), the continuous positive definite
functions on G. B(G) can be identified with the dual of C*(G), the group
C*-algebra of G [cf. 6, p. 192]. With pointwise multiplication and the dual
norm, B(G) becomes a commutative Banach algebra, called the Fourier-
Stieltjes algebra of G. The Fourier algebra A(G), as defined in §1, is a closed
ideal of B(G) [6, p. 208). For further properties of A(G), VN(G) and B(G)
see [6].

Let &/ be a Banach algebra. A net {u,},cy in & is called a bounded left
(resp. right) approximate identity if lim ||u,u — u|| = O (resp. lim || uu, — u||
= 0) for every u € &, and if there exists an M such that ||u || < M for every
a €N {u,},ecy iS a bounded approximate identity if it is both a left
bounded approximate identity and a right bounded approximate identity.

Let &/ be a commutative Banach algebra. Let A(%/) denote the maximal
ideal space of «/. By means of the Gelfand transform, 7 can be realized as a
subalgebra of C,(A(%)).

Let I be an ideal in /. Define

Z(I)={xeA(),u(x) =0 foreveryuel}.
Then Z(I) is a closed subset of A(). If E is a closed subset of A(%/), define

I(E)={ues,u(x) =0 foreveryx € E},
I(E)={uex;suppu € F (L)},
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where #(E) = {K C A(#); K is compact and KN E = @}. I,(E) and
I(E) are ideals in &/. I(E) is closed. Furthermore, if I is any ideal in &/
with Z(I) = E, then I,(E) € I C I(E).

A closed subset E of A(&7) is said to be a set of spectral synthesis, or simply
an S-set, if I(E) is the only closed ideal I for which Z(I) = E. This is
equivalent to the density of I(E) in I(E) [cf. 14, Theorem 39.18].

& is said to satisfy Ditkin’s Condition if:

(i) For every u € & and x € A(#) such that u(x) = 0, there exists a
sequence {v,} in & such that each v, vanishes in some neighborhood of x
and

lim||uv, — u|| = 0.
n

(i) If A(%) is not compact, then, in addition to (i), for every u € &/ there
exists a sequence {v,} in &/ such that each v, has compact support and

lim||uv, — u|| = 0.
n

3. Amenability and bounded approximate identities

In this section, we establish the connection between amenability and the
existence of bounded approximate identities in ideals of 4(G). For a closed
ideal I in A(G), we will see that the existence of a bounded approximate
identity in I is dependent on the algebraic and topological properties of the
set Z(I) of common zeros of I.

DEFINITION 3.1. Let A4, B be closed subsets of G. Let
& (A4, B) = {ue B(G); u(4) =1,u(B) =0},

inf{||ull py; u € #(4,B)} if £(4,B) # 0
© if #(4,B) =4,
F(A) = {Kc G; K iscompact, KN4 =g},

s(A) =sup{s(4,K); Ke F(A4)}.

s(A4, B) =

Since 1; € B(G) and ||15|lpy) =1 it is clear that if s(4, B) < oo, then
s(B, A) < oo and

|s(4, B) — s(B, 4)| < 1.

If K is compact and A is a closed subset of G disjoint from K, then
s(A4, K) < oo by the regularity of A(G).
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Our principal tools in the identification of closed ideals with bounded
approximate identities are the next two propositions.

PROPOSITION 3.2. Let G be amenable. Let A be a closed set of spectral

synthesis. If s(A) < oo, then I( A) has an approximate identity {u,},cy Which
satisfies:
D Nugll 4y < 2 + s(A) for every a € A,
() u, € A(G) N Cy(G) for every a € U,
(i) if K € F(A), there exists a sequence {uyg } C {U,}q4ey Such that

1
loug, = vl 4 < n

for every v € A(G) with suppv C K.

Proof. Let K € #(A) and € > 0. Since G is amenable, by a result of
H. Leptin [20], there exists a compact set U = U , € G such that

|U| >0 and |KU| <(1+¢)U|.
Define

1
ug,o(x) = G ooy trv * 1o ()

Then ug, , € A(G) and ||ug |l 46 < 1. Also supp u, , € KUU™! is compact.
If v € A(G) with supp v C K, then

%
Uke? = T

Suppose that s(A4) < co. Then there exists wy € ¥ (A4, K) with

[Iwgll pey < s(4) + 1.
Define

Uk,e = Uk,e — Uk, Mk-
Then vy, € I(A) and

vk, ell acey < Nlug, ellaey + Nluk, llallwllaey < 2 + s(4).

If x € K, vg (x) = ug [(x). Therefore, if supp v C K,

Vg U= .
K.e 1+e
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Define a partial order on #(4) X R* by (K, €) > (K, &) if and only if
Kc K, and ¢ > ¢,.

Let u € I(A) and € > 0. Since 4 is a set of spectral synthesis, I,(A4) is
dense in I(A) [14, Theorem 39.18]. Therefore, there exists v € A(G) with

supp v = K € #(4), 1ol aey < 21Ul 4cq), 14 — Vil aq) < e
Let (K}, &) = (K, €). Then

lu — vk, gl 4oy < It = Vll 46y + ¥ — Vi, o Pllae) + 1Vk, 60 — Vi, 6%l aco)
< (s(A) + 2+ 2)|ull 45y ) -

Hence {vg .} #(4)xr+ is the desired approximate identity. O
LEMMA 3.3. Let A be a closed subset of G. Suppose that 1( A) has a bounded

approximate identity {u,}, ey With ||u,|l 4y < M for every a € U. Then 14\ 4

and 1, belong to B(G,), where G, denotes the algebraic group G with the

discrete topology. Furthermore, ||1g\ 4| G,y < M and ||1,|lpG,y < M + 1.
Proof. Let u € I(A). Since lim ,||u,u — u|| 4 =0,

lim|juou — ull o, = 0.

Therefore, {u,},cy converges to 15\ 4 in the pointwise topology. For each
ac N,

u, € B(G,) and luall 5,y = Ntallaey < M [6,p.199].

Since the set {v € B(G,); ||v]l pg,) < M} is closed in the pointwise topology
[6, p. 202],

1g\4 € B(G;) and |15\ 4llpc,y < M.
Consequently, 1, = 15 — 15\ 4 € B(G,) and ||1,||p,) < M + 1. a
DErFINITION 3.4. For any locally compact group G, let #2(G) denote the

ring of subsets of G generated by the left cosets of open subgroups G. Z(G)
is called the coser ring of G. Define

2(G)={A4cG,A€R(G,)and AisclosedinG}.

PROPOSITION 3.5. Let A be a closed subset of G. If I(A) has a bounded
approximate identity, then A € X (G).
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Proof. Apply Lemma 3.3, followed by Host’s non-commutative generaliza-
tion of Cohen’s Idempotent Theorem [15]. |

LeEMMA 3.6. Let G be a locally compact group. Let H be a closed subgroup of
G which is either (i) open, (i) compact or (iii) normal. Then s(H) = 1.

Proof. (i) If H is an open subgroup of G, then 1, € B(G) and
114l 56y = 12 [6, p. 205].

(i) Assume that H is compact. Let K € # (H). Since H is a subgroup, we
can find an open symmetric neighborhood V of the identity such that V'~ is
compact and

K 'HN HV?=4.

Let
1y *1%,(x) 1
uy (x) = it = (g7 [ 1 ()l () &
_|xHV N HY)
- |HV] '

Since u, is positive definite (cf. [6, p. 189]) and u,(e) = 1, |luy|| g = 1. If
x € H, u,(x) = 1, whereas if x € K, u,(x) = 0. Hence u,, € #(H, K).

(i) Assume that H is normal. Let #: G - G/H be the canonical homo-
morphism. Assume that K € #(H). Then

7(K) € Fs u({eH)).

By (ii), there exists u, € B(G/H) with |lug|lp/ay =1 and ug(eH) =1,
while uy (xH) = 0 for every x € K. Let

u(x) = uo(m(x)).

Then u € B(G), ||u||B(G) =11[6,p.199)], u(x) =1if x € H and u(x) =0 if
x € K. O

PROPOSITION 3.7. Let G be an amenable locally compact group. Let H be a
closed subgroup of G which is either (i) open, (ii) compact or (iii) normal. Then
I(H) has a bounded approximate identity.

Proof. Closed subgroups are S-sets [33, Theorem 3]. If H satisfies (i), (ii) or
(iii), then s(H) = 1. By Proposition 3.2, I(H) has a bounded approximate
identity. O
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For non-amenable groups, Proposition 3.7 is no longer valid. In fact,
Proposition 3.7 serves to characterize the amenable locally compact groups
(see Theorem 3.9).

LeEMMA 3.8. Let H be a closed subgroup of G. Then the quotient Banach
algebra A(G)/I(H) is isometrically isomorphic to A(H).

Proof. Let u € B(G). Let u|, denote the restriction of u to H. Then
u|ly € B(H) [6, p. 199]. If u € A(G), then u|,; € A(H) [6, p. 199]. Further-
more, if v € A(H), then there exists u € A4(G) such that v = u|, and

Woll 4y = inf{“u"A(G); ulg= v}

with the infimum actually attained [12, Theorem 16].
Define y: A(G)/I(H) —» A(H) by

Y(u+ I(H)) =u|y for u e A(G).

If u+ I(H)=v+ I(H), then u — v € I(H). Therefore u|y — v|5 = 0 and

¢ is well defined. Clearly, ¢ is an algebra homomorphism. If u|, =0,

u € I(H) so ¢ is 1-1. Since A(G)|y = A(H), ¢ is an algebra isomorphism.
Let u € A(G). Let || - || be the quotient norm on A(G)/I(H). Then

lu+ I(H)llp= inf{”v"A(G); vlg=ulg} = el i1l agary- o

THEOREM 3.9. Let G be a locally compact group. Then the following are
equivalent:
(i) G is amenable.
(i) I(H) has a bounded approximate identity for some amenable closed
subgroup H of G.

Proof. Assume that G is amenable. Let H = {e}. Then I(H) has a
bounded approximate identity by Proposition 3.7.

Conversely, assume that H is an amenable closed subgroup of G such that
I(H) has a bounded approximate identity. Leptin’s theorem [21] implies that
A(H) has a bounded approximate identity and hence that A(G)/I(H) has a
bounded approximate identity. If I(H) and A(G)/I(H) both have bounded
approximate identities, so does 4(G) (cf. [5, p. 173]). Therefore G is amenable.

O

COROLLARY 3.10. Let G be a locally compact group. Then G is amenable if
and only if I({ e}) has a bounded approximate identity.
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Corollary 3.10 is due to A.T. Lau [18, Corollary 4.11]. His techniques are
entirely different from ours, in that they rely heavily on the fact that A(G)is a
Banach algebra which is also the predual of a von Neumann algebra.

PROPOSITION 3.11. Let G be a locally compact group. Let A be a compact
subset of G. If I,(A) has a bounded approximate identity, then G is amenable.

Proof. 1If G is compact, G is amenable. Therefore we may assume that G is

non-compact.
Let K € G be compact. Let V' be a compact neighborhood of e. Let

1
v(x) = |_V—|1V*1V—‘x(x)
1 _
= rI/_lj;;lV(xy)lrlk(y 1) dy.

If x € K, v(x) = 1. Also supp v is compact. Let {u,},cy be a bounded
approximate identity for I,(A4) with |[u,|l 4 < M. By translating A4 if
necessary, we may assume that 4 N supp v = §. Therefore v € I,(4) and
lim,|lup — vl 4y = 0. Let & > 0. There exists ay € A such that

inf(Reu, (x); x€K} 21 -e.
Let ¢ € Cy(G), ¢ = 0 and supp ¢ € K. Then
|<uao’ (p>| < “L(p"cv“uao"A(G) < M"ch"cv’

where ||Lo||,, is the norm of ¢ as a left convolution operator on L*(G).
However

Re(itgy 9) = [ (Reuo,(x))9(x) dx = (1 = o)l
and

el < MilLel|,-

As K was arbitrary,
I¥ll; < MI|Ly|l, forevery ¢ € Cyo(G), ¥ 2 0.
Given ¥ € Cy(G), ¢ = 0, we have

N7 = [19*"ll < M| Lgsllco < MILAIT,
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Therefore,
l¥ll, < MY"|Ly|,, forevery n.

It follows that |||, = ||LY]|,, for every ¢ € Cyo(G), ¥ = 0. This implies that
G is amenable (cf. [27, p. 85)). |

It appears that the Fourier algebra of an amenable group is rich in closed
ideals with bounded approximate identities while for non-amenable groups
many potential candidates are eliminated. Indeed, for non-amenable groups, if
I(A) has a bounded approximate identity, then 4 must be “topologically
large.”

We cannot remove completely the topological restrictions imposed on 4 in
the statement of Proposition 3.11. For example, if G is any discrete group, 1.,
is an identity for I(G\ {e}).

Leptin’s theorem [21] shows that if G is amenable, then A(G) has a
bounded approximate identity {u,},cy With ||u,|l 4y < 1 for each a € %.
For ideals in A(G), this is seldom true. In fact, we have:

PROPOSITION 3.12. Let A be a closed subset of G. Then I( A) has a bounded
approximate identity {,},cy With ||u,|l 4y < 1 for every a € A if and only if
G\ A = xH for some x € G and some open amenable subgroup H of G.

Proof. Suppose that G\ 4 = xH, where H is an open amenable subgroup
of G. Since H is an open subgroup, I(x~'4) can be identified with A(H). As
H is amenable, A(H) has a bounded approximate identity {v,},cy With
10allacery < 1.

Conversely, assume that I(A) has a bounded approximate identity {u,},cu
with ||u,ll 4y <1 for every a € A. By Lemma 3.3, 15 , € B(G,) and
116\ 4l B,y = 1- Let x € G\ 4. Then G\ 4 = xH, where H is a subgroup of
G [cf. 9, p. 377). Since 4 is closed, H is open. Again, we identify A(H) with
I(x~'4). As I(x"'4) has a bounded approximate identity, H must be
amenable. a

In case A = H is a closed subgroup, Proposition 3.12 shows that I(H) has
a bounded approximate identity {#,},cy With ||u,|l 4y < 1 if and only if H
is an amenable group and H has index two in G. In particular, I({e}) has
such an approximate identity if and only if G = {e, x}.

4. Bounded approximate identities in weak- * closed ideals

Recall that B(G) is the dual of C*(G). The purpose of this section is to
characterize the ideals in A(G) which are closed in the relative weak-*
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topology that A(G) inherits as a closed subspace of B(G) and at the same
time possess bounded approximate identities.

DEFINITION 4.1. Let K C G be compact. Define
Ax(G) = {ue A(G),suppuc K }.
It is easy to see that Ax(G) is a closed ideal in A(G).
It is also easy to show that A4 (G) is closed in the weak-* topology on
B(G) [cf. 38, p. 464].

LEMMA 4.2. Let K C G be compact. If K is open, then K is the union of
finitely many cosets of an open compact subgroup H of G.

Proof. For every x € K, let V, be a symmetric neighborhood of e such

that xV;2 C K. As K is compact, there exists {x,,..., x,} such that
n
K=Uxy,.
i=1

Let W =N]_/V,.Let y € K. Then

ig g

y = x;p;, forsome x; € K and some v; € V;io.

Hence

yWwexV, WexV:ck.
o 0 Fip
It follows that W generates an open compact subgroup H with KH = K. As
H is open and K is compact, K is the union of finitely many cosets of H. O

We now state the main result of this section.

THEOREM 4.3. Let I be a closed non-zero ideal in A(G) which is weak-*
closed in B(G). Then the following are equivalent:
(i) I has an identity.
(i) I has a bounded approximate identity.
(ili) I = Ax(G) for some compact open subset K of G.
Furthermore, if any of the above holds, then

I= @ L A(H)
i=1

for some compact open subgroup H of G and {x,,...,x,} € G.
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Proof. Clearly (i) implies (ii).

Assume that I has a bounded approximate identity {u,},cy. We may
assume that {u,} converges in the weak-* topology to some u € I. Let
A = Z(I). Since u € I, u € I(A). As I is non-zero, G \ A4 is non-empty.

If x € G\ A, there exists v € I and an open neighborhood U of x such that
[v(y)| > 0 for every y € U. Since lim ||up — v|| 4 =0, {u,} converges
uniformly to 1 on U. It follows that u = 15, ,. Let K = G\ 4. Then KX is
open. But 1, € A(G) € Cy(G), so K is also compact. It is clear that I =
Ax(G) = 1,A(G). Therefore (ii) = (iii).

Assume that X is compact and open and that I = A (G). By Lemma 3.2.2,

n
K= UxH

i=1

for some open subgroup H of G. It follows that K € #(G) and hence that
1, € A(G) [15]. Therefore 1 is an identity for I so (iii) implies (i).
In each case

n
K= \UxH

i=1

is the disjoint union of finitely many cosets of a compact open subgroup H of
G. It is easy to see that

Ax(G) = oL, A(H). O

If G is compact, then 4(G) = B(G) and A(G) is itself a dual Banach space.
In [34], K. Taylor showed that if G is a separable group with a completely
reducible left regular representation, then 4(G) is a dual space. The “ax + b”
group, which consists of matrices of the form

a b)\. +
{(o 1),aeR ,beR},

is separable and has a completely reducible left regular representation, but it is
not compact (cf. [16]). Therefore, if G is the “ax + b group, then A(G)is a
dual space. As G is also amenable, we shall see that this implies that
multiplication on A4(G) is not weak-* to weak-* separately continuous on
bounded spheres.

PROPOSITION 4.4. Let G be a locally compact group for which A(G) is the
dual of a Banach space A,(G). Let A be a closed subset of G for which I( A) has
a bounded approximate identity. If for each u € A(G) the map v — wv is
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weak-* to weak-* continuous on bounded spheres, then

n
G\A’= U x,H

i=1
for some open compact subgroup H of G.

Proof. Let {u,},cy be a bounded approximate identity in I(A4). We may
assume that w* — lim , u, = u for some u € A(G).
Let T € A,(G). Let v € I(A). Then

(*) |(uv,T> - <U’T>| S|<“U>T> - (uop,T)| +|<“op’T> - <U’T>|-

As lim |lup — v|| = 0 and w* — lim_, up = v, (*) can be made as small as
we like. Hence

{(uw,TY = (v,T) forevery T € A4,(G) and every v € I(A).

It follows that u(G\ 4) = 1.
Let x € A° There exists v € A(G) with suppv € 4% and v(x) =1. Let
T € A4,(G). Then

{w,T) = lim{up,T) = 0.

Therefore, uv = 0 and u = 1\ . As u € A(G) € Cy(G), G\ 4° is compact
and open. Now apply Lemma 4.2. a

COROLLARY 4.5. Let G be an amenabale locally compact group. Assume that
A(G) is a dual Banach space. Then the multiplication on A(G) is weak-* to
weak-* separately continuous on bounded spheres if and only if G is compact.

Proof. 1f G is compact, A(G) = B(G). It is an easy task to verify that
multiplication on B(G) is always weak- * to weak-* separately continuous on
bounded spheres.

Conversely, since G is amenable, I({e}) has a bounded approximate
identity (Corollary 3.10). If multiplication on A(G) is weak-* to weak-*
separately continuous on bounded spheres, then G\ {e}° is compact by
Proposition 4.4. Hence G is compact. a

COROLLARY 4.6. Let G be the “ax + b” group. Let A,(G) be a predual of
A(G). Then muiltiplication on A(G) is not weak-* to weak-* separately
continuous on bounded spheres.
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5. Cofinite ideals in A(G)

DEFINITION 5.1. Let &/ be a Banach algebra. An ideal I in & is called
cofinite if the dimension of &/ is finite. The dimension of &7/I is called the
codimension of I.

Let I2 = (X u;v;; u;, v; € I'}. Then I? is an ideal of & contained in I.
I is said to factorize weakly if I? = I. Such ideals are also called idempotents.

Our interest in cofinite ideals in 4(G) was motivated by three papers of
G. Willis [35], [36] and [37]. Willis succeeded in showing that if G is
non-amenable, then no closed cofinite left ideal in L(G) has a bounded
approximate identity [35]. In contrast to this result, he proved in [36] and [37]
that for every locally compact group, every closed codimension one ideal is
idempotent and for a large class of groups every codimension two ideal is
idempotent. In this section, we will show that while the analogue of Willis’ first
result holds true for A(G), if G is non-amenable, no closed cofinite ideal in
A(G) is idempotent.

We begin with a lemma that may be part of folklore.

LEMMA 5.2. Let G be an amenable locally compact group. Then A(G)
satisfies Ditkin’s condition.

Proof. Condition (i) follows immediately from Lemma 3.6 and the proof of
Proposition 3.2. For non-compact G, condition (ii) follows from Leptin’s
theorem [21]. |

PROPOSITION 5.3. Let G be an amenable group. Let A be a closed subset of
G. If bdy (A) contains no non-empty perfect set, then A is an S-set.

Proof. The proposition follows immediately from Lemma 5.2 and Ditkin’s
theorem (cf. [14, p. 497)). O

COROLLARY 5.4. Let G be an amenable locally compact group. Let A be a
closed discrete subset of G. Then A is an S-set. In particular, every finite subset
of G is an S-set and if G is discrete, every subset is an S-set.

Proof. This is immediate from Proposition 5.3. O

COROLLARY 5.5. Let G be an amenable discrete group. Let A C G. Then
s(A) < oo if and only if 1, € B(G).

Proof. 1f 1, € B(G), then s(4) = ||1,]| p(6)-
If S(A4) < oo, then I(A) has a bounded approximate identity (Proposition
3.2) and 1, € B(G) by Lemma 3.3.
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COROLLARY 5.6. Let G be an amenable locally compact group. Let I be a
closed cofinite ideal in A(G). Then I = I(A) for some finite set A = {x,,..., x,},
where n is the codimension of 1. Furthermore I* = I.

Proof. Let A = Z(I). Since I is cofinite, A must be finite. Therefore A4 is
an S-set by Corollary 5.4 and I = I(4). If A = {x,,..., x,}, let u, € A(G)
be such that u,(x;) =1, u,(x;) = 0if i # j. Then {u; + I(4)} is a basis for
A(G)/I(A).

Proposition 3.2 implies that I(A) has a bounded approximate identity. By
Cohen’s factorization theorem [14, p. 268], I%(A4) = I(A). a

LEMMA 5.7. Let G be a non-amenable locally compact group. Let I = I({e}).
Then I? is not closed in A(G).

Proof. (e} is an S-set [14, p. 229] and Z(I?) = {e}. Therefore if I is
closed, I* = I. Assume that I?> = I. Let v € A(G). Let u € A(G) N Cy(G)
with u(e) = 1. Then v = uwv + (v — wv) with v = wv € I. Hence

n

v—w= Y wv, forw,u €l
i=1

As G is non-compact, there exists x € G\ supp u. Since w € I({x}) and

I*({x)) = I({x)}),

m
w= Y t;m; fort,,m;eI({x}).

j=1
Thus
n m
v= Y wy,+ ) t;m; € A*(G)
i=1 j=1
which is impossible by a result of Losert [23, p. 139]. [m}

The proof of this lemma can be easily modified to show that if G is a
non-amenable locally compact group, no ideal of the form I({x,,..., x,}) can
be idempotent.

THEOREM 5.8. Let G be a locally compact group. Then G is amenable if and
only if every cofinite ideal is of the form I( A) where A is a finite subset of G.

Proof. If G is amenable, then every closed cofinite ideal is idempotent by
Corollary 5.6. By [4, Theorem 2.3}, every cofinite ideal is closed and hence is of
the form I(A4) for some finite subset 4 of G.
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Conversely, if every cofinite ideal is closed, [4, Theorem 2.3] implies that
I*({e}) is closed. Therefore G is amenable by Lemma 5.7. |

We can now answer the analogue of Willis and Dales’ “weak” automatic
continuity question [4, p. 397].

THEOREM 5.9. Let G be a locally compact group. Then the following are
equivalent:
(i) G is amenable.
(ii) Each homomorphism from A(G) with finite dimensional range is
continuous.

Proof. This follows immediately from Theorem 6.8 and from [4, The-
orem 2.3]. 0O

6. Banach modules

DEFINITION 6.1. Let &/ be a Banach algebra. By a left Banach-a#module
(resp. right Banach-st-module, Banach-s-bimodule) we will mean an algebraic

left-module (resp. right-module, bimodule) X which is itself a Banach space
and is such that

lla- x|l < llall l|lx||
(resp. llx - all < lix|l llall, lla- x|l < llall llx|| and |x-a|l < ||| llal])

forevery x € X, a € .
Let X and Y be left (resp. right) Banach ~modules. A linear map I':
X — Y is called a left (resp. right) module homomorphism if

T(u-x)=u-T(x) (resp.T(x-u)=T(x)-u)

for every u € o, x € X.
Let Hom%(X,Y) (resp. Hom%(X, Y)) denote the continuous left (resp.
right) module homomorphisms of X into Y. With respect to the usual operator

norm, Hom%( X, Y) (resp. Hom%( X, Y)) is a Banach space. If X and Y are
Banach »o£bimodules, then we denote

Hom%(X,Y) N Hom%(X,Y)

by Hom*(X, Y). In case X =&/, Hom%¥(%,Y) (resp. Hom%(s/, Y)) is the
space of left (resp. right) (&, Y )-multipliers. If Y is a Banach »o#bimodule,
then Hom#(.«/, Y) is the space of (&, Y )-multipliers.
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Let X be a left (resp. right) Banach «#module. Then X* becomes a right
(resp. left) Banach o#module as follows:

(T-u,xy=(T,u-x) foreveryues,x€ X, T € X*
(resp. {u-T,x) =(T,x-u) foreveryuec s, x <€ X, T € X*).

Furthermore, a simple calculation shows that if
T € Hom?(X,Y) (resp. T € Hom%(X,Y)),
then

T* € Hom%(Y*, X*) (resp. I'* € Hom¥(X*, Y*)).

PROPOSITION 6.2. Let &/ be a Banach algebra with a bounded right (resp.

left) approximate identity {u,},cy. Let X be a right (resp. left) Banach
Smodule. Let

' € Hom?(#, X*) (resp. T € Hom%(+, X*)).
Then there exists T € X* such that
T(u)=u-T (resp.T(u)=T-u)
for every u € .

Proof. T(u) =1lim,I'(uu,) for every u € /. As {u,}, ey is bounded, we
may assume that I'(u,) converges in the weak-* topology to some T € X*.
Let x € X. Then

(T(u), x) = (imT (un,), x)
= ﬁn?(l‘(uua),x)
= li?n(u - T(u,), x)
= lim(T(u), % 4)

= (T, x - u)
={u-T,x).

Therefore, I'(u) = u - T. The proof of the second statement is identical. O

DEFINITION 6.3. Let X be a left (resp. right) Banach o£module. Let Y be
a left (resp. right) Banach Zsubmodule of X. We say that Y is left (resp.
right) invariantly complemented if there exists a projection P from X onto Y
such that

P € Hom?(X,Y) (resp. P € Hom%(X,Y)).
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If X and Y are both Banach £bimodules, Y is called invariantly comple-
mented in X if there exists a projection P from X onto Y with P €

Hom*( X, Y).
Let I be a closed subspace of 7. Let

I*={pex*; ¢(u) =0 foreveryuel}.

Let X be a closed subspace of &/*. Let
*X={ueo; p(u)=0 foreveryp € X}.

If I is a closed left [resp. right] ideal in &, then I+ is a weak-* closed right
(resp. left) submodule of /* and conversely.

PROPOSITION 6.4. Let &/ be a Banach algebra with a bounded right (resp.
left) approximate identity. Let I be a closed left (resp. right) ideal in 2. Then I
has a bounded right (resp. left) approximate identity if and only if I+ is right
(resp. left) invariantly complemented.

Proof. Let {u,},cy be a bounded right approximate identity in 1. We
may assume that {u,},cy converges in the weak-* topology of o/**. Define

(PT,uy ={T,u) — lim{u,, T-u) forTeL* ucA.

P is a continuous operator on &* with

Pl <1+ sup {lluqll}-

If uel lim u, T -u)=(T,u),soPTel*.
Suppose T € I+ . Then, if u € &, (uu,, T) = 0 for every a € UA. Hence
(PT,u) =(T,u) foreveryu €/

and PT = T. Therefore, P is a projection of &/* onto I*.
Finally, if u,v € & and T € &*, then

((PT) - u,v) = {(PT,w)
= (T, w) — lim{u,, T - uw)

=(T-u,v) — lim{u,, (T - u)v)
= (P(T - u),v).

Therefore, P € Hom%(/*, I ).
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Conversely, assume that I+ is right invariantly complemented and that
{ug}acy is a bounded right approximate identity for /. Let P €
Hom*(s/*, I') be a projection of 27* onto I*. Then

(1 - P) € Hom%(/*, o7*),
where 1 denotes the identity operator on &/*. We have
(1 = P)* € Hom¥(/**, o/ **)

and (1 — P)* is a projection of 2/** onto (I *)*= I""", the weak-# closure
of I in &/**. Since

(1 = P)* € Hom¥(«, o/**),
by Proposition 7.2, there exists Iy € A** such that
(1-P)*(u) =u-T, foreveryue«.

Furthermore, we may assume that Iy = w* — lim (1 — P)*(«,) and I €
(IY)t.Letues I If T € o* then
(u-To, T) = (To, T u)
= lim((1 - P)*(x,), T+ u)
= lim (u,, (1 = P)(T - u))
a
= lim (uu,, (1 ~ P)T)
= <“’(1 - P)T>
={(u,T).
Therefore, T, is a right identity for I=*".
There exists a bounded net {vg}gcp Which converges in the weak-*
topology of I,. Therefore {uvg}gcp is a bounded weak right approximate

identity in . Hence I must also have a bounded approximate identity (cf. [2,
p. 58)). (m]

LEMMA 6.5. Let o/ be a Banach algebra with a right (resp. left) bounded
approximate identity {u,},cy- Let T € Hom%¥(s/, X) (resp. T €
Hom%(#/, X)). Let i be a weak-* limit point of {u,},cy in L**. If o
X — X** is the canonical embedding, then

7(T(u)) =u-T**(i) (resp. w(T(u)) =T**(i) - u)
for every u € .
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Proof. Let T € Hom¥(%, X). Then
w* — liznl"**(vr(u“)) = T**(i).
Hence, for every u € & and T € X*,
(u-T**(i), T) = lim(u - T**(n(u,)), T).
Therefore,

7(T(u)) = w* — lima(T(u- u,)) = w* — lima(u - T(u,)) = u- T**(i).
O
The next proposition is due to Gulick, Liu and van Rooij [11, p. 142] for

&= L}G). It is easy to see that their proof carries over to any Banach algebra
&/ with a bounded approximate identity.

PROPOSITION 6.6. Let o be a Banach algebra with a right (resp. left)

approximate identity {u,},cy such that ||uy|| ey < C for every a € A. Then
there exists a linear map M: Hom*%¥ (L, X) = (X* - Z)* (resp. (- X*)*)
such that

ITI < |.#T| < C|IT||
for every T € Hom¥(, X). Furthermore, A is onto if and only if o/ - X** C
7(X) (resp. X**o C w(X)).

7. Invariant projections on VN(G)

We now apply the results of Section 6 to the algebra A(G).

PROPOSITION 7.1. Let A C G be closed. Suppose that 1(A) has a bounded
approximate identity. Then there exists a projection P of VN(G) onto I(A)*
such that u - P(T) = P(u - T) for every u € A(G), T € VN(G).

Proof. 'This is simply Proposition 6.4, if we observe that the existence of a
bounded approximate identity for &/ is not used in the “only if” direction of
the proof. m]

M. Bekka showed that if G is any locally compact group and I is any closed
ideal in L'(G), then I has a bounded approximate identity if and only if

= {g € L=(G); [g(x)f(x) dig(x) =0 forevery f 1}
G
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is the range of a continuous projection on L*(G) which commutes with the
left module action of L'(G) on L*(G) [1]. We show that the analogue of
Bekka’s theorem holds for 4(G) when G is an amenable group. Moreover, the
class of amenable groups can be characterized by the equivalence of these two
statements.

THEOREM 7.2. Let G be an amenable locally compact group. Let X be a
weak-* closed A(G)-submodule of VN(G). Then the following are equivalent.

(1) X is invariantly complemented.

(ii) * X has a bounded approximate identity.
Furthermore, if G is any locally compact group for which * X has a bounded
approximate identity whenever X is a weak-* closed invariantly complemented
submodule of VN(G), then G is amenable.

Proof. The first statement is Proposition 6.4. The second statement follows
from the observation that X = {0} is weak-* closed and invariantly comple-
mented, while 4(G) =* X has a bounded approximate identity if and only if
G is amenable. m]

DEFINITION 7.3.  We denote (4(G) - VN(G))~ by UCB(G). The C*-alge-
bra UCB(G) was introduced by E. Granirer, who studied its properties in [10].
If G is amenable, Cohen’s factorization theorem implies that UCB(G) = A(G)

- VN(G).

PROPOSITION 7.4. Let G be amenable. Let

T € Hom*©@(UCB(G), UCB(G)).
Then there exists T, € Hom*O(VN(G), VN(G)) such that
rOlUCB(é) =T and |T| = |L|l.

Proof. Let {u,},cy be a bounded approximate identity for 4(G) with
llt4ll 4y < 1 for each a. Given a € U define a bilinear form

A, VN(G) X A(G) = C
by
Ao(T,u) = (T(uy - T),u).

Then ||A,|| < ||T|| for each a € . It follows from an argument similar to the
proof of the Banach-Alaoglu theorem (cf. [31, p. 66]) that there exists a subnet
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{A,} of {A,} and a bilinear form A, VN(G) X A(G) = C such that
||A0|| < |IT|| and A, converges pointwise to A,.

Define I;: VN(G) 5 VN(G) by

(To(T), u) = Ay(T,u) forevery T € VN(G), u € A(G).
Then ||T,|| < ||T||. If T € UCB(G), then |lu,, - T = Tl yx, — 0. Hence,
lim (T (u,, - T),u)y = (T(T), u),
a

s0 Lol ycpey = T- o

PROPOSITION 7.5. Let G be an amenable locally compact group. Let X be a
weak-* closed A(G)-submodule of VN(G). Then X is invariantly complemented
in VN(G) if and only if X N UCB(G) is invariantly complemented in UCB(G).

Proof. Let P be an invariant projection of VN(G) onto X. Let

T=u-T, € UCB(G).
Then
P(T)=P(u-T)) =u-P(Ty) € (4(G) - VN(G)) n X

and hence P|cp g, is an invariant projection of UCB(G) onto UCB(G) N X.

Conversely, let P be an invariant projection of UCB(G) onto UCB(G) N X.
Let P, be the extension of P to VN(G) constructed in the proof of Proposi-
tion 7.4 with respect to the bounded approximate identity {u,},co of 4(G).

Let u € * X and T € VN(G). Then P(u,T) € X and

(Po(T), u)y = im(P(u, - T),uy = 0.

Therefore, P,T € (* X)* = X.
If T € X, then u T € UCB(G) N X. Therefore,

(P(T), uy = in(P(u, - T), u)
= liin(ua - T,u)
= (T,u) forevery u € A(G).
Hence P, is a projection of VN(G) onto X. a

We do not know whether the assumption that G be amenable is necessary
in either Proposition 7.4 or 7.5.
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8. Applications to discrete groups

We close this chapter with some applications to discrete groups. The first
result is an analogue of Lau and Losert’s [19, Corollary 4].

ProPOSITION 8.1. Let G be a discrete amenable group. Then G has the
following property.

(*) If X is a weak-* closed invariantly complemented subspace of VN(G),
then there exists a weak-* to weak-* continuous projetion P from VN(G) onto
X such that

P(u-T)=u-P(T) foreveryuc A(G), T € VN(G).
Conversely, if G is a locally compact group with property (*), then G is discrete.

Proof. Let G be discrete and amenable. Let X be a weak-* closed
invariantly complemented subspace of VN(G). By Theorem 7.2, * X has a
bounded approximate identity, so * X = I(A4) for some 4 € #(G) and 1, €
B(G). Define P: VN(G) = X by

P(T)=1,-T.

P is indeed the desired projection.

Suppose that G has property (*). As (L,), the 1-dimensional linear span of
{ L.}, is invariantly complemented [19, Theorem 2], property (*) implies that
there exists a weak-* to weak-* continuous invariant projection P, of VN(G)
onto (L,). If u,v € A(G), Py*(u) € A(G) and

(P*(w),T) = (Py(T), w) = <Po(“' T),v) =(u- Py (v), T).

Therefore, P*| 4, € Hom*©(A(G), A(G)). There exists a continuous func-
tion u, on G such that

Py*(u) = uqu for every u € A(G).
Let x, € G. Then
(Po(Ly,), uy = (Ps*(u), L,,)
= <uu0’ Lx0>

= u(xo) u(x,)

“o(xo)<on’ u).

]
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As P, is a projection onto (L,) and L, & (L,), we have uy(xy) =0.
Therefore u, = 1, and G is discrete. m]

LEMMA 8.2. Let G be an amenable discrete group and let
T € Hom*@(VN(G), VN(G)).
Then T is weak-* to weak-* continuous.

Proof. Let u € A(G). Since G is amenable, u = wv for some w, v € A(G).
Let T € VN(G). Then

(T*(u), T) = (T*(wv), T)
= (w,oI(T))
=(v-T*(w),T).
By [17, Theorem 3.7}, T*(u) = v - I'*(w) € A(G). a

PROPOSITION 8.3. Let G be an amenable discrete group. Let P be a continu-
ous projection of VN(G) onto a weak-* closed A(G)-submodule X of VN(G). If

P € Hom"©(VN(G), VN(G)),
then X+ = I(A) for some A € R(G). Furthermore,
P(T)=1,-T forevery T € VN(G).

Proof. Since G is amenable and discrete, P is weak-* to weak-* continu-
ous by Lemma 8.2. Therefore, there exists a function #, on G such that

P*(u) = ugu forevery u € A(G).
Let u € A(G), T € VN(G). Then
<P(T)> uy = <P*(“)’ T) = (uou,T) = (u,uy- T),
so P(T) = uy- T. Since P is a projection, u, =1, for some 4 and 4 =
Z(* X). As X is invariantly complemented and G is amenable, Theorem 7.2
shows that I(A4) has a bounded approximate identity. By Proposition 3.5,
A € %(G). O
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