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OUTER AUTOMORPHISMS OF GROUPS

BY

MANFRED Ducas! anp RUDIGER GOBEL?

1. Introduction

In this paper we concern ourselves with the group of outer automorphisms
of groups. It is obvious that if G is a group embedded in another group H,
then any inner automorphism of G lifts to an (inner) automorphism of H.
Angus Macintyre asked whether this extension property actually character-
izes inner automorphisms. The answer is affirmative as recently shown by
Schupp [24]. He actually proved the following result which is stronger than
the one stated in [24].

TueoreM [24].  If G is a group then there exists an extension H of G with
Out H =1 (i.e., H is complete) and n,(G) = G.

Out G denotes the factor group Aut G/Inn G where Inn G is the normal
subgroup of all inner automorphisms of G.

This theorem generalizes an earlier countable version due to Miller,
Schupp [17]. We want to put Macintyre’s question into a more general setting
which will lead quite naturally to new questions. For instance, is every group
the outer automorphism group Out G of some group G? A positive answer
to the latter will be part of our main theorem. This is in contrast with results
due to Robinson [22], [23] who showed that not every (finite) group is the
automorphism group of some group. For instance, A4,, n # 2,8, is not
isomorphic to an automorphism group. In Section 3 we will provide a
completely different proof of Schupp’s theorem, which has the following
three advantages. First of all, it gives an answer to the extension of
Macintyre’s question. Secondly, we use only very elementary group theory
without “elements of order 160 or 81”. The small cancellation theory used in
[24] clearly has developed into a beautiful theory over the last 30 years [16],
[25], however, some of its combinatorial details require technical computa-
tions. Therefore it might be desirable to have a “pure” group theoretic proof.
Finally, our construction is close to abelian groups. This allows our extension
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28 MANFRED DUGAS AND RUDIGER GOBEL

group H to be locally soluble provided G is. The extensions H in [17] and
[24] are free products with amalgamation. Such H’s are rarely in any
“reasonable” class even if G is well behaved. Another aim of this paper is to
export ideas like Ines(G) (cf. [2]) and results on rigid systems [2], [5] from the
theory of abelian groups. We hope that this will motivate non-abelian group
theorists to occasionally study some of the work done by their poor commuta-
tive relatives.

Let us begin with the extension of Macintyre’s question. If G is an object
in some class € in a category, then an endomorphism « of G is inessential if
« extends to any extension H of G with H € €. Let Ines(G) = Inesg(G) be
the set of all inessential endomorphisms, see [2], [6], [8]. The following
problems are guidelines for many investigations:

(a) Determine Ines(G) in End(G) for natural classes G!
(b) Prescribe End(G) modulo Ines(G) in € (as a split extension)!

The following results illustrate (a) and (b) and also show that Ines(G) is
known in these special cases. If € is the class of cotorsion-free abelian
groups, then Ines(G) = 0 and End(G) can be prescribed, see [2], [5], [6] and
[1] for the countable case. If € is the class of abelian p-groups, then Ines(G)
is Pierce’s ideal of small endomorphisms and End(G)/Ines(G) can be
prescribed, see [2], [4] and the literature quoted in [2]. If € is the class of all
torsion-free separable abelian groups, then Ines(G) is the ideal of endomor-
phisms with finitely generated image and (b) is answered in [7]. If € is the
class of fields of characteristic 0, then Ines(G) = 0 and extension fields with
prescribed endomorphism monoid can be constructed; cf. [8]. In the case of
fields of characteristic p > 0, Ines(G) are the Frobenius homomorphisms,
and extension fields G with prescribed monoid mod Ines(G) can be con-
structed. Finally, if € is the class of all groups, then Ines(G) = Inn(G) by
Schupp’s result [24].

How about other classes of groups and (b)? Before we give an answer to
this we want to recall some well-known notations due to P. Hall [10]. If € is
a class of groups, then L& denotes the class of all local €-groups, i.e.
G € LG if and only if every finitely generated subgroup of G is in €.
Moreover, G € E,€ if G is a split extension (= semidirect product) of a
€-group by a €-group and {E,, L}€ is the smallest class containing € closed
under E; and L. Observe that the class of locally soluble groups is closed
under E; and L, see [21]. Our main result is the following.

THEOREM. Let « be a cardinal and H, B groups of cardinality < k. If
k™0 = Kk, then there exists a group G of cardinality k* such that:

(1) BcG,ngB)=8B.

2) AtG=InnGXHand H} B = 1.
Moreover G € {E,, L{H, B,Z}. (" denotes the least cardinal larger than «
and H | B is the restriction of H to B).
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Observe that G is locally soluble (torsion-free) if H and B are locally
soluble (torsion-free) and that Out G can be prescribed arbitrarily. If G is
abelian, then the class of finite groups of the form Aut G = Out G is very
restricted. This follows from the work of Hirsch as corrected by Corner; cf.
[5] and the literature quoted there. The construction in the proof of our
theorem uses two kinds of building blocks. From abelian group theory we use
the existence of rigid families {A,|v < k*} of abelian groups of cardinality «;
ie., Hom(4,,4,) =0 if » # u and End(4,) = Z. The existence of such
families below 2% follows from [1] or [9] and above 2% from [2], [5] or [6].
The non-abelian framework is provided by wreath products. Their use is
suggested by the existence of characteristic subgroups [19], [12], [10] and the
Kaloujnine-Krasner theorem [15], see [18] or [25]. (Observe that cardinal
numbers are ordinals; cf. [14, p. 24]. Hence cardinals are sets, cf. [14, p. 15]
and we can enumerate groups by ordinals less than a given cardinal. This is
standard in set theory or model theory and we will use this convenient
notation through this paper.)

2. Properties of P-adic wreath products
Products and sums

If (4, - ) is a group and B is a set, then [ ] Ae, denotes the (unrestricted)
x€B
cartesian product of |B| copies of A4, i.e. if f€ [] Ae,, then

x€B

f= Y ae,=(a.e,),cp With f(x) =a, € Aforall x €B.

XEB

(We want to use 3 in the representation of f. This makes some formulas
easier to read and in our setting A will be abelian.) Hence f is a vector with
entry a, at the x-coordinate. Moreover

D Ae, c [] Ae,

x€B x€B

denotes the (restricted) direct sum, consisting of all

fe I Ae, with f(x) =1 for almost all x € B,

x€B
ie.,

f= Y a,e, anda, = 1 for almost all x € B.
xX€B
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Then clearly f-f' = ). a,ale, with f as above and f' = ) ale, makes
x€B x€B
I1Ae, and € Ae, into groups.

x€B x€B

Wreath products

If B is a group, then B c Aut( [ ] Ae,) via

x€B

fb = Z Aylyp = Z Ayp=1€y.

x€B XE€EB

Clearly, the group generated by [] Ae, and B is a semidirect product

xXE€EB
xE€B

I'TAe, X B of the normal subgroup [ ] Ae, and B, and this group is called

x€B x€B

the unrestricted wreath product 4 \ B of the basis A (or [] Ae,) and B.
Obviously (<>) Ae, is B-invariant and B < Aut( (<>) Ae,) ;cTSB faithfully on
the direct §f£ The group generated by € Ae:E:nd B is the semidirect
product of the normal subgroup Aexx::d B, which is called the (re-

xX€B
stricted) wreath product A \ B with basis 4 (or D Ae,) and B; see H.

XEB
Neumann [18] or Serret [26].
P-adic (Z-adic) completions

If (4,+) is an abelian group with () p"4 =0 and p a prime (or
nEw
() n!'A = 0), then {p"4: n € w} ({n!4: n € w}) used as a basis of neighbor-

n<

hoods of O € A defines a Hausdorff topology p-top (Z-top) on A so that
addition is continuous. Moreover A can be embedded as a pure subgroup in
its completion

A=(4,ptop)” (A=(4,Ztop)),
ie.,
pPA=ANnp"d (nlAd=AnnlAd).
We will say 4 is p-reduced whenever () p"4 = 0. We will always assume

that A’s in this paper are abelian, p-rgfh‘:ced, and not elementary abeliarl
2-groups,A i.e., not vector spaces over Z/2Z. Under these conditions A C A
where 4 = (A4, p-top)” is the p-adic completion and A4 is abelian and
p-reduced.
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P-adic wreath products

Let A be a p-reduced abelian group and B a group. Then Ae, is a

x€B

B-invariant subgroup of [] ffex and B acts faithfully on € Ae,. The group

x€B x€B

generated by @ Ae,and B in A B is a semidirect product of the normal
XEB

subgroup D Ae, and B and this group will be called the p-adic wreath
xEB
product A4 \ B. Clearly

A\VBCAVBCA\B.
We will mainly work between 4 \ B and A \ B.
Properties of p-adic wreath products

Let A and B be as above. Then elements in the p-adic wreath product
have the crucial property:

(0) if 1+fe € Ae,c A B, then cz(f) is finite, where ¢z(f) de-
B
notes the centralizerng f in B.
This observation is established as follows.
If f= ) fee, and n € w, then hJ(f,) > n for almost all x € B. Here

~ e A
h;‘(ci) den%tgs the p-height of a € A (= maximum p-power which divides a)
in A. Suppose C = cg(f) is infinite; then f, is constant on all left cosets of
C. Thus each entry in f gets repeated infinitely often. Hence f, = 1 for all
Xx€B,ie, f=1. 0O

LemMmA 2.1. Let A be abelian, not an elementary abelian 2-group and let B
be any infinite group. If F is a B-invariant group with

D 4de,cFc @ 4e,,

x€B x€B
then F is the largest abelian normal subgroup of W = F X B.

Proof. Let N be an abelian normal subgroup of W and hb € N with
heFand beB. If g €F, then

¢ hbg =g 'hg®'b € N.
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Since N is abelian, we have
(g7 'hg®'b)(hb) = g~ hg?"'n®"'b? = (hb)(g~'hg® 'b) = hg™0"'h*'g®Tb?
and since F is abelian we conclude

-1

-1 —p—1 -2
g gt =gt gt

Let 1 # a be an element in A4 not of order 2 and g = ae,. Then
a~le, + aey-1=a"le,-1 = ae,->
and
a~le, + a’ey-1 = ae,-2.

This implies b = 1, since a? # 1. Thus h b =h € F and N C F. Thus F is
the largest abelian normal subgroup of W.

CoRrOLLARY 2.2. If A,B,F are as in (2.1), then F is a characteristic
subgroup of W = F X B.

We will also need some well-known elementary facts (2.3) on wreath
products; see e.g., C. H. Houghton [12] or H. Neumann [18]. If f is a map
and X a subset of the domain of f, then f | X denotes the restriction of f to
X. The following remarks are easy to prove.

REMARK 2.3. Let a € Aut 4 and B € Aut B.
(a) There exists a* € Aut(A4 \ B) such that a* | B = id and

( Z axex) = Z aiex'
XEB x€B
(b) There exists B* € Aut(A \ B) such that B* | B = B and

B"
( E axex) = Z axexﬁ'

x€B xX€EB

We adapt the following convention: a*, B*, etc. will always denote the
extended automorphisms as in (2.3) and also their restriction to suitable
subgroups of 4 \ B.
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Lemma 2.4. Let H be a subgroup of Aut B and N an infinite subgroup of B
satisfying :

(@ IfheH and h | N is conjugation by an element in B, then h = 1.
If W=FXBcCA\B (as in 2.1)) and H* = {h*: h € H} C AutW (as in
(2.3)), then:

(a*) Ifh* € H* and h* | N is conjugation by an element in W, then h = 1.

Proof. Let x €N, fb € W with f € F and b € B, and suppose h* € H*
is inner on N, that is x"* = x/® for all x € N. Then

xh = gh* = b = b—lf—leb = fob=\xfb = fEFF0p~1xp

isin B. Thus f® =f* "> and f = f* ' for all x € N. Since N is infinite and
f € F by (2.0) we conclude f = 1. Therefore x" = x° for all x € N. Hence
h = 1 by hypothesis (a).

LemMma 2.5. Let H = Z \ B with B infinite. Then:
(a) There exists a countable subgroup Y C H such that ¢, (Y*) = 1 for all
subgroups Y * of finite index in Y;
(b) n H(B ) = B.
Here ny(B) denotes the normalizer of B in H.

Proof. (a) Let F be the basic subgroup of Z \ B and let Y, be any
infinite, but countable subgroup of B. Set

Y= @ Ze, XY, CZ\ B

XEY,

and choose any Y* C Y of finite index. If fb € ¢,(Y*) with f€ F and
b € B, then there exists 0 # a € Z, ae; € Y* and ae, = aef® = ae’ = ae,,
hence b = 1. Thus

fecy(Y¢) with Y = Y, N Y*and Y C ¢,5(f).
Since Y* is infinite, f = 1 follows from (2.0). Therefore ¢, (Y*) = 1.
(b) Let h€B and f€ F with hf € ny(B). Then B =B and fe
ny(B).If x € B, then f~'xf = f"'f* x and f = f* ' for all x € B. Since B
is infinite, we have f = 1 from (2.0) and n,(B) = B follows.

Lemma 2.6. If B is a finite group, there is a canonical embedding

BCcB =(Z\B)/C
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with
C = {fe (4>) Ze,: f,=f, forallxeB} =3B
x€B

and ng{(B) = B. Here 3B’ denotes the center of B'.
Proof. Clearly BN C =1 and B C B’ is obvious. We have to show that
ny(C-B)=C-B for W=1Z\B.

Let ft € 1y, (C-B)with fe F= € Ze,, t € B and ch € C - B. Then

x€B
(b))’ = t71f ebft = f'tYebft = F e (¢71B) fr = flct T 1 bt

is in CB. Hence f~'f?"" € C and f~'f*"" € C for all b € B. We get for the
components of f that

—fx +fxb'1 = d(b) €Z
for some d(b) and all x € B.
Let x; € B with f, minimal among the components and let x, € B with
fx, maximal. Then
_fxl +fx1b‘1 = d(b) >0 and _fx2 +fx2b'1 = d(b) <0,
hence d(b) = 0 so that f = f® forall b € B,ie. f€3B'=C. D

In order to control many automorphisms simultaneously, we will need the
following centralizer condition c.

DeriNiTION 2.7. We say that a group B is in ¢ if and only if there exists a
countable subgroup B’ C B such that cgz(B*) = 1 for all subgroups B* of
finite index in B’.

LemMaA 2.8. Let B be an infinite group and let H be in ¢. Then we can find
a countable subgroup Y € H \ B such that the following holds:

If h € H and h* | Y* is inner for some Y* C Y of finite index, then h = 1.

Proof. Since H € ¢ we can find a countable subgroup H' ¢ H such that

(*) ¢y(H*) =1 for all subgroups H* of finite index in H'.

Let B' € B be infinite but countable and set Y= H' \ B, which is a
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countable subgroup of H \ B. If Y* is a subgroup of finite index in Y, then
Y' = Y* N H'e, has finite index in H'e;. Hence

(**) cg(Y) =1 from(*).

Suppose k| Y* is a conjugation with db € H \ B, where d € F = &) He,
€B
and b € B. ¥
Since H'is infinite and Y’ has finite index in H'e,, there exists
1#ae€H withae, €Y CcY*.
From the definition of A* we derive

(ae,)® = a’e, = (ae,)"" = a’e,.

Hence b = 1 and A* | B = id implies x = x** = x? for all x € B. We obtain
d € ¢x(Y"). On the other hand ¢(Y") = 1 since Y’ is infinite. Thus d = 1,
hence h* | Y* = 1; i.e.,

by (**),and h=1. O

Lemma 29. If H is any group, then H =Z\ (Z\ H) € ¢ and
IIH'(H) = H.

Proof. Because of Lemma 2.5 we only have to show that Z \ H € ¢ for
any infinite H. Let Y’ be any countable, infinite subgroup of H and consider
Y =Z\ Y. If Y* has finite index in Y, then ¢,, ,(Y*) =1. O

Next we will use a non-abelian version of P. Hill’s [11] favored “axiom-3-
families” for totally projective p-groups.

DeriniTION 2.10. Let G be a group and € a class of groups. A family &
of at most countable subgroups of G is called a (countable) €-cover of G if:
() FcG;
(i) If F, € ¥ (i € w) is an ascending chain in G, then |J F, € &;

€
(iii) If X is a countable subset of G, then there exists F € F with
XCF.

LemmMa 2.11.  Let A be an abelian group and G be an infinite subgroup of B.
Then CB(G) = cA{B(G)'
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Proof. Suppose g€ G and he @ Ade, beB with hb € ¢ 5(G).
X€B
Then

g =g" = (gh~*h)" = g®(h*h)".

Hence g = g% and h~%h = 1. This holds for all g € G and G is infinite.
Hence b € ¢x(G) and h® = h for all g € G implies & =1 by (2.0). We
derive ¢ 4; 5(G) c ¢x(G) and (2.11) holds. O

All our set theoretic notations are standard and may be found in [14]. As
usual we identify an ordinal A with the set of all ordinals less than A, i.e.,
A ={a € 0Onla <A} If X is a cardinal, then we identify X with the least
ordinal « such that |k| = R. If A is an ordinal and G,, a < A, are sets, we
call {G,la < A} an ascending continuous chain if

(@ G,cGgforall a<p<a,
® G, G, for any limit ordinal u < A.

a<u

Some authors call chains like this smooth or complete. For the definition of
the cofinality, cf(k), of a cardinal x we refer to [14, p. 26]. Note that « is
called regular if cf(x) = k.

If k is a cardinal, then k™ denotes its successor cardinal, i.e.,

(k*={a €0, la] <«}.
Note that «* is regular [14, p. 27], i.e., cf(k*) = k™.

Lemma 2.12.  Suppose G = |J G, is the union of an ascending, continu-

a<k*
ous chain of subgroups G, with |G,| < k* and « is an infinite cardinal.
Suppose G, € G, such that

ANG,cG,,,=F,XG,CA NG,

for some p-reduced abelian group A, # 1.
Then G has a c-cover & and ¢ (F*) =1 for all F* C F € & with [F : F*]
finite.

Proof. Let & be the set of all countable c-subgroups of G. Since ¢ is
closed with respect to unions of countable chains, we only have to verify
(2.10) (iii) for & to be a c-cover.

Let X c G be a countable subgroup. Since k" is regular and uncountable,
cf(k*) = k*> w. We can find an ordinal @ < «* with x € G,. We may
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assume that X is infinite. Pick any infinite but countable subgroup 4 of 4,
and set Y =4\ X C G,,,. We claim that Y € ¢. Suppose Y* is a subgroup
of finite index in Y and

ax€cg (Y*) withae @D A,e, and x€G,.

x€B

We can find some 1 # be; € Y* and be; = bef* = b%,, hence x =1 and
a¥""X =g where Y* N X is infinite. We conclude a = 1 from (2.0) and
¢g,,(Y*) = 1. In particular ¢, (Y*) =1and Y € &.

fiowever we get more as stated in (2.12). In order to derive cG(Y*) =1we
apply induction on B < «k*. If ¢;(Y*) =1 for all » <B and B is a limit,
then clearly cGB(Y*) =1 by cont1nu1ty If B is discrete, we apply (2.11) to
derive ¢ (Y*) = ¢, (Y =1. D

Recall that a subset X of Y is cofinite in Y if the complement of X in Y,
i.e., Y — X, is finite. If A is a subgroup of B, [B: A] denotes the index of A
in B.

Lemma 2.13.  Let L be an infinite group annd L;, 1 <i < n subgroups of L.

Assume there are elements a; € L such that \J a;L, is cofinite in L. Then there
i=1
isani,1 <i<n,with[L:L;] <.

Proof. Induct on m, t}sle number of distinct subgroups in the list
Ly,...,L,Ifm=1,ie., |Ja,L, is cofinite in L, then obviously [L: L] <
i=1
o, Let m > 1, assume that [L: L,]is infinite, and set

W={i:1$i$n,L1=L,}.

Since W is finite, |J a;L, # L and we may pick x € L — |J a,L;. Then
iew iew

xLiNa,L,=¢ foralieW.

Thus |J (a;L, N xL,) is cofinite in xL,. If a,L;, N xL, # ¢ we fix b, € a,L;
14
NnL, and for any y € a;L, N xL, we obtain b7 'y € L, N L,. Thus

and |J x7'b(L, N L,) is cofinite in L,;. Now we may use our induction

iEW
hypotlhesis and conclude [L;: L, NL;] <o for some i €& W. Since
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[L,:L,nL,] is finite, we may write every coset a;L,, j €W, as a finite
union of cosets mod L; N L; and this finite union is naturally contaim:,ld ina

union of finitely many cosets mod L;. We now rewrite the union U a;L;

j=1
avoiding the use of L;. We now apply our induction hypothesis again and
obtaina k with[L:L,]<®and2<k<n. O

Lemma 2.14.  Let A be an abelian p‘reduced group and B any infinite group.
IfA\BC W CAXQB, then n,(B) =

Proof. Suppose fc € ny(B) where f € F, ¢ € B with W = F X B. Then
bpfe =f-c]ccb"bc € B,

hence f¢ = ™" and b=¢ € ¢ 5(f°). The centralizer ¢,(f¢) must be infinite,
hence f¢ = 1Dby (2.0) and f = 1 implies n,(B) =B. O

3. The construction

We call an (additive) abelian group 4 cotorsion-free if for any prime p the
group A contains neither Q, Z/pZ nor Z, as subgroups where the latter is
the p-adic completion of Z,, the integers localized at p. Thus A is
cotorsion-free iff A is torsion-free, reduced and contains no subgroup # 0
which is complete in the p-adic topology for any prime p.

The following technical lemma will be our weapon to “kill” unwanted
automorphisms:

LemMmA 3.1. Let B be an infinite group and H C Aut(B). Let K be a
countably infinite subgroup of B such that the following holds:

(%) If K* is any subgroup of K with finite index then ¢z(K*) = 1, and if

heHwithh!K*=y | K* andy € Inn B then h = 1.

Let (A, +) be a rigid cotorsion-free abelian group of at least countable rank.
Then there exists a group W with A\BCWCA \ B such that for any
n € Aut W with B" = B we have | K € (H - Inn B) | K. Moreover there
exists H=H* Cc AutWwith H* | B = H.

(Recall that A is rigid if End(A4) = Z - id.)

Proof. For x € K we fix a, €A such that {a,: x € K} is a linearly
independent set in 4. We also fix a p-adic (or Z-adic) zero-sequence

{z,lx € K} c Z\ {0}



OUTER AUTOMORPHISMS OF GROUPS 39

and define
E Zxaxex € @ Aex’
xeK x€B
the p-adic (or Z-adic) closure of (<3) Ae,. Let
xXE€B
< @ Ade,,m™:n € H, teB>
x€B

be the pure subgroup of @ Ae, generated by (<) Ae,, together with

x€B x€B

{M":n €H,t <€ B}.

This is the smallest (pure) subgroup F of € Ae, that contains € Ae, and
x€B x€B
m, is invariant under H and Inn B and has F/ @ Ae, divisible. Here we

identify » € H with its extension A* to A 1B 1e (ae, )" = ae . Our
desired group W is simply W = F X B. Clearly

A\VBCWCAB.

Suppose @ € Aut B lifts to some n € Aut W. Then F" = F by (2.2) and we
set y =n | F. y is determined by its action on Ae,. Since A is rigid, there
are integers y,, y € B, and (ae)” = Z ayye, for all a € 4.
yE€B
Next we want to study representations of elements in F. Let

weF\ @ Ae,.

x€B

Then there are non-zero integers s, s; € Z and distinct pairs (n;, ¢,) € H X B,
1 <i<nwith

n
sw= Ysm" +u and ue @ Ae,.
i=1 xeB

Thus

]
M:

SW—u

( Zzae)mti

x€K

i=1

]
N M:

Z S Zxaxex’"t,-
xekK

Z ( ) sz(utrl)ﬂi“a(utfl)"i“)eu-
veEB

{i: t;eK"v}

Notice that (vz; )" ' € K since t, € K™v.



40 MANFRED DUGAS AND RUDIGER GOBEL

Let v €B and call T, = {(ut"l)’"—1 t; € K™} the v-support of sw — u.
Note that for ¢, € K"iv, we always have z(,,-1n-1, # 0. Fix v € B and some i
and let 7 € B with (vt"l)"' € T,. Then there is a j with (vt; )" =
(@17 17" which implies 7 = (vt‘l)"' "lt Hence

(+) {z‘): (vti‘l)’"—1 € T,-,} is finite.

Let w, be the e -component of sw — u, i.e., sw —u = Y. w,e,. Then (+)

vEB
implies that for each v € B with w, # 0 we have only finitely many v € B
such that {w,, w;} is linearly dependent in A. Since

(ae,)" = ) aye,€F and y,€Z
yE€B

we may conclude vy, = 0 for all but finitely many y. Let
By={y €B:vy, +0}.
Note that By is finite. We are now ready to compute

my = Z (zxaxex)y

xek
= 2: x_a(zxaxel)yxa
xeK
= Y x’“( Y zxaxyyey)x“
xekK yE€B,
= Z Z Zxanyeyx“
x€K y€B, .
= Z ( Z Z(y—lv)a‘la(y—lu)a—l‘yy)eu
vEB ‘\yeByN vK*

Note that for fixed v the map y — (y~1v)*”" is one-to-one. Since m” € F,
we compare the v-components of m” and sw — u above and obtain:
For almost all v € B,

(++) {(vt[l)"‘_lz t; € Kmv} 2 {(y_lv)a_lz yE€ByN UK“},

Note that m”* & @ Ae,, since ( @ Ae,)’ C (<>) Ae, and vy is an automor-

x€B x€B

phism. The same argument apphed to v~ ! yields

( (<>) Aex)y = @ Ae,.

xX€B x€B
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Thus the set at the right hand side of (+ + ) is not empty. Fix a y € B,,. For
k € K we have y € (yk*)K*. Hence for almost all k£ € K, we find i = i(k)
and k = ((yk®)t;7 )", This implies

ka = y_lk""ti.

={keK:k*=y %kmt}, 1<i<n.
n

Then |J K; is cofinite in K. Let m be the minimal number of K;’s with the

i=1
m

property that U K; is cofinite in K. (We may have to renumber the
(m;,8;)s.) Let L {k € K: k* = k™"}. For a,b € K; we have

(a_lb)a = t,-_la_”iyy_lbﬂiti = (a‘lb)ni’i.

Thus (a~'b) € L, and it is easy to see that K; = a;L; for some a; € K.
Suppose there are i,j < m with [K: L;,] <®and [L;, L, N L;] < . Since
m;t; and m;t; coincide on L; N L; and [K: L; N L;] < » we obtain (n;,t;) =
(n;,t) by (%), and i = j follows.
m m
Since U K;= | a,L; is cofinite in K we may apply 2.13 and without

i=1
loss of generahty we may assume [K : L] < «. Suppose m > 1. Because of

the minimality condition on m, there is some
m
Thus |J (xL, N a,L,) is cofinite in xL, and xL, Na,L; = b(L, N L;) for
i=2
m
some b, whenever xL; Na,L; # @. Now |J (x7'b;XL, N L,) is cofinite in

L,. We apply 2.13 once more and concludte %hat there is some i,2 <i<m
with [L;: L, N L,;] < ». As we saw above, this implies L, =L, and 1 =i, a
contradiction. Thus m = 1 and a,L, is cofinite in K. Since all cosets of L, in
K are infinite, [K: L;] = 1and K = L, follow. O

We are now ready to prove our main theorem.

THEOREM 3.2. Let B and H be groups, k a cardinal with |B|, |H| < k and
k™0 = k. Then there exists a group G of cardinality k* with

B c G, ng(B) =B and AutG = H X InnG.
Moreover H} B =1 and G € {E,, L{H, B,Z}.
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Remark. An obvious modification of the rigid family {A4,: v € «*} leads
to 2% pairwise non-isomorphic groups G as in the theorem. We use ter-
minology from Hall [10] (see also [21]): {E,, L{H, B, Z} denotes the smallest
local class of groups containing H, B,Z and closed under split extensions
(= semidirect products).

Proof. Let G= |J G, be a continuous (cf. remark after 2.11) chain of

sets such that IG,,IV<=K |G,,1\G,| =« and |G| =«*. Note that «* is
regular and (k*)® = k* since k¥ = k. Let E C k™ be a stationary set (cf.
[14, p. 58]) such that cf(v) = & for each v € E. Due to a well-known result by
Solovay there is a partition E = |J E, of E into disjoint stationary sets

E,, cf. [14, Theorem 85, p. 433). We may assume E, C {v < x*: v > a}. Let
{K,: v < k*} be a list of all countable subsets of G. We may assume K, € G,
for all v < k*. Choose a rigid system of cotorsion-free abelian groups
{A,: v < «*}where |4,| = k for all v < k*, cf. [2]. Inductively we will define
group structures on the G,’s such that G, is a subgroup of G, for all
v<pu <kt

First we define the group G:

Without loss of generality we may assume B infinite since otherwise (2.6)
shows the existence of a countable group B’ 2 B such that nz(B) = B.
Moreover (2.9) shows that we may assume B € ¢. From (25) HC H' ¢
and we set G, = H' \ B. Note that H C AutG, and H| B =1 by (2.8).
There exists a countable subgroup Y € G, such that for all Y* C Y of finite
index, h | Y* =y € G, implies h = 1. We fix this Y throughout the con-
struction. Note that Y € c.

If A <«™* is a limit ordinal we define G, = |J G, whenever the chain of

v<aA
groups {G,: v < A} is already defined. Suppose G, is already defined. Then
we have to explain how to define G, _ ;.
The group G, will be either 4, \ G, or else will satisfy

A\ G, cG

v

+1 gAV { Gu
as in 3.1.

Case 1. If v E, then G,,, =A,\G,. If v€ E_, but K, does not
contain Y then we set G,,; = A, \ G, also.

Case 2. There exists an a < k* with » € E, and K, contains Y. Then
we define G, ; to be the group W of 3.1 with 4,, K,,, G, for 4, K, B resp.
Thus A, \G,cG,,,€4,1G,.

This finishes the construction of G and it remains to be shown that G has
the required properties.
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An induction with the help of (2.3b) and 2.14 shows that
HcAutG, HtB=1 and ng(B) =B.

The construction of Y shows that whenever A Y* =y | Y* y € Inn G and
Y * a subgroup of finite index of Y, then A = 1. Let

a € (AutG) \H - InnG.
By 2.12 our group G admits a c-cover % for its countable subgroups. Let
F={(Fe F'|YCF}.

Since a € Aut G and k™ regular, a standard back and forth argument shows
that C ={v <«k™|(G,)*=G,} is a cub in «* (ie., a closed unbounded
subset of «*, cf. [14, p. 56]). (The set C is closed since if A = sup X, for some
X c C with A < k™ then

«(G,) = a( U G,,) - Ua(G)= UG, =G,

veX veX veX

The set C is also unbounded: if » = v, < k* then there exists v, < v, < k™
with a(G,,o) € G,, since IG,,OI < kt=cf(x™), cf. [14, p. 26ff]. This leads to a
sequence

vg<v; < 00 <y, < v <kt Withoz(G,,n)gG,,

n+1”

For A = sup{y,|n < 0} we have a(G,) = G, since G, = |J G, .

Next we show that there is an F € % with a | F & (;I -1Inn G) | F. We
identify InnG = G and pick any F€ & If al F=(-y)|F, h € H,
y € G, we may pick » € C with y € G, and F ¢ G,. Since a € H - Inn G,
a # h -y and there exists an element x € G with x® # x”*. Since & is a
cover there is F' € & with FU {x} Cc F'. If again a | F' = h'y’, we pick
v <v' € C with y' € G,.

Since YCFwehave hy ! Y=Hhy }Y=alYand ' At Y=y'y 1}Y
implies & = k' and y = y'. Thus we obtain the contradiction x"” # x® = x"”.
This shows the existence of the desired F. There is an ordinal u < x* with
F=K, and CNE, is again stationary in k*. For veCn E, we have
(G,)* = G, and a lifts to a monomorphism

a r Gv+l: Gv+1 -G.

If a(G,,,) = G, then 3.1 implies a | G, € H - Inn G,.
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What’s left to show is the following:

Claim. If o € Aut G with G¥ = G, then G}, = G

v+1°

Proof of Claim. Let F = F, with G, ., = F, X G, and set X = F°, Since
|X| < k™ there exists a A < k' with X c G,. Note that X is abelian,
X% =Xand XNG, =1.

.tStep L If XN (Ggy1\Gp) # I, B =a, then X N (Gg,y\ Gp) is infi-
nite. .

To see this suppose x = fb € (G5, N X)\ Gy, 1 # f € F,, and b € A4,,.
Then G, € G and x% c f% - b% c X and f° is infinite by (2.0). DO

Step 2. If XN Gy is infinite, then X C Gg.
Pick x = fb € X as above. Then {fb} = {x} = xX"Ga) c fFXNCp(XNGp
and we conclude f = f* "%, Since X N G, is infinite 2.0 implies f = 1. O

Step 3. There exists B < k* and a finite normal subgroup N of G, such
that X C F - N and FgX = FgN.

Because of Step 1 and Step 2 we find a B <kt with X C Gg.1, and
X ¢ Gg. Let x =fb € X as above and a € G,. Then f?b* € X. Since X is
abelian we derive

fbefb =fafb‘“bab = fbf°b° =ffab—lbba.

Hence fof®™" = ff**”". Fix x € G, with f, # 0 and let n = hf#(f,) denote
the p-height of f, in A,. For a cofinite subset 4 of G, we have h,(f,,) > n
for all @ € A. Again for some cofinite subset A’ C A we have h,(f,,,-1) > n.
Since fof*™" = ff**”" implies

fxa +fxa‘1b‘1a =fx —i-fxab‘1
we obtain
0% f, =f,,-1p-1, mod p"*4, forallacA'.

Thus b is finite and A’ is cofinite in G,. This shows that ¢ (b) has finite
index in G,. This implies that b € G, and X C Fg - G,. Let N be the image
of the projection of X into G, modulo Fg. Since N < G, and G, normalizes
X, N is normal in G,. If f, € X, then a € N and (fa)* = f%a € X. There-
fore

faf* =ffaa“a2 =f2a2 = féafa =fafa‘1a2
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which implies 2f, = f,, + f,,-1 for any x and all @ € N. Fix x with f, # 1
and n = hjle(f,). If N were infinite we could come up with N’, a cofinite
subset of N and fra» fra-1 = 0mod p"*'4, and the contradiction 0 # f, =
fra * fra-1=0mod p"*'4, would follow. Thus N is finite. This completes
the proof of step 3.

In order to prove the claim, note that F* = X C F;-N, N finite implies
the existence of a non-zero homomorphism

a -k e,
A,eg > F, > F; - N> Fy > Age,

where -k is the multlphcatlon with k = [N| and e, is the projection of
@ Age,) into Aﬂe Observe that Fge, C Age,. Since

xX€B

Hom(A4,, Az) =0 forv # B,
we obtain a = 8 and
Gv+1 = FaGa c (Fa : N)Gv = Gv+1

. . . - . -1
The same line of reasoning applied to a~! gives us G.=6G

' +1 and we
conclude G, = G, . This finishes the proof of 3.2.

Remark. In a forthcoming paper we will give an alternative proof of the

above claim avoiding the use of a rigid family. We will construct locally finite
groups utilizing just one “rigid” abelian p-group.
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