ON UNCONDITIONALLY CONVERGING AND WEAKLY PRECOMPACT OPERATORS

BY

ELIAS SAAB AND PAULETTE SAAB¹

Introduction

In [1], the authors showed that if F is a Banach space such that F^* has the Radon Nikodym property and contains no subspace isomorphic to l_1 , and if G is any Banach space and Ω a compact Hausdorff space, then an operator $T: C(\Omega, F) \longrightarrow G$ is unconditionally converging if and only if its adjoint T^* is weakly precompact and they asked whether or not the result is still true if one assumes only that F^* does not contain a subspace isomorphic to l_1 . In this paper we give a positive answer to their question. We actually prove a more general result, namely we show that if E, F and G are Banach spaces such that E^* is isometric to an L_1 -space, and F^* contains no subspace isomorphic to l_1 , a bounded linear operator $T: E \otimes_e F \longrightarrow G$ is unconditionally converging if and only if its adjoint T^* is weakly precompact. The methods used to prove this result allow us to extend the result of [17], namely we will show that if E^* is isometric to an L_1 -space and F is any Banach space, then l_1 is isomorphic to a complemented subspace of F.

Notations and definitions

Let X and Y be two Banach spaces. A bounded linear operator $T: X \longrightarrow Y$ is said to be **unconditionally converging** if T sends weakly unconditionally Cauchy series $\sum_{n=1}^{\infty} x_n$ in X into unconditionally convergent series, and T is said to be **weakly precompact** if every bounded sequence $(x_n)_{n\geq 1}$ has a subsequence $(x_{n_k})_{k\geq 1}$ such that $(T(x_{n_k}))_{k\geq 1}$ is weakly Cauchy. It follows from Rosenthal l_1 Theorem (see [16] or [9]) that T is weakly precompact if and only if the image by T of the unit ball of X does not contain a sequence equivalent to the l_1 basis. It follows from [8] see also

Received December 21, 1989.

¹⁹⁸⁰ Mathematics Subject Classification (1985 Revision). Primary 46E40, 46G10; Secondary 28B05, 28B20.

¹Supported in part by a grant from the National Science Foundation.

^{© 1991} by the Board of Trustees of the University of Illinois Manufactured in the United States of America

[15] that an operator $T: X \longrightarrow Y$ is weakly precompact if and only if there exists a Banach space Z not containing l_1 and bounded linear operators $A: X \longrightarrow Z$ and $B: Z \longrightarrow Y$ such that T = BA. This shows that if $T: X \longrightarrow Y$ is weakly precompact then $T^*: Y^* \longrightarrow X^*$ is unconditionally converging. Of course if $T^*: Y^* \longrightarrow X^*$ is weakly precompact then T^{**} is unconditionally converging and hence T is unconditionally converging. In this paper we are interested in studying when unconditionally converging operators have weakly precompact adjoints. It is obvious that if F is a Banach space such that F^* does not contain a subspace isomorphic to l_1 then every bounded linear operator on F has a weakly precompact adjoint.

Here one should mention that the question we would like to address is closely related to the Pelczynski's property (V) of Banach spaces. For this recall that a Banach space X has **Pelczynski's property** (V) if every unconditionally converging operator T on X is weakly compact. The most known classical Banach spaces that have Pelczynski's property (V) are spaces $C(\Omega)$ of continuous functions on compact Hausdorff spaces [14], or more generally Banach spaces whose duals are isometric to L_1 -spaces [12]. This last fact will be used later in this paper.

If Ω is a compact Hausdorff space and F is a Banach space, then $C(\Omega, F)$ will denote the Banach space of all continuous F-valued functions on Ω under the uniform norm. It is well known [10] that the dual of $C(\Omega, F)$ is isometrically isomorphic to the space $M(\Omega, F^*)$ of all regular F^* -valued measures on Ω that are of bounded variation. When F is the scalar field we will simply write $C(\Omega)$ and $M(\Omega)$. If $\mu \in M(\Omega, F^*)$ we will denote by $|\mu|$ the variation of μ which is an element of $M(\Omega)$ and for each $x \in F$ we will denote by $\langle x, \mu \rangle$ the element of $M(\Omega)$ such that for each Borel subset B of Ω we have

$$\langle x, \mu \rangle(B) = \mu(B)(x).$$

From this it follows that if $f \in C(\Omega)$ and $x \in F$ then

$$\langle x, \mu \rangle (f) = \mu (f \otimes x).$$

Where $f \otimes x$ is the element of $C(\Omega, F)$ defined by

$$f \otimes x(k) = f(k)x$$
 for all $k \in K$.

If E is another Banach space, we denote by $E \otimes_{\varepsilon} F$ the algebraic tensor product of E and F endowed with the norm

$$\left\|\sum_{i=1}^{m} x_{i} \otimes y_{i}\right\| = \sup\left\{\left|\sum_{i=1}^{m} x^{*}(x_{i}) y^{*}(y_{i})\right| : \|x^{*}\|, \|y^{*}\| \leq 1\right\}.$$

The completion $E \hat{\otimes}_{\varepsilon} F$ of $E \otimes_{\varepsilon} F$ is called the injective tensor product of E and F. The space $C(\Omega, F)$ is isometrically isomorphic to $C(\Omega) \hat{\otimes}_{\varepsilon} F$.

If K is a compact convex subset of a locally convex topological Hausdorff space, then a measure $\mu \in M(K, F^*)$ is said to be a **boundary measure** or a **maximal measure** [19], if its variation $|\mu|$ is maximal in the sense of Choquet [7]. In what follows $M_m(K, F^*)$ will denote the space of all boundary measures. Throughout this paper we shall concentrate on the case where Kis the unit ball of the dual of a complex Banach space equipped with its weak^{*} topology. Let T be the unit circle and let λ denote the normalized Haar measure on **T**. For each $t \in \mathbf{T}$, let $\sigma_t: K \longrightarrow K$ denote the affine weak*-homomorphism of K defined by $\sigma_i(p) = tp$ for all $p \in K$. Given any complex Banach space F, for each element $\mu \in M(K, F^*)$ we denote by $\sigma_t(\mu) = \mu \circ \sigma_t^{-1}$ the image of the measure μ by σ_t ; it is immediate that $\sigma_t(\mu) \in M(K, F^*)$ for each $t \in \mathbf{T}$ and $\mu \in M(K, F^*)$. Following [11] we say that a measure $\mu \in M(K, F^*)$ is T-homogeneous if $\sigma_t(\mu) = t\mu$ for all $t \in T$. We also say that a function $\phi \in C(K, F)$ is T-homogeneous if $\phi(tp) = t\phi(p)$ for all $t \in \mathbf{T}$ and $p \in K$. If $\phi \in C(K, F)$ we let $\hom_{\mathbf{T}}(\phi)$ denote the **T**-homogeneous element of C(K, F) such that for $p \in K$,

$$\hom_{\mathbf{T}}(\phi)(p) = \text{Bochner} - \int_{\mathbf{T}} t^{-1} \phi(tp) \, d\lambda(t).$$

It is clear that $\hom_{\mathbf{T}}$ defines a norm decreasing projection from C(K, F) onto the subspace of all continuous T-homogeneous functions. By duality, for $\mu \in M(K, F^*)$ we let $\hom_{\mathbf{T}}(\mu)$ denote the element of $M(K, F^*)$ such that

$$\hom_{\mathbf{T}}(\mu)(\phi) = \mu(\hom_{\mathbf{T}}(\phi))$$

for all $\phi \in C(K, F)$.

Finally, we shall denote by $M_{mh}(K, F^*)$ the subspace of $M_m(K, F^*)$ consisting of T-homogeneous measures. If $F = \mathbb{C}$ we simply write $M_m(K)$ or $M_{mh}(K)$. All notations used here and not defined can be found in [9], [10] and [11].

Main result

In this section we suppose that all Banach spaces considered are over the complex field. The techniques we are using in the complex case [11] have their analog in the real case [13] and so all the results presented here are true in the real case also.

The next lemma is elementary and will be needed in the sequel.

LEMMA 1. The mapping $\mu \longrightarrow \hom_{\mathbf{T}}(\mu)$ defines a norm decreasing projection from $M(K, F^*)$ onto the subspace of **T**-homogeneous measures. Moreover, if $\mu \in M_m(K, F^*)$, then $\hom_{\mathbf{T}}(\mu) \in M_m(K, F^*)$.

Proof. The first assertion is easy and follows from the fact the map $\mu \longrightarrow \hom_{\mathbf{T}}(\mu)$ is adjoint of the operator $\hom_{\mathbf{T}}$ defined on C(K, F). To prove the last assertion, let $\mu \in M_m(K, F^*)$. By [20] it is enough to show that for each $x \in F$, the measure

$$\langle x, \hom_{\mathbf{T}}(\mu) \rangle \in M_m(K).$$

For this note that for each $x \in F$, we have

$$\langle x, \hom_{\mathbf{T}}(\mu) \rangle = \hom_{\mathbf{T}} \langle x, \mu \rangle.$$

The result now follows from [11], where it is shown that

if
$$\nu \in M_m(K)$$
 then hom $_{\mathbf{T}}(\nu) \in M_m(K)$.

Let E be a Banach space, and denote by K its dual unit ball equipped with the weak* topology. Let F be another Banach space. We will view $E \hat{\otimes}_{e} F$ as a subspace of C(K, F) and we denote by $(E \hat{\otimes}_{e} F)^{\perp}$ the annihilator of $E \hat{\otimes}_{e} F$ in $M(K, F^{*})$. With these notations we have the following theorem:

THEOREM 2. The following statements are equivalent:

(1) The space E^* is isometric to an L_1 -space;

(2) For any Banach space F, the intersection of $(E \otimes_{\varepsilon} F)^{\perp}$ and $M_{mh}(K, F^*)$ is reduced to zero;

(3) For any Banach space F, the dual of $E \otimes_{\varepsilon} F$ is isometrically isomorphic to $M_{mh}(K, F^*)$.

Proof. To see that $(1) \Rightarrow (2)$, assume that E^* is isometric to an L_1 -space. Let F be any arbitrary Banach space and let $\mu \in M_{mh}(K, F^*)$ such that $\mu = 0$ on $E \otimes_{e} F$. For each $x \in F$, the scalar measure $\langle x, \mu \rangle$ is then an element of $M_{mh}(K)$ and $\langle x, \mu \rangle = 0$ on E. It follows from [11] that $\langle x, \mu \rangle = 0$ for all $x \in F$, hence $\mu = 0$.

To show that (2) \Rightarrow (3) consider an $L \in (E \otimes_{e} F)^{*}$. It follows from [20] that there exists an element $\mu_{L} \in M_{m}(K, F^{*})$ such that

- (i) $\mu_L = L$ on $E \hat{\otimes}_{\varepsilon} F$, and
- (ii) $\|\mu_L\| = \|L\|$.

For each $L \in (E \otimes_{\varepsilon} F)^*$, let $\nu_L = \hom_{\mathbf{T}} \mu_L$, where μ_L is an element of $M_m(K, F^*)$ satisfying conditions (i) and (ii) above. Since

$$\left(E \ \hat{\otimes}_{\varepsilon} F\right)^{\perp} \cap M_{mh}(K, F^*) = 0,$$

for each $L \in (E \otimes_{\varepsilon} F)^*$, the element $\nu_L = \hom_{\mathbf{T}} \mu_L$ is the unique element of $M_{mh}(K, F^*)$ associated to L such that

$$\nu_L = L \text{ on } E \otimes_{\varepsilon} F,$$

and

 $\|\nu_L\| = \|L\|.$

It is clear then that the mapping $L \longrightarrow \nu_L = \hom_{\mathbf{T}} \mu_L$ defines a linear isometry from $(E \otimes_{\varepsilon} F)^*$ onto $M_{mh}(K, F^*)$.

 $(3) \Rightarrow (1)$ follows from [11], since assertion (3) implies that E^* is isometrically isomorphic to $M_{mh}(K)$ which is an L_1 -space [11]. The following known proposition is useful in the proof of the next theorem:

PROPOSITION 2 [14]. A Banach space X has the Pelkzynski's property (V) if and only if the following is satisfied: A subset $H \subset X^*$ is relatively weakly compact whenever

$$\lim_{n \to \infty} \sup_{x^* \in H} |x^*(x_n)| = 0$$

for any weakly unconditionally Cauchy series $\sum_{n=1}^{\infty} x_n$ in X.

THEOREM 3. Let E, F and G be Banach spaces such that E^* is isometric to an L_1 space, and F^* contains no subspace isomorphic to l_1 . Let T: $E \otimes_{e} F \longrightarrow G$ be a bounded linear operator. The following statements are equivalent:

(i) The operator T is unconditionally converging;

(ii) The adjoint T^* of T is weakly precompact.

Proof. It is enough to show that (i) implies (ii). Suppose that T is an unconditionally converging operator. This implies that for any weakly unconditionally Cauchy series $\sum_{n=1}^{\infty} e_n$ in E we have

(*)
$$\lim_{n \to \infty} \sup_{x \in F, \, \|x\| \le 1} \|T(e_n \otimes x)\| = 0$$

To see this, note that if this were not true, then there would exist a $\delta > 0$ and subsequence $(e'_n)_{n \ge 1}$ of $(e_n)_{n \ge 1}$ and a sequence $(x_n)_{n \ge 1}$ of elements of

526

the unit ball of F such that

$$(**) ||T(e'_n \otimes x_n)|| > \delta \text{ for each } n \ge 1.$$

The series $\sum_{n=1}^{\infty} e'_n \otimes x_n$ is easily checked to be weakly unconditionally Cauchy in $E \otimes_{\varepsilon} F$ since $\sum_{n=1}^{\infty} e'_n$ is weakly unconditionally Cauchy and $||x_n|| \leq 1$ for all $n \geq 1$. Condition (**) would then contradict the fact that Tis unconditionally converging, thus we have condition (*). For $x \in F$ and $y^* \in G^*$, consider the element $\langle x, T^*y^* \rangle \in E^*$ defined as follows:

$$\langle x, T^*y^* \rangle (e) = \langle T(e \otimes x), y^* \rangle$$
 for all $e \in E$.

With this in mind, let

$$H = \{ \langle x, T^*y^* \rangle; y^* \in G^*, x \in F \text{ with } \|y^*\| \le 1 \text{ and } \|x\| \le 1 \}.$$

Hence $H \subset E^*$. Since E^* is isometric to an L_1 -space, it follows from [12] that E has the Pelczynski's property (V). Notice now that if $e \in E$ and $\langle x, T^*y^* \rangle \in H$ then

$$|\langle x, T^*y^*\rangle(e)| \leq ||T(e \otimes x)||.$$

Now apply condition (*) and Proposition 2 to deduce that H is relatively weakly compact in E^* . Let

$$S: (E \hat{\otimes}_{\varepsilon} F)^* \longrightarrow M_{mh}(K, F^*)$$

denote the linear isometry which assigns to each element L in $(E \otimes_{\varepsilon} F)^*$ the unique element S(L) in $M_{mh}(K, F^*)$ such that S(L) = L on $E \otimes_{\varepsilon} F$. Similarly let

$$s: E^* \longrightarrow M_{mh}(K)$$

denote the isometry of E^* onto $M_{mh}(K)$. Then for each $x \in F$ and $y^* \in G^*$, we have

$$\langle x, S(T^*y^*) \rangle = s(\langle x, T^*y^* \rangle),$$

This follows from the fact that $s\langle x, T^*y^* \rangle$ and $\langle x, S(T^*y^*) \rangle$ are both elements of $M_{mh}(K)$ and they both agree on E, for if $e \in E$ one has

$$\langle x, S(T^*y^*) \rangle (e) = S(T^*y^*)(e \otimes x) = \langle T(e \otimes x), y^* \rangle$$

and

$$s(\langle x, T^*y^* \rangle)(e) = \langle x, T^*y^* \rangle(e) = \langle T(e \otimes x), y^* \rangle.$$

Hence they are identical. The set

$$s(H) = \{ \langle x, S(T^*y^*) \rangle; y^* \in G^*, x \in F \text{ with } ||y^*|| \le 1 \text{ and } ||x|| \le 1 \}$$

is relatively weakly compact subset of $M_{mh}(K)$, and hence it is uniformly countably additive [9]. This in turn implies that the set

$$W = \{ |S(T^*y^*)|; y^* \in G^* \text{ and } \|y^*\| \le 1 \}$$

is uniformly countably additive [10, page 8], here $|S(T^*y^*)|$ denotes the variation of the measure $S(T^*y^*)$. By a result of Grothendieck [9] the set W is relatively weakly compact subset of M(K). If F^* contains no subspace isomorphic to l_1 , it follows from [22] or from [4] and the methods used in [17], that the set

$$\{S(T^*y^*); y^* \in G^* \text{ and } \|y^*\| \le 1\}$$

is weakly precompact. Since S is an isometry the set

$${T^*y^*; y^* \in G^* \text{ and } ||y^* \le 1}$$

is weakly precompact, and hence T^* is weakly precompact.

The following corollary solves positively the question asked in [1]. Before stating the corollary we need the following definition:

DEFINITION 4. We say that an operator $T: C(\Omega, F) \longrightarrow G$ is strongly bounded if its representing measure is continuous at the empty set (see [5] or [21]).

It is well known (see [5] or [21]) that if F contains no subspace isomorphic to c_0 then saying that T is strongly bounded is equivalent to saying that T is unconditionally converging. This fact together with Theorem 3 gives:

COROLLARY 5. Let Ω be a compact Hausdorff space and let F and G be Banach spaces. If F^* does not contain a subspace isomorphic to l_1 , then the following statements about a bounded linear operator $T: C(\Omega, F) \longrightarrow G$ are equivalent:

- (1) The operator T is unconditionally converging;
- (2) The operator T is strongly bounded;
- (3) The adjoint operator T^* of T is weakly precompact.

Proof. All one needs to notice is that if F^* does not contain a subspace isomorphic to l_1 then F^{**} does not contain a subspace isomorphic to c_0 and conclude using the remark preceding this corollary.

528

Discussions and remarks

In light of Theorem 3, one can ask the following question: Under what conditions on the Banach space X any operator T: $X \longrightarrow Y$ that is unconditionally converging has an adjoint T^* that is weakly precompact, where Y is any Banach space. To be able to answer this question let us agree to say that a Banach space X has the property weak (V) if it satisfies the following property: A subset H of its dual X^* is weakly precompact whenever it satisfies

$$(***) \qquad \lim_{n \to \infty} \sup_{x^* \in H} |\langle x_n, x^* \rangle| = 0$$

for every weakly unconditionally Cauchy series $\sum_{n=1}^{\infty} x_n$ in X.

It is clear that a Banach space X has the Pelczynski's property (V) if and only if X has weak (V) and X^* is weakly sequentially complete. One can quickly see that a Banach space X has weak (V) if and only if for any Banach space Y, any unconditionally converging operator T: $X \longrightarrow Y$ has a weakly precompact adjoint. To see that, let H be a subset of X^* that satisfy (***) above and let $(x_n^*)_{n>1}$ be a sequence in H. Consider the following map $T: Y \longrightarrow c_0$ defined by $T(x) = (x_n^*(x))_{n \ge 1}$. This operator T is unconditionally converging since H satisfies (***), hence T* is weakly precompact and therefore the sequence $(x_n^*)_{n \ge 1}$ which is a subset of the image by T^* of the unit ball of l_1 is weakly precompact. Combining this observation with Theorem 3 we get that $E \otimes F$ has weak (V) whenever E and F are Banach spaces such that F^* is isometric to an L_1 -space and F^* contains no subspace isomorphic to l_1 . This in particular implies that if F^* contains no subspace isomorphic to l_1 , then $C(\Omega, F)$ has the weak (V) property. Let us mention that it is still unknown whether $C(\Omega, F)$ has weak (V) whenever F has the same property. The best partial result in this direction was obtained in [6].

Consider now the following question: Under what conditions on the Banach space Y an operator T: $X \longrightarrow Y$ is weakly precompact as soon as T^* is unconditionally converging, where X is any Banach space. For this let us say that a Banach space has weak (V^*) [3] whenever it satisfies the following property: a subset H of X is weakly precompact whenever it satisfies

$$(****) \qquad \lim_{n \to \infty} \sup_{x \in H} |\langle x, x_n^* \rangle| = 0$$

for every weakly unconditionally Cauchy series $\sum_{n=1}^{\infty} x_n^*$ in X^* . The Banach space X has (V^*) [14] if it has weak (V^*) and is weakly sequentially complete. It is clear that any Banach space Y that contains no subspace isomorphic to l_1 has weak (V*), so c_0 has weak (V*) but does not have (V^*) . The results of [4] or [22] imply that if Y contains no subspace isomorphic to l_1 , and if (Ω, Σ, ν) is a probability measure space, then $L_1(\nu, Y)$, the space of Bochner integrable Y-valued functions equipped with its usual norm [10], has the property weak (V^*) . Here also it turns out that a Banach space Y has weak (V^*) if and only if for any Banach space X, any operator $T: X \longrightarrow Y$ is weakly precompact whenever its adjoint is unconditionally converging. To see that, let H be subset satisfying condition (****) above and let $(x_n)_{n\geq 1}$ be a sequence in H. Consider the operator $T: l_1 \longrightarrow Y$ defined by $T((a_n)_{n\geq 1}) = \sum_{n=1}^{\infty} a_n x_n$. It is easy to check that T is well defined, linear and has a closed graph, so T is bounded. The adjoint T^* of T is unconditionally converging. For let $\sum_{n=1}^{\infty} y_n^*$ be a weakly unconditionally Cauchy series in Y^* . Since H satisfies (****), one has

$$\lim_{k\to\infty}\sup_{n\geq 1}|y_k^*(x_n)|=0.$$

A moment of reflection reveals that this implies that $\lim_{k \to \infty} ||T^*(y_k^*)|| = 0$ which in turn shows that T^* is unconditionally converging. Therefore T is weakly precompact and hence the sequence $(x_n)_{n \ge 1}$ is weakly precompact.

In [17] it was shown that if $C(\Omega, F)$ contains a complemented subspace isomorphic to l_1 , then F contains a complemented subspace isomorphic to l_1 . With the help of Theorem 2, we can extend this result as follows: Let E be a Banach space such that E^* is isometric to an L_1 -space and let F be any other Banach space. If $E \otimes_e F$ contains a complemented subspace isomorphic to l_1 , then F contains a complemented subspace isomorphic to l_1 . First observe that if $E \otimes_e F$ contains a complemented subspace isomorphic to l_1 , then $(E \otimes_e F)^*$ contains a subspace isomorphic to c_0 . By Theorem 2, $(E \otimes_e F)^*$ is isomorphically isomorphic to $M_{mh}(K, F^*)$. This implies that $M(K, F^*)$ contain a subspace isomorphic to c_0 and therefore F contains a complemented subspace isomorphic to l_1 [2].

Another application of Theorem 2 and [22] gives the following: Let E be a Banach space such that E^* is isometric to an L_1 -space. Let F be a Banach space such that F^* is weakly sequentially complete then $(E \otimes_e F)^*$ is weakly sequentially complete. As before $(E \otimes_e F)^*$ is isomorphically isomorphic to $M_{mh}(K, F^*)$ which is a subspace of $M(K, F^*)$, but $M(K, F^*)$ is weakly sequentially complete by [22]. If one suppose that F is an addition a Banach lattice, then one can conclude using [18] that $(E \otimes_e F)^*$ has (V^*) .

References

- C.A. ABOTT, E.M. BATOR, R.G. BILYEU and P.W. LEWIS, Weak precompactness, Strong boundedness and weak complete continuity, Math. Proc. Cambridge Philos. Soc., vol. 108 (1990), pp. 325-335.
- C. BESSAGA and A. PELCZYNSKI, On bases and unconditional convergence of series in Banach spaces, Studia Math., vol. 17 (1958), pp. 151-164.
- 3. F. BOMBAL, On (V*) sets and Pelczynski's property, Glasgow Math. J., vol. 32 (1990), pp.

109-120.

- 4. J. BOURGAIN, An averaging result for l_1 sequences and applications to weakly conditionally compact sets in L_X^1 , Israel J. Math., vol. 32 (1979), pp. 289–298.
- J.K. BROOKS and P.W. LEWIS, Operators and vector measures, Trans. Amer. Math. Soc., vol. 192 (1974), pp. 139-162.
- 6. P. CEMBRANOS, N. KALTON, E. SAAB and P. SAAB, Pelczynski's Property V on $C(\Omega, E)$ spaces, Math. Ann., vol. 271 (1985), pp. 91–97.
- 7. G. CHOQUET, Lectures on analysis, Lectures Notes in Mathematics, W.A. Benjamin, New York, 1969.
- 8. W.J. DAVIS, T. FIGIEL, W.B. JOHNSON and A. PEZCZYNSKI, Factoring weakly compact operators, J. Funct. Anal., vol. 17 (1974), pp. 311-327.
- 9. J. DIESTEL, Sequences and series in Banach spaces, Graduate Text in Mathematics, vol. 92, Springer Verlag, New York, 1984.
- J. DIESTEL and J.J. UHL JR., Vector measures, Math. Surveys, no. 15 American Mathematical Society, Providence, Rhode Island, 1977.
- 11. E. EFFROS, On a class of complex Banach spaces, Illinois J. Math., vol. 18 (1974), pp. 48-59.
- 12. W.B. JOHNSON and M. ZIPPIN, Separable L_1 preduals are quotients of $C(\Delta)$, Israel J. Math., vol. 16 (1973), pp. 198–202.
- 13. A.J. LAZAR, The unit ball in conjugate L_1 -space, Duke Math. J., vol. 41 (1972), pp. 1–8.
- 14. A. PELCZYNSKI, On Banach spaces on which every unconditionally converging operator is weakly compact, Bull. Acad. Polon. Sci., vol. 10 (1962), pp. 641–648.
- L. RIDDLE, E. SAAB and J.J. UHL JR., Sets with the weak Radon-Nikodym property, Indiana University Math. J., vol. 32 (1983), pp. 527–541.
- 16. H.P. ROSENTHAL, A characterization of Banach spaces containing l_1 , Proc. Nat. Acad. Sci. USA, vol. 71 (1974), pp. 2411–2413.
- 17. E. SAAB and P. SAAB, A stability property of a class of Banach spaces not containing a complemented copy of l_1 , Proc. Amer. Math. Soc., vol. 84 (1982), pp. 44-46.
- 18. _____, On Pelczynski's properties (V) and V*), Pacific J. Math., vol. 125 (1986), pp. 205-210.
- 19. P. SAAB, The Choquet integral representation in the affine vector-valued case, Aequationes Mathematics, vol. 20 (1980), pp. 252–262.
- 20. _____, Integral representation by boundary vector measures, Canad. Math. Bull., vol. 25 (1982), pp. 164–168.
- Weakly compact, unconditionally converging, and Dunford-Pettis operators on spaces of vector-valued continuous functions, Math. Proc. Cambridge Philos. Soc., vol. 95 (1984), pp. 101–108.
- 22. M. TALAGRAND, Weak Cauchy sequence in $L^{1}(E)$, Amer. J. Math., vol. 106 (1984), pp. 703-724.

UNIVERSITY OF MISSOURI COLUMBIA, MISSOURI