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BOUNDEDNESS OF CERTAIN MULTIPLIER OPERATORS
IN FOURIER ANALYSIS ON WEIGHTED

LEBESGUE SPACES

BY

DONALD KRUG

1. Introduction

The purpose of this paper is to extend known results on the relationship
between Hardy-Littlewood type maximal functions and certain multi-direc-
tional generalizations of the Hilbert transform to the case of weighted
Lebesgue spaces. It is well known that the boundedness of the Hardy-
Littlewood maximal function on the spaces LP(R), 1 < p < , is closely
related to the boundedness of the Hilbert transform on these same spaces. In
their paper, On the equivalence between the boundedness of certain classes of
maximal and multiplier operators in Fourier Analysis [3], A. Cordoba and R.
Fefferman study the relationship between two operators, one related to the
Hardy-Littlewood maximal function and one to the Hilbert transform, whose
boundedness properties are not so well known.

Specifically, let 01 > 02 > 03 > be a decreasing sequence of angles,
0 ( 0 ( zr/2. Define the maximal function Mo on LP(R2) by

Mo(f)(x) sup If(Y)l dy,
xR

where each rectangle R c R2 is oriented in one of the directions 0i. Let Po
be the subset of the plane shown in^Fig. 1. Consider the multiplier To
(defined initially on L2(R2)) given by To(f)(t) Xpo(t)f(t), where Xp0 is the
characteristic function of Po, and g denotes the Fourier transform of g.
Cordoba and Fefferman have proven the following two results giving the

relationship between the boundedness of M0 and To:

THEOREM A. Iffor some p > 2, Mo is a bounded operator on L(p/2)’(R2),
then TO is also bounded, but on the space LP(R2).
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THEOREM B. Iffor some p > 2, To is bounded on LP(R2), then under the
additional assumption that I{Mo(Xe) > 1/2}1 _< CIEI for all measurable E
RE, it follows that Mo is of weak type [(p/2)’, (p/2)’].

In this paper we extend Theorem A to the case of weighted spaces. Let
w(x, y) be a locally integrable nonnegative function of two variables. Let
dl- wdh, where dA denotes Lebesgue measure on RE. (In this paper
always denotes wdh, for other weights we will use dv or dtr.) We obtain two
versions of Theorem A; for the precise definitions see the material that
follows.

THEOREM 4B. Ifp > 2, w A2(0) and w A2(R2), and ifMo is bounded
on L(f/E)’(R2) where , w1-(p/2)’, then To is bounded on LP(R2), with norm
depending only on the AE(0) and AE(R2) constants of w and the norm of Mo.

THEOREM 6. /f P0 > 2 and Mo is bounded on Lff’(R2), where , w1-p’,
and p [P0, Po e) for some e > O, then the multiplier operator To is

po 2 depending only on the norm of Mo and thebounded on L, (R), with norm
Ap(O) constant of w.

Theorem 4B gives, in particular, the result of Cordoba and Fefferman in
the case w 1. However, Theorem 6 implies that w Apo(O) (rather than
A2) which is what one would hope for.

In proving Theorem 4B we obtain a result relating a weighted integral
inequality to vector-valued inequalities, and in proving Theorem 6 we use
results related to extrapolation. In Section 6 we consider a result on extrapo-
lation in the directions 0i. We finish the paper with several applications of
the results mentioned above, including a weighted version of the angular
Littlewood-Paley inequality.

I would like to express my appreciation to Professor Alberto Torchinsky
for his constant support and encouragement. I especially want to thank him
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for reading an earlier version of this paper and offering numerous helpful
suggestions.

2. A condition which implies boundedness

In this section we use a condition, shown by J.L. Rubio de Francia [14],
[15] to be related to vector-valued inequalities and interpolation, which will
imply the boundedness of the operator To on L. In later sections we will
relate this condition to the boundedness of Mo. The boundedness condition
is:

BC(tz, p). Let p > 2 be given. For each g in Lp/2)’(R2), g > 0, there is
a G > g, G in L(f/’(li) such that

and G.w A2(0). Here c depends only on p and /z, and is independent
of g.

Ap(O) denotes the class of all those functions w such that

1 1 -1/p-1sup (x,y) dxdy - w(x,y) dxdy =C<oo
R

where the supremum is taken over all rectangles in one of the directions 0,
1, 2, 3, The number C is called the Ap(0)-constant for w. We also let

Ap(Rz) be the Ap condition with the supremum taken over rectangles
oriented in the direction of the coordinate axes.

THEOREM 1. Given p > 2 and w Ap(R2), assume that the boundedness
condition BC(Iz, p) is true. Then To is bounded on L(R2) with norm depend-
ing only on the Ap(O) and Ap(RE)-constants of w, and the AE-COnstant of G w.

Proof. Consider the infinite strip

Ek {(x,y) e R2" 2k < x < 2k+1}.

Define the multiplier operator Sk by Sk(f)(x)= Xe,,(x)’f(x). Kurtz [10]
shows that

IlfllL " I1( E lSkf12) 1/2 IIL for w cAp(R2).

(A -- B means there are constants c and c’ such that cA < B < c’A.) Let Fk
be the half-plane shown in Fig. 2. Define Hk, initially on L2(R2), by
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2k-1 2k 2k+

FIG. 2

(Hkf)" (x) XFk(X) f(X). Then Hk is essentially the Hilbert transform
oriented in the direction Ok and consequently is bounded on Lf,(R2) for
I- CAp(Ok) (i.e., Ap where the supremum is taken over all rectangles
oriented in the direction Ok). Note, also, that SkTo(f) HkSk(f): Indeed,

( SkTo ) ( f ) XF, Xt,o fi XF, Xe, ) ( HkSk ) ( f )

Thus

II To( f)ll c

=C

=C

k L

k
2llP/2,lnkSk( f )l
LU.

We estimate this last norm using duality. Choose g > O, g L(p/2)’(R2)
with Ilgll,,/’< 1, and note that

fa EIHkSk(f)(x)I2g(x)w(x) dx
k

E { IgkS( f)( x)lZg( x)w( x) dx
k aR2

<- E [ 114s( f)( x)l-( x)w( x) d
k aR2

<_ C., [lSk(f)(x)12a(x)w(x) dx,
k "R
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where G is the function from the boundedness condition, and the last
inequality follows since Hk is bounded for G w AE(Ok). Hence,

fl -’]HkSk( f )( x)12g( x)w( x) dr
k

<_ cf dx
JR k

_lSk(f)(x)l 2 W(X) dx
k

x) dx
1- 2/p

< c Ilfll 2 Ilgll/>’ <- cllfll2,

If we take the supremum of all such functions g it follows that

where c depends only on the A2(0)-constant of G.w and the Av(R2)-con
stant of w.

In the next three sections we discuss conditions on M0 that imply the
boundedness condition, and hence boundedness of To.

3. Weighted vector-valued inequalities

Rubio de Francia [14] has shown that the boundedness condition BC(Ix, p),
is equivalent to certain weighted vector-valued inequalities. We will show
that the same type of result is true for the weights in Ap(O).

THEOREM 2.
equivalent"

Given a weight w and p > 2, the following conditions are

(a)



MULTIPLIER OPERATORS ON WEIGHTED LEBESGUE SPACES 473

where My is the maximal function with supremum taken over all rectangles
p 2oriented in the direction Oj, f. L,(R), j 1, 2,

(b)

and

j L L

where I-I. is the Hilbert transform in the direction Oj and I-I. +/- the Hilbert
Lp 2transform in the direction O + zr/2, and f. g(R ), j 1, 2,

(c) The boundedness condition BC(Iz, p): For each g > O, g L(p/2)’, them
is a G > g with

and G w A2(0).
Here cp, cp, and cp depend only on K andp and the Az(O)-constant of G w.

To prove this we will need to assume the following result of Rubio de
Francia [15]:

THEOREM,
then

Let F {T.} be a family ofsublinear operators T., T.: L + Lq,

if and only if for r (q/2)’ and g > O, g L, there is a G L such that
II G II. _< c IIg IlL% with G > g and

flT,.flZa(x) dlz < c flflZa(x)

for j 1, 2,..., with cp independent ofj.
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We will assume this result and move on to the proof of Theorem 2.

(c) implies (a).

EIMifyl 2] supE IMyf.(x)12g(x)w(x) dx
j LP j

where the sup is taken over g > 0, Ilgll%,/)’ < 1

_< sup E a+
g j

The second inequality follows since My is bounded on L(R2) for w(x) dx
in A(Oy).

(c) implies (b). Since both H1 and H1+/- are bounded on L2(R2) for w in
A2(0y), for j 1, 2,..., the proof is exactly as (c) implies (a) above, with My
replaced by Hy (or Hy+/-).

(a) implies (c). Since the vector valued inequality holds then, by the
theorem of Rubio de Francia stated above, for any nonnegative g in L’/2)’,
there is a G with g < G,

IIG IIz.+/:+>’ _< c’tlgll,+./+>’

and

flMyfla(x)w(x) dx <_ cflfla(x)w(x) dx

for c independent of f L and j 1, 2, 3, This implies that G w
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A2(0/) with A2(Oj) constant independent of j. Hence G w A2(0) and thus
G satisfies the condition for boundedness BC(Iz, p).

(b) implies (c). This follows as above, since we get both

and

flnyf( x)l a(x)w(x) <_ c,flf(x)lZa(x)w(x)

f[Hy f(x)l G(x)w(x) ax <_ c flf(x)l G(x)w(x) ax

for all j, which implies that G w A2(Oj)with A2(0j)-constant independent
of j. Hence G w Ap(O). Note: In the above proof we used the fact that if

2 2H. and H.+/- are bounded on L,(R ), then w A2(0). The idea behind this
is as follows. For convenience of notation let’s suppose the Hilbert trans-

2. here H is the Hilbert transform informs H and Hr are bounded on L,,
the direction of the x-axis and similarly for Hr. We will also let M and My
be the one-dimensional Hardy-Littlewood maximal functions in the direction
of the x and y axes respectively. Then w(., y) A/(R1) with constant
independent of y and w(x,. ) Az(R1) with constant independent of x.
Hence

IIM(f)llz<l) IIMx(Myf)llz cllfll
and this implies w A2(R2).

4. A weighted integral inequality

The main result of this section is a weighted integral inequality for the
strong maximal function. From this the first of the theorems in which
boundedness of Mo implies that of To follows.

LEM 1. If W Ap(R2), 1 < p < 0% then for some e > O, w Ap_e(R2)
with A,_e(RZ)-constant and e depending only on p and the A,(RZ)-constant
ofw.

Proof A.P. Calderon has proven that if w A,(R) then w Ap_e(R)
where e and the A._(R)-constant of w depend only on p and the A,(R)
constant of w. (See (1], Theorems 1 and 2 as well as the proof of Theorem 2.)

In this case, for each x, w(x, -) A(R)with constant independent of x.
Hence w(x,-) A,_(R)with e and the A_(R)-constant of w(x,-)
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independent of x. Similarly w(-, y) Ap_e(R)with e and constant inde-
pendent of y. So w Ap_(Rz) with e and Ap_(RZ)-constant depending
only on p and the Ap_(R2)-constant of w.

More notation will be needed before we state Lemma 2. For f in LP(R2)
let Mx(f) be the Hardy-Littlewood maximal function of f in the x-variable
only (similarly for My(f)). For a weight w define

Mg(f)(x) sup
1 flR tz(R) (x) dlx(x)

where the supremum is taken over all rectangles R containing x with sides
parallel to the axes and dlz(x) w(x)dx.

LEMMA 2. /f W Ap(R2), 1 < p < o% then

fR2[Mx(My( f ) )( x)[Pg( x) ap( x) < cpf:[f( x)[PMg(M,( g) )( x) dlx( x)

with cp independent off and g and depending only on p and the Ap(R2)-con
stant of w.

Proof Let q =p e. Then for any rectangle R,

g(w)w(x) dx - (Mw(g)(x)w(x))-l/q-ldx

<_ (x)w(x)ax

’ fR g(y)(w(y) dy W(X) -l/q-1 dx

1 (1 fRW(X)-l/q-< -w(R) - dx
q-1

< Aq(R2 ) -constant of w.

q-1

So (gw,(Mwg)W)-Ap_e(R2) with constant no more than the Ap_e(R2)
constant of w.
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As in Lemma 1, this implies that (gw, (Mw(g))w) Ap_e(R1) uniformly in
each variable. Hence,

[ g(x, y)w(x, y) dx <
Mx(My(f)) >x}

ap-e ( f ) Mw( g)w( x) dx.

By interpolating with the trivial aE.(R ) result, the corresponding strong-
type inequality holds for p. Hence, integrating in the x1-variable alone,

x)g(x)w(x) dx "< (f)(x))PMg(g)(x)w(x) dx

Likewise, (Mg(g)w, Mg(Mg(g))w) Ap_,(R2) and so proceeding as above
and integrating in the xE-variable we now have

ff Mx(My(f))’(x)g(x)w(x) dx1 dx2

R

<. C ff [f(x)[PMIz(M(g))(X)W(X) dx dx2.

R

This lemma will enable us to prove two theorems which show that the
boundedness of Mo implies that of T0. Define

M. i( f )( x) sup
1

Rx(R) (x) dtz(x)

where the supremum is taken over all rectangles oriented in the direction 0i.

Let

Mg,o(f)(x) supMg, i(f)(x).

THEOREM 3. Ifp > 2, w A2(0) and w A2(R2) and if

IIM,o( f)ll/; cllfllw/,’ for all f L(f/2)’(R2)
then

(A)

pfor all f1 e Lg,

and
(B) To is bounded on LP(Ra) with norm depending only on the constant c

above, and on the Ap(R2) and A2(R2) constants of w.
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Proof By duality. Let

g L(f/E)’(R2), Ilgll%,/)’ 1.

Then

f= IMf.l 2g (x) d/z(x)

2

IMp,, o(M,( g )

Part (B) follows immediately from part (A), Theorem 1 and Theorem 2.

THEOREM 4. Ifp > 2, w A2(0) and w A2(R2), and ifMo is bounded
on L/E)’(R2), 1,, w 1-(p/E)’, then

(A)

1 LP LP
d,( x ) w( x ) dX,

and
p 2(B) To is bounded on L(R ) with norm depending only on the norm ofMo

2 2and on the Ae(II ) and A(II )-constants of w.

Proof We use another version of duality. The dual of Lp/2(R2) is
L(p/E)’(R2) where (f, g) ffgdx. Let g L/E)’(R2) with norm less than
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or equal to 1, then

cf EIf.12Mo(Mo(g)) w2/p
dx

_< c 1.1 L

Taking the supremum over all such functions g gives us part (A).
Part (B) follows from Theorems 1, 2 and part A.

In the case of Lebesgue measure both theorems 3B and 4B give the result
of Cordoba and Fefferman. However, both demand a stronger condition than
w Ap(O). In the next section we will prove a result which will only require
w Ap(O), but we will also assume M0 to be bounded on LvP(R2), v
w1-p’ dA, a stronger condition than the above.

5. The main result

The results in this and the following section are related to an extrapolation
theorem of Garcia-Cuerva. Before we proceed we will need some notation.
We say that a pair (w,v) of nonnegative locally integrable functions

satisfies the Ap(F)-condition, 1 < p < , and write (w, v) Ap(F) if for all
rectangles R in the family F,

1
w(y) dy

1 1/(p- 1)

-T v(y) dy

with c independent of R. The smallest such c is called the Ap(F).constant
of (w,v).
A well known result is that the weak-type inequality for the Hardy-

Littlewood maximal function,

:>xw(y) dy -X-: IflPv(y) dy,
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is true if and only if (w,v) Ap(R). Here cp depends only on the Ap
constant of (w, v).

We are now ready to prove the following.

THEOREM 5. /f P0 > 2 and Mo is bounded on LvP’(R2), u w1-p’, for
P (Po- e, Po), e > O, then the boundedness condition BC(I, Po) is true:

(Po/2)’ 2For each g >_ O, g Lg (R), there is a G >_ g, G L(p/E)’(R2) with

and G’w A2(0), and the A2(O)-constant of G.w depends only on the
Apo(O)’cnstant of w.

To prove this theorem we need the following lemma:

LEMMA 4. Assume that p > 2 and Mo is bounded on Lff’(R2), p w
For 0 < < 1 and g LP’/n(R2) let

O( y) [Mo(g1/n w)( y)/w( y)] n.
Then

(i) G > g,
(ii) (gw, Gw) A

T
lp’/n(iii) IIGL, <cllgll,

where both c and the An+p(_n(O)-constant of (gw, Gw) depend only on the
Ap(O) constant of w.

We will postpone the proof of the lemma until after that of the theorem.

Proof (of Theorem 5). Choose r/ (P0 + e’- 2)/(p0 1) for some
e’, e > e’ > 0. Then from Lemma 4 we obtain a G such that

(i) g<G,
(ii) (gw, Gw) A2_,(0),
(iii) IlGll%0/2’_< cllgllo/=’

where c and the A2_,(0) constant depend only on the norm of Mo.
Part (i) is obvious from the definition of G.
Part (ii) is true since for p P0 e,

rt+p(1-rt)=l+
p-1
Po_l(1-e)<2-e
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and so

An +p(1-r/)(t9) C A2-(0).

Part (iii) follows from the lemma by interpolating part (iii) of the lemma
with

since

Po- 2
(Po/2)’ p’o/l’ where r/’

P0 1 </

SO

(Po/2) Po’/’O’ > P’olrl

The next step is to replace G by a function H such that H.w A2(Oi)
independent of i. We will show this in the case 0 0, that is, H. w A2 in
the X and x2 directions. One rotates to obtain the result in each direction
0i, but the notation gets out of hand.
By the Lebesgue differentiation theorem, (gw, G. w) Az_e,(O) implies

that (gw, Gw) A2_e, in each direction-0 independently. Thus (assuming
for the moment that 0 0)

M L2v-e’(R1) --) L2o.-e’(R1)
U2 L2v-e’(R1) ..-) L2-e’(R1)

and

are of weak type (u =gw and tr Gw). So by interpolation with the trivial
L result,

M," L2(x1) --’) L2q(X1) and M2" L2(x2) L2(x2)

are (strong-type) bounded. Since M(f) < MI(M2(f)) it follows that

M: L2(x1, X2) --> L(x1, x2)

is (strong-type) bounded, with norm depending only on the norm of Mo.
Now let go g, gx G and v gi. w. Then



482 DONALD KRUG

and

IIM(f)IILg --< KIIflILg for f L(p/2)

with c and K depending only on the norm of Mo.
Proceeding inductively, given gj we can obtain gj+l gj and uj+

gy+x .w so that

Ilgy/ llLo/)’ < cllgyllLWO/)’ < cy/ lllgollL%,O/)’

and

IIM(f)IIL.+I < KIIflIL.
Now let

gy(y)
H(g)=

Since

< c+l Igll,,o/)’
(c + 1)

the series converges, and also H > g and

Now if we let v H. w, since

< KIIflILIIM( f )IIL+t
we have

IIM( f )IIL <--
K

K=0 (C + 1)Y IIflILE C IlfllL.

This last inequality implies H. w A2(R2) with A2(R2) norm depending
only on the norm of Mo. By replacing the strong maximal function M by the
maximal function with rectangles oriented in the direction 0i, one obtains
similarly H.w A2(Oi) with the A2(Oi) constant depending only on the
norm of Mo. Since this is independent of i, it follows that H. w A2(0).
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p’ 2 W -p’Proof of Lemma 4. Note that M0 is bounded on L (R), ,
w Ap(O).

(i) It is obvious that G > g.
(ii) We must show that (gw, Gw) A,+p(l_,)(O), i.e.,

g(y)w(y) dy
w(y)

dy

q-1

for any rectangle R oriented in any of the directions 0i. Here q =r/ +
p(1-r/)so q- 1 =(p- 1)(1- r/) > 0. Henceq> 1.
By Holder’s inequality with indices

1 fR (1 fR 1/nW( )n( 1 fR )1-IRI g( y)w( y) dy < - g( y) y) dy - w( y) dy

Also for y R,

Then

1 f 1/rtMo(gX/nw)(y) > " g(x)

" w( y ) w( y ) l/(r l)

q-1

1 1/rlW (
r/ 1 1/(p- 1)- g(x) x) dy w(y) dy

So, the Ap(O) condition is bounded by

l fRW( y) dy]l-n l fRW( dy

< Ap(O) constant of w] 1-n.

(p- 1)(1-,/)
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(iii)

Mo(gl/rtW)(y) ]rt’p’/rlw( y) w( y) ay

fMo(u/w)’w(y)-"cly <_ cfg"/w(y)cly.
Finally we have the main result of this section:

p’ 2THEOREM 6. If PO >2 and Mo is bounded on L(R ), for p
(Po- e, Po), some e > O, then the multiplier operator To is bounded on
Po 2L, (R) with norm depending only on the norm ofMo and the Ap(O)-constant

ofw.

Proof This follows directly from Theorems 1 and 5.

6. An extrapolation result

In this section we generalize an extrapolation theorem of Garcia-Cuerva to
weights in Ap(O). The theorem of Garcia-Cuerva states that for any sublinear
operator T, if T is bounded on L0(Rz) where die(x)= w(x)dx, for some
P0, 1 < P0 < , and all w Ap0(RZ), then T is bounded on L(Rz) for all p,
1 < p < , and all w Ap(R2). For more on extrapolation see [7], [15], or
[17].

THEOREM 7. Assume that T is a sublinear operator satisfying the following
conditions:

There is a Po, 1 < Po < , such that for every w Apo(O),

dlx(x) w(x) dx, where c is independent off and depends only on the Apo(O)
constant of w.

(i) For Po < P < + assume that

(a) IIMofllr < c’llfll7 for all w Apo(O), c’

independent in Apo(O) and r (Po e, Po] for some e > O, and

(b) IIMofll < KIIfll/fand only if IIMofll’ < g’tlfll’,

for 1 < q < +% 1/q’ + 1/q 1 and dr(x)= w(x)1-q’ d.
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(ii) For 1 < p < Po assume that IIMofll c llfll for c independent in
Ap(O).

Then IlZfll K(p)llfll for all p, 1 < p < , and for all w Ap(O)
where K(p) is independent in Ap(O).

Proof Case (i). For Po < P < +, let w Ap(O) and f L(R2). To
begin we need the following lemma.

LEMMA 5. If IIMofll cllfll, dfl(x) w(x)1-r dx, r (p’ e, p’]
/po)’(R2for some e > O, and f L(R2), then for each non-negative g Lp )

there is a G >_ g such that

IIG I1%,/,o)’ cllgll/,o)’ and G w e Apo(O) Here c is independent ofg.

The proof of Lemma 5 is the same as the proof of Theorem 5, with 2
replaced by P0.
To complete the proof of Case (i), note that Mo bounded on Lo(R2)

implies, by interpolation with the trivial L result, that Mo is bounded on
LPo ,2, (R), Po -< P -< +o. So by hypothesis Mo is bounded on Lff(R2), dr(x)
w-’(x)dA for Po -< P -< / . We may apply Lemma 5 in this range and

get

PoII Zfll  IIIzfTM

suPfizlZf( y)lPOg( y)w( y) dy,

(where the sup is taken over Ilgllw/0)’ -< 1, g > 0)

<_ suPfielTf( y)IPG( y)w( y) dy

< sup cfl21f( y)IPG( y)w(y) dy

< sup cll
< cllfllTMLP

with c independent of f and
Case (ii). For 1 < p < P0, let w Ap(O) and f L(R2). We also need a

lemma here.
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LEMMA 6. Assume that 1 < p < P0, w Ap(O) and that

c independent off. Then for each non-negative g L/(P-Po)(R2), we can find
G > g such that

and G-1W APo(O) with both c’ and the Apo(O)-constant of G-1W dependent
only on the Ap(O)-constant of w.

Proof. This is the dual to Lemma 5 and is proved exactly as in [17],
Chapter 9, Proposition 7.5.
To complete the proof of the theorem let

g(x) (If(x)l/llfll)p-p,
where f(x) 4= 0, g(x) 0 elsewhere. Note that

If(x)lPg(x)-lw
f.o)

(x) dx Ilfll  
and

[[gllg/,o-,-- 1.

Apply Lemma 6 to obtain G > g with the given properties. Then

< Ilall/,0-, fR2lZ(f)(x)[Pa(x)-lw(x) dx

<- cft If( x)IPG-I( x)w(x) dx
f=/= O)

< cf [f(x)[Pg-l(x)w(x) dx [[f[[.

7. Applications

In this section we use the results proven above to obtain two applications.
The first concerns an infinite class 0 where Mo is known to be bounded. The
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second application is a weighted version of the angular Littlewood-Paley
operator.

DEFINITION. A sequence {Or} is called lacunary provided there is a
constant r < 1 such that 0 < Or+ tog, K 1, 2,

THEOREM. /f 0 {Or} is lacunary then IIM011 cllfll, d/z(x)
w(x) dr, if and only if w Ap(O), where c depends only on the Ap(O)-constant
ofw.

For a proof of this result see reference [8].

THEOREM 8. If W Ap(O) and Ap(R2), and if 0 {Or} is lacunary, then
To is bounded on L(R2) 1 < p < +oo, dlx(x) w(x)dA.

Proof For p > 2 the theorem immediately above, combined with Theo-
rem 6, gives the result. For 1 < p < 2 we apply Theorem 7, the result on
extrapolation.

THEOREM 9. Let 0 {Or} be lacunary and let Hr be the Hilbert transform
in the direction Or. If 1 < p < , w Ap(O) and Ap(R2) and if f L(R2)
then

Here c depends on w and p and is independent off.

Proof. We may assume p > 2 and apply Theorem 7 to finish the proof.
p 2Since Mo is bounded on L,(R ), 1 < p < o, by Theorem 5, the condition

BC(tz, p)’is true for p > 2. Then by theorem 2,

If Sg is the dyadic Littlewood-Paley operator defined on L2(R2) by
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where each Rk is a dyadic rectangle, then Kurtz [9] has shown:

(1) lSkfl 2 cllfllL(
k LP(R2)

and

(2) Skfkl2
L(Rz)

where c is independent of f.
Using this result, it then follows that

Elnkfl 2 <_ c El
k L k

-’C

lSkfl 2

where c is independent of f, and depends on w and p.
As an immediate corollary we have the following version of the Angular

Littlewood-Paley inequality.

THEOREM 10.
sector trk by

Let 0 {Ok} be lacunary, 0 < Ok < 7r/2, and define the

crk {x R2" Ok < argument(x) < Ok+l},

for k 0,1,2, Set k(f)(x)= Xk(X)f(x). Then if f is supported in
2 2U ktrk, f Lp(R2) and f L(R ), d/z w(x)dh(x), and if w Ap(O) and

Ap(R2) then

lTkfl 2 < c II/llt.g
k /

where c c(/z, p) is independent off.

Proof. Since Tk nk+1 nk this follows immediately from Theorem 9.
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