BOUNDEDNESS OF CERTAIN MULTIPLIER OPERATORS IN FOURIER ANALYSIS ON WEIGHTED LEBESGUE SPACES

BY

Donald Krug ${ }^{1}$

1. Introduction

The purpose of this paper is to extend known results on the relationship between Hardy-Littlewood type maximal functions and certain multi-directional generalizations of the Hilbert transform to the case of weighted Lebesgue spaces. It is well known that the boundedness of the HardyLittlewood maximal function on the spaces $L^{p}(\mathbf{R}), 1<p<\infty$, is closely related to the boundedness of the Hilbert transform on these same spaces. In their paper, On the equivalence between the boundedness of certain classes of maximal and multiplier operators in Fourier Analysis [3], A. Cordoba and R. Fefferman study the relationship between two operators, one related to the Hardy-Littlewood maximal function and one to the Hilbert transform, whose boundedness properties are not so well known.

Specifically, let $\theta_{1}>\theta_{2}>\theta_{3}>\ldots$ be a decreasing sequence of angles, $0<\theta_{i}<\pi / 2$. Define the maximal function M_{θ} on $L^{p}\left(\mathbf{R}^{2}\right)$ by

$$
M_{\theta}(f)(x)=\sup _{x \in R} \frac{1}{|R|} \int_{R}|f(y)| d y
$$

where each rectangle $R \subset \mathbf{R}^{2}$ is oriented in one of the directions θ_{i}. Let P_{θ} be the subset of the plane shown in Fig. 1. Consider the multiplier T_{θ} (defined initially on $L^{2}\left(\mathbf{R}^{2}\right)$) given by $\hat{T_{\theta}} \hat{(f)}(t)=X_{p_{\theta}}(t) \hat{f}(t)$, where $X_{p_{\theta}}$ is the characteristic function of P_{θ}, and \hat{g} denotes the Fourier transform of g.

Cordoba and Fefferman have proven the following two results giving the relationship between the boundedness of M_{θ} and T_{θ} :

Theorem A. If for some $p>2, M_{\theta}$ is a bounded operator on $L^{(p / 2)^{\prime}}\left(\mathbf{R}^{2}\right)$, then T_{θ} is also bounded, but on the space $L^{p}\left(\mathbf{R}^{2}\right)$.

[^0]

Fig. 1

ThEOREM B. If for some $p>2, T_{\theta}$ is bounded on $L^{p}\left(\mathbf{R}^{2}\right)$, then under the additional assumption that $\left|\left\{M_{\theta}\left(X_{E}\right)>1 / 2\right\}\right| \leq C|E|$ for all measurable $E \subset$ \mathbf{R}^{2}, it follows that M_{θ} is of weak type $\left[(p / 2)^{\prime},(p / 2)^{\prime}\right]$.

In this paper we extend Theorem A to the case of weighted spaces. Let $w(x, y)$ be a locally integrable nonnegative function of two variables. Let $d \mu=\omega d \lambda$, where $d \lambda$ denotes Lebesgue measure on \mathbf{R}^{2}. (In this paper $d \mu$ always denotes $w d \lambda$, for other weights we will use $d \nu$ or $d \sigma$.) We obtain two versions of Theorem A; for the precise definitions see the material that follows.

Theorem 4B. If $p>2, w \in A_{2}(\theta)$ and $w \in A_{2}\left(\mathbf{R}^{2}\right)$, and if M_{θ} is bounded on $L_{\nu}^{(p / 2)^{\prime}}\left(\mathbf{R}^{2}\right)$ where $\nu=w^{1-(p / 2)^{2}}$, then T_{θ} is bounded on $L_{\mu}^{p}\left(\mathbf{R}^{2}\right)$, with norm depending only on the $A_{2}(\theta)$ and $A_{2}\left(\mathbf{R}^{2}\right)$ constants of w and the norm of M_{θ}.

Theorem 6. If $p_{0}>2$ and M_{θ} is bounded on $L_{\nu}^{p^{\prime}}\left(\mathbf{R}^{2}\right)$, where $\nu=w^{1-p^{\prime}}$, and $p \in\left[p_{0}, p_{0}-\varepsilon\right)$ for some $\varepsilon>0$, then the multiplier operator T_{θ} is bounded on $L_{\mu}^{p_{0}}\left(\mathbf{R}^{2}\right)$, with norm depending only on the norm of M_{θ} and the $A_{p}(\theta)$ constant of w.

Theorem 4B gives, in particular, the result of Cordoba and Fefferman in the case $w \equiv 1$. However, Theorem 6 implies that $w \in A_{p_{0}}(\theta)$ (rather than A_{2}) which is what one would hope for.

In proving Theorem 4B we obtain a result relating a weighted integral inequality to vector-valued inequalities, and in proving Theorem 6 we use results related to extrapolation. In Section 6 we consider a result on extrapolation in the directions $\boldsymbol{\theta}_{i}$. We finish the paper with several applications of the results mentioned above, including a weighted version of the angular Littlewood-Paley inequality.

I would like to express my appreciation to Professor Alberto Torchinsky for his constant support and encouragement. I especially want to thank him
for reading an earlier version of this paper and offering numerous helpful suggestions.

2. A condition which implies boundedness

In this section we use a condition, shown by J.L. Rubio de Francia [14], [15] to be related to vector-valued inequalities and interpolation, which will imply the boundedness of the operator T_{θ} on L_{μ}^{p}. In later sections we will relate this condition to the boundedness of M_{θ}. The boundedness condition is:
$B C(\mu, p)$. Let $p>2$ be given. For each g in $L_{\mu}^{(p / 2)^{\prime}}\left(\mathbf{R}^{2}\right), g \geq 0$, there is a $G \geq g, G$ in $L_{\mu}^{(p / 2)^{\prime}}\left(\mathbf{R}^{2}\right)$ such that

$$
\|G\|_{L_{\mu}^{(p / 2)^{\prime}}} \leq C_{p}\|g\|_{L_{\mu}^{(p / 2)^{\prime}}}
$$

and $G \cdot w \in A_{2}(\theta)$. Here c depends only on p and μ, and is independent of g.
$A_{p}(\theta)$ denotes the class of all those functions w such that

$$
\sup _{R}\left(\frac{1}{|R|} \int_{R} w(x, y) d x d y\right)\left(\frac{1}{|R|} \int_{R} w(x, y)^{-1 / p-1} d x d y\right)^{p-1}=C<\infty
$$

where the supremum is taken over all rectangles in one of the directions θ_{i}, $i=1,2,3, \ldots$. The number C is called the $A_{p}(\theta)$-constant for w. We also let $A_{p}\left(\mathbf{R}^{2}\right)$ be the A_{p} condition with the supremum taken over rectangles oriented in the direction of the coordinate axes.

Theorem 1. Given $p>2$ and $w \in A_{p}\left(\mathbf{R}^{2}\right)$, assume that the boundedness condition $B C(\mu, p)$ is true. Then T_{θ} is bounded on $L_{\mu}^{p}\left(\mathbf{R}^{2}\right)$ with norm depending only on the $A_{p}(\theta)$ and $A_{p}\left(\mathbf{R}^{2}\right)$-constants of w, and the A_{2}-constant of $G \cdot w$.

Proof. Consider the infinite strip

$$
E_{k}=\left\{(x, y) \in \mathbf{R}^{2}: 2^{k} \leq x<2^{k+1}\right\}
$$

Define the multiplier operator S_{k} by $\widehat{S_{k}}(f)(x)=X_{E_{k}}(x) \cdot \hat{f}(x)$. Kurtz [10] shows that

$$
\|f\|_{L_{\mu}^{p}} \approx\left\|\left(\sum\left|S_{k} f\right|^{2}\right)^{1 / 2}\right\|_{L_{\mu}^{p}} \text { for } \quad w \in A_{p}\left(\mathbf{R}^{2}\right)
$$

($A \approx B$ means there are constants c and c^{\prime} such that $c A \leq B \leq c^{\prime} A$.) Let F_{k} be the half-plane shown in Fig. 2. Define H_{k}, initially on $L^{2}\left(\mathbf{R}^{2}\right)$, by

Fig. 2
$\left(H_{k} f\right)^{\wedge}(x)=X_{F_{k}}(x) \cdot \hat{f}(x)$. Then H_{k} is essentially the Hilbert transform oriented in the direction θ_{k} and consequently is bounded on $L_{\mu}^{p}\left(\mathbf{R}^{2}\right)$ for $\mu \in A_{p}\left(\theta_{k}\right)$ (i.e., A_{p} where the supremum is taken over all rectangles oriented in the direction θ_{k}). Note, also, that $S_{k} T_{\theta}(f)=H_{k} S_{k}(f)$: Indeed,

$$
\left(S_{k} T_{\theta}\right)^{\wedge}(f)=X_{E_{k}} \cdot X_{P_{0}} \cdot \hat{f}=X_{F_{k}} \cdot X_{E_{k}} \cdot \hat{f}=\left(H_{k} S_{k}\right)^{\wedge}(f)
$$

Thus

$$
\begin{aligned}
\left\|T_{\theta}(f)\right\|_{L_{\mu}^{p}}^{p} & \leq C\left\|\left(\sum_{k}\left|S_{k} T_{\theta}(f)\right|^{2}\right)^{1 / 2}\right\|_{L_{\mu}^{p}}^{p} \\
& =C\left\|\left(\sum_{k}\left|H_{k} S_{k}(f)\right|^{2}\right)^{1 / 2}\right\|_{L_{\mu}^{p}}^{p} \\
& =C\left\|\sum_{k}\left|H_{k} S_{k}(f)\right|^{2}\right\|_{L_{\mu}^{p / 2}}^{p / 2}
\end{aligned}
$$

We estimate this last norm using duality. Choose $g \geq 0, g \in L_{\mu}^{(p / 2)^{\prime}}\left(\mathbf{R}^{2}\right)$ with $\|g\|_{L_{\mu}^{(p / 2)^{\prime}}} \leq 1$, and note that

$$
\begin{aligned}
& \int_{\mathbf{R}^{2}} \sum_{k}\left|H_{k} S_{k}(f)(x)\right|^{2} g(x) w(x) d x \\
& \quad=\sum_{k} \int_{\mathbf{R}^{2}}\left|H_{k} S_{k}(f)(x)\right|^{2} g(x) w(x) d x \\
& \quad \leq \sum_{k} \int_{\mathbf{R}^{2}}\left|H_{k} S_{k}(f)(x)\right|^{2} G(x) w(x) d x \\
& \quad \leq C \sum_{k} \int_{\mathbf{R}^{2}}\left|S_{k}(f)(x)\right|^{2} G(x) w(x) d x
\end{aligned}
$$

where G is the function from the boundedness condition, and the last inequality follows since H_{k} is bounded for $G \cdot w \in A_{2}\left(\theta_{k}\right)$. Hence,

$$
\begin{aligned}
& \int_{\mathbf{R}^{2}} \sum_{k}\left|H_{k} S_{k}(f)(x)\right|^{2} g(x) w(x) d x \\
& \leq c \int_{\mathbf{R}^{2}} \sum_{k}\left|S_{k}(f)(x)\right|^{2} G(x) w(x) d x \\
& \leq c\left[\int_{\mathbf{R}^{2}}\left(\sum_{k}\left|S_{k}(f)(x)\right|^{2}\right)^{p / 2} w(x) d x\right]^{2 / p} \\
& \quad \times\left[\int_{\mathbf{R}^{2}}(G(x))^{(p / 2)^{\prime}} w(x) d x\right]^{1-2 / p} \\
& \leq c\|f\|_{L_{\mu}^{p}}^{2} \cdot\|g\|_{L_{\mu}^{(p / 2)^{\prime}} \leq c\|f\|_{L_{\mu}^{p}}^{2}}
\end{aligned}
$$

If we take the supremum of all such functions g it follows that

$$
\left\|T_{\theta}(f)\right\|_{L_{\mu}^{p}} \leq c\|f\|_{L_{\mu}^{p}}
$$

where c depends only on the $A_{2}(\theta)$-constant of $G \cdot w$ and the $A_{p}\left(\mathbf{R}^{2}\right)$-constant of w.

In the next three sections we discuss conditions on M_{θ} that imply the boundedness condition, and hence boundedness of T_{θ}.

3. Weighted vector-valued inequalities

Rubio de Francia [14] has shown that the boundedness condition $B C(\mu, p)$, is equivalent to certain weighted vector-valued inequalities. We will show that the same type of result is true for the weights in $A p(\theta)$.

Theorem 2. Given a weight w and $p>2$, the following conditions are equivalent:
(a)

$$
\left\|\left(\sum_{j}\left|M_{j} f_{j}\right|^{2}\right)^{1 / 2}\right\|_{L_{\mu}^{p}} \leq C_{p}\left\|\left(\sum_{j}\left|f_{j}\right|^{2}\right)^{1 / 2}\right\|_{L_{\mu}^{p}}
$$

where M_{j} is the maximal function with supremum taken over all rectangles oriented in the direction $\theta_{j}, f_{j} \in L_{\mu}^{p}\left(\mathbf{R}^{2}\right), j=1,2, \ldots$.
(b)

$$
\left\|\left(\sum_{j}\left|H_{j} f_{j}\right|^{2}\right)^{1 / 2}\right\|_{L_{\mu}^{p}} \leq C_{p}^{\prime}\left\|\left(\sum_{j}\left|f_{j}\right|^{2}\right)^{1 / 2}\right\|_{L_{\mu}^{p}}
$$

and

$$
\left\|\left(\sum_{j}\left|H_{j}^{\perp} f_{j}\right|^{2}\right)^{1 / 2}\right\|_{L_{\mu}^{p}} \leq C_{p}^{\prime \prime}\left\|\left(\sum_{j}\left|f_{j}\right|^{2}\right)^{1 / 2}\right\|_{L_{\mu}^{p}}
$$

where H_{j} is the Hilbert transform in the direction θ_{j} and $H_{j}{ }^{\perp}$ the Hilbert transform in the direction $\theta_{j}+\pi / 2$, and $f_{j} \in L_{\mu}^{p}\left(\mathbf{R}^{2}\right), j=1,2, \ldots$.
(c) The boundedness condition $B C(\mu, p)$: For each $g \geq 0, g \in L_{\mu}^{(p / 2)^{\prime}}$, there is $a G \geq g$ with

$$
\|G\|_{L_{\mu}^{(p / 2)^{\prime}}} \leq K\|g\|_{L_{\mu}^{(p / 2)^{\prime}}}
$$

and $G \cdot w \in A_{2}(\theta)$.
Here c_{p}, c_{p}^{\prime}, and $c_{p}^{\prime \prime}$ depend only on K and p and the $A_{2}(\theta)$-constant of $G \cdot w$.
To prove this we will need to assume the following result of Rubio de Francia [15]:

Theorem. Let $F=\left\{T_{j}\right\}$ be a family of sublinear operators $T_{j}, T_{j}: L_{\mu}^{q} \rightarrow L_{\mu}^{q}$, then

$$
\left\|\left(\sum_{j}\left|T_{j} f_{j}\right|^{2}\right)^{1 / 2}\right\|_{L_{\mu}^{q}} \leq c_{q}\left\|\left(\sum_{j}\left|f_{j}\right|^{2}\right)^{1 / 2}\right\|_{L_{\mu}^{q}}
$$

if and only if for $r=(q / 2)^{\prime}$ and $g \geq 0, g \in L_{\mu}^{r}$, there is a $G \in L_{\mu}^{r}$ such that $\|G\|_{L_{\mu}^{r}} \leq c\|g\|_{L_{\mu}^{r}}$ with $G \geq g$ and

$$
\int\left|T_{j} f\right|^{2} G(x) d \mu \leq c_{p} \int|f|^{2} G(x) d \mu
$$

for $j=1,2, \ldots$, with c_{p} independent of j.

We will assume this result and move on to the proof of Theorem 2.
(c) implies (a).

$$
\begin{aligned}
\left\|\left[\sum_{j}\left|M_{j} f_{j}\right|^{2}\right]^{1 / 2}\right\|_{L_{\mu}^{p}}^{2} & =\sup _{j} \sum_{j}\left|M_{j} f_{j}(x)\right|^{2} g(x) w(x) d x \\
& \text { where the sup is taken over } g \geq 0,\|g\|_{L_{\mu}^{(p / 2)}} \leq 1 \\
& \leq \sup _{g} \sum_{j} \int\left|M_{j} f_{j}(x)\right|^{2} G(x) w(x) d x \\
& \leq c_{p}\left(\sup _{g} \sum_{j} f\left|f_{j}(x)\right|^{2} G(x) w(x) d x\right) \\
& \leq c_{p}\left(\sup _{g}\left\|\left(\sum_{j}\left|f_{j}\right|^{2}\right)^{1 / 2}\right\|_{L_{\mu}^{p}}^{2}\|G\|_{L_{\mu}^{(p / 2)^{\prime}}}\right) \\
& \leq c_{p}\left\|\left[\sum_{j}\left|f_{j}\right|^{2}\right]^{1 / 2}\right\|_{L_{\mu}^{p}}^{2}
\end{aligned}
$$

The second inequality follows since M_{j} is bounded on $L_{\mu}^{2}\left(\mathbf{R}^{2}\right)$ for $\mu=w(x) d x$ in $A_{2}\left(\theta_{j}\right)$.
(c) implies (b). Since both H_{j} and H_{j}^{\perp} are bounded on $L_{\mu}^{2}\left(\mathbf{R}^{2}\right)$ for w in $A_{2}\left(\theta_{j}\right)$, for $j=1,2, \ldots$, the proof is exactly as (c) implies (a) above, with M_{j} replaced by H_{j} (or $H_{j}{ }^{\perp}$).
(a) implies (c). Since the vector valued inequality holds then, by the theorem of Rubio de Francia stated above, for any nonnegative g in $L_{\mu}^{(p / 2)^{\prime}}$, there is a G with $g \leq G$,

$$
\|G\|_{L_{\mu}^{(p / 2)}} \leq c^{\prime}\|g\|_{L_{\mu}^{(p / 2)}}
$$

and

$$
\int\left|M_{j} f\right|^{2} G(x) w(x) d x \leq c \int|f|^{2} G(x) w(x) d x
$$

for c independent of $f \in L_{\mu}^{p}$ and $j=1,2,3, \ldots$ This implies that $G \cdot w \in$
$A_{2}\left(\theta_{j}\right)$ with $A_{2}\left(\theta_{j}\right)$ constant independent of j. Hence $G \cdot w \in A_{2}(\theta)$ and thus G satisfies the condition for boundedness $B C(\mu, p)$.
(b) implies (c). This follows as above, since we get both

$$
\int\left|H_{j} f(x)\right|^{2} G(x) w(x) d x \leq c_{1} \int|f(x)|^{2} G(x) w(x) d x
$$

and

$$
\int\left|H_{j}^{\perp} f(x)\right|^{2} G(x) w(x) d x \leq c_{2} \int|f(x)|^{2} G(x) w(x) d x
$$

for all j, which implies that $G \cdot w \in A_{2}\left(\theta_{j}\right)$ with $A_{2}\left(\theta_{j}\right)$-constant independent of j. Hence $G \cdot w \in A_{p}(\theta)$. Note: In the above proof we used the fact that if H_{j} and H_{j}^{\perp} are bounded on $L_{\mu}^{2}\left(\mathbf{R}^{2}\right)$, then $w \in A_{2}\left(\theta_{j}\right)$. The idea behind this is as follows. For convenience of notation let's suppose the Hilbert transforms H_{x} and H_{y} are bounded on L_{μ}^{2}; here H_{x} is the Hilbert transform in the direction of the x-axis and similarly for H_{y}. We will also let M_{x} and M_{y} be the one-dimensional Hardy-Littlewood maximal functions in the direction of the x and y axes respectively. Then $w(\cdot, y) \in A_{2}\left(\mathbf{R}^{1}\right)$ with constant independent of y and $w(x, \cdot) \in A_{2}\left(\mathbf{R}^{1}\right)$ with constant independent of x.

Hence

$$
\|M(f)\|_{L_{\mu}^{2}\left(\mathbf{R}^{2}\right)} \leq\left\|M_{x}\left(M_{y} f\right)\right\|_{L_{\mu}^{2}} \leq c\|f\|_{L_{\mu}^{2}}
$$

and this implies $w \in A_{2}\left(\mathbf{R}^{2}\right)$.

4. A weighted integral inequality

The main result of this section is a weighted integral inequality for the strong maximal function. From this the first of the theorems in which boundedness of M_{θ} implies that of T_{θ} follows.

Lemma 1. If $w \in A_{p}\left(\mathbf{R}^{2}\right), 1<p<\infty$, then for some $\varepsilon>0, w \in A_{p-\varepsilon}\left(\mathbf{R}^{2}\right)$ with $A_{p-\varepsilon}\left(\mathbf{R}^{2}\right)$-constant and ε depending only on p and the $A_{p}\left(\mathbf{R}^{2}\right)$-constant of w.

Proof. A.P. Calderon has proven that if $w \in A_{p}(\mathbf{R})$ then $w \in A_{p-\varepsilon}(\mathbf{R})$ where ε and the $A_{p-\varepsilon}(\mathbf{R})$-constant of w depend only on p and the $A_{p}(\mathbf{R})$ constant of w. (See [1], Theorems 1 and 2 as well as the proof of Theorem 2.)

In this case, for each $x, w(x,-) \in A_{p}(\mathbf{R})$ with constant independent of x. Hence $w(x,-) \in A_{p-\varepsilon}(\mathbf{R})$ with ε and the $A_{p-\varepsilon}(\mathbf{R})$-constant of $w(x,-)$
independent of x. Similarly $w(-, y) \in A_{p-\varepsilon}(\mathbf{R})$ with ε and constant independent of y. So $w \in A_{p-\varepsilon}\left(\mathbf{R}^{2}\right)$ with ε and $A_{p-\varepsilon}\left(\mathbf{R}^{2}\right)$-constant depending only on p and the $A_{p-\varepsilon}\left(\mathbf{R}^{2}\right)$-constant of w.

More notation will be needed before we state Lemma 2. For f in $L^{p}\left(\mathbf{R}^{2}\right)$ let $M_{x}(f)$ be the Hardy-Littlewood maximal function of f in the x-variable only (similarly for $M_{y}(f)$). For a weight w define

$$
M_{\mu}(f)(x)=\sup _{R} \frac{1}{\mu(R)} \int_{R} f(x) d \mu(x)
$$

where the supremum is taken over all rectangles R containing x with sides parallel to the axes and $d \mu(x)=w(x) d x$.

Lemma 2. If $w \in A_{p}\left(\mathbf{R}^{2}\right), 1<p<\infty$, then

$$
\int_{\mathbf{R}^{2}}\left|M_{x}\left(M_{y}(f)\right)(x)\right|^{p} g(x) d \mu(x) \leq c_{p} \int_{\mathbf{R}^{2}}|f(x)|^{p} M_{\mu}\left(M_{\mu}(g)\right)(x) d \mu(x)
$$

with c_{p} independent of f and g and depending only on p and the $A_{p}\left(\mathbf{R}^{2}\right)$-constant of w.

Proof. Let $q=p-\varepsilon$. Then for any rectangle R,

$$
\begin{aligned}
& \left(\frac{1}{|R|} \int_{R} g(w) w(x) d x\right)\left(\frac{1}{|R|} \int_{R}\left(M_{w}(g)(x) w(x)\right)^{-1 / q-1} d x\right)^{q-1} \\
& \quad \leq\left(\frac{1}{|R|} \int_{R} g(x) w(x) d x\right) \\
& \quad \times\left(\frac{1}{|R|} \int_{R}\left(\frac{w(R)}{\int_{R} g(y)(w(y) d y}\right)^{1 / q-1} w(x)^{-1 / q-1} d x\right)^{q-1} \\
& \quad \leq \frac{1}{|R|} w(R)\left(\frac{1}{|R|} \int_{R} w(x)^{-1 / q-1} d x\right)^{q-1} \\
& \quad \leq A_{q}\left(\mathbf{R}^{2}\right) \text {-constant of } w .
\end{aligned}
$$

So $\left(g w,\left(M_{w} g\right) w\right) \in A_{p-\varepsilon}\left(\mathbf{R}^{2}\right)$ with constant no more than the $A_{p-\varepsilon}\left(\mathbf{R}^{2}\right)$ constant of w.

As in Lemma 1, this implies that $\left(g w,\left(M_{w}(g)\right) w\right) \in A_{p-\varepsilon}\left(\mathbf{R}^{1}\right)$ uniformly in each variable. Hence,

$$
\int_{\left\{M_{x}\left(M_{y}(f)\right)>x\right\}} g(x, y) w(x, y) d x \leq \frac{c}{\alpha^{p-\varepsilon}} \int_{\mathbf{R}^{2}} M_{y}(f)^{p-\varepsilon} M_{w}(g) w(x) d x
$$

By interpolating with the trivial $L_{\mu}^{\infty}\left(\mathbf{R}^{2}\right)$ result, the corresponding strongtype inequality holds for p. Hence, integrating in the x_{1}-variable alone,

$$
\left.\int_{\mathbf{R}} M_{x}\left(M_{y}(f)\right)^{p}(x) g(x) w(x) d x_{1} \leq \int_{\mathbf{R}} M_{y}(f)(x)\right)^{p} M_{\mu}(g)(x) w(x) d x_{1}
$$

Likewise, $\left(M_{\mu}(g) w, M_{\mu}\left(M_{\mu}(g)\right) w\right) \in A_{p-\varepsilon}\left(\mathbf{R}^{2}\right)$ and so proceeding as above and integrating in the x_{2}-variable we now have

$$
\begin{aligned}
& \iint_{\mathbf{R}^{2}} M_{x}\left(M_{y}(f)\right)^{p}(x) g(x) w(x) d x_{1} d x_{2} \\
& \quad \leq c \iint_{\mathbf{R}^{2}}|f(x)|^{p} M_{\mu}\left(M_{\mu}(g)\right)(x) w(x) d x_{1} d x_{2}
\end{aligned}
$$

This lemma will enable us to prove two theorems which show that the boundedness of M_{θ} implies that of T_{θ}. Define

$$
M_{\mu, i}(f)(x)=\sup _{R \ni x} \frac{1}{\mu(R)} \int_{R} f(x) d \mu(x)
$$

where the supremum is taken over all rectangles oriented in the direction $\boldsymbol{\theta}_{i}$. Let

$$
M_{\mu, \theta}(f)(x)=\sup _{i} M_{\mu, i}(f)(x)
$$

Theorem 3. If $p>2, w \in A_{2}(\theta)$ and $w \in A_{2}\left(\mathbf{R}^{2}\right)$ and if

$$
\left\|M_{\mu, \theta}(f)\right\|_{L_{\mu}^{(p / 2)^{\prime}}} \leq c\|f\|_{L_{\mu}^{(p / 2)^{\prime}}} \quad \text { for all } f \in L_{\mu}^{(p / 2)^{\prime}}\left(\mathbf{R}^{2}\right)
$$

then
(A)

$$
\left\|\left(\sum_{j}\left|M_{j} f_{j}\right|^{2}\right)^{1 / 2}\right\|_{L_{\mu}^{p}} \leq c_{p}^{\prime}\left\|\left(\sum_{j}\left|f_{j}\right|^{2}\right)^{1 / 2}\right\|_{L_{\mu}^{p}} \quad \text { for all } f_{j} \in L_{\mu}^{p}
$$

and
(B) T_{θ} is bounded on $L_{\mu}^{p}\left(\mathbf{R}^{2}\right)$ with norm depending only on the constant c above, and on the $A_{p}\left(\mathbf{R}^{2}\right)$ and $A_{2}\left(\mathbf{R}^{2}\right)$ constants of w.

Proof. By duality. Let

$$
g \in L_{\mu}^{(p / 2)^{\prime}}\left(\mathbf{R}^{2}\right),\|g\|_{L_{\mu}^{(p / 2)^{\prime}}} \leq 1
$$

Then

$$
\begin{aligned}
& \int_{\mathbf{R}^{2}} \sum_{j}\left|M_{j} f_{j}\right|^{2} g(x) d \mu(x) \\
& \quad \leq c \sum_{j} \int_{\mathbf{R}^{2}}\left|f_{j}\right|^{2} M_{\mu, j}\left(M_{\mu, j}(g)\right)(x) d \mu(x) \\
& \quad \leq c \int_{\mathbf{R}^{2}}\left(\sum_{j}\left|f_{j}\right|^{2}\right) M_{\mu, \theta}\left(M_{\mu, \theta}(g)\right)(x) d \mu(x) \\
& \quad \leq c\left\|\left(\sum_{j}\left|f_{j}\right|^{2}\right)^{1 / 2}\right\|_{L_{\mu}^{p}}^{2}\left\|M_{\mu, \theta}\left(M_{\mu, \theta}(g)\right)\right\|_{L_{\mu}^{(p / 2)^{\prime}}} \\
& \quad \leq c\left\|\left(\sum_{j}\left|f_{j}\right|^{2}\right)^{1 / 2}\right\|_{L_{\mu}^{p}}
\end{aligned}
$$

Part (B) follows immediately from part (A), Theorem 1 and Theorem 2.
Theorem 4. If $p>2, w \in A_{2}(\theta)$ and $w \in A_{2}\left(\mathbf{R}^{2}\right)$, and if M_{θ} is bounded on $L_{\nu}^{(p / 2)^{\prime}}\left(\mathbf{R}^{2}\right), \nu=w^{1-(p / 2)^{\prime}}$, then
(A)

$$
\left\|\left(\sum_{j}\left|M_{j} f_{j}\right|^{2}\right)^{1 / 2}\right\|_{L_{\mu}^{p}} \leq c\left\|\left(\sum_{j}\left|f_{j}\right|^{2}\right)^{1 / 2}\right\|_{L_{\mu}^{p}}, \quad d \mu(x)=w(x) d \lambda
$$

and
(B) T_{θ} is bounded on $L_{\mu}^{p}\left(\mathbf{R}^{2}\right)$ with norm depending only on the norm of M_{θ} and on the $A_{p}\left(\mathbf{R}^{2}\right)$ and $A_{2}\left(\mathbf{R}^{2}\right)$-constants of w.

Proof. We use another version of duality. The dual of $L_{\mu}^{p / 2}\left(\mathbf{R}^{2}\right)$ is $L_{\nu}^{(p / 2)^{\prime}}\left(\mathbf{R}^{2}\right)$, where $\langle f, g\rangle=\int f g d x$. Let $g \in L_{\nu}^{(p / 2)^{\prime}}\left(\mathbf{R}^{2}\right)$ with norm less than
or equal to 1 , then

$$
\begin{aligned}
\int_{\mathbf{R}^{2}}\left(\sum_{j}\left|M_{j} f_{j}\right|^{2}\right) g(x) d x & \leq c \sum_{j} \int_{\mathbf{R}^{2}}\left|f_{j}\right|^{2} M_{j}\left(M_{j}(g)\right)(x) d x \\
& \leq c \int_{\mathbf{R}^{2}} \sum_{j}\left|f_{j}\right|^{2} M_{\theta}\left(M_{\theta}(g)\right)\left(\frac{w^{2 / p}}{w^{2 / p}}\right) d x \\
& \leq c\left\|\left(\sum_{j}\left|f_{j}\right|^{2}\right)^{1 / 2}\right\|_{L_{\mu}^{p}}^{2}\left\|M_{\theta}\left(M_{\theta}(g)\right)\right\|_{L_{\nu}^{(p / 2)}} \\
& \leq c\left\|\left(\sum_{j}\left|f_{j}\right|^{2}\right)^{1 / 2}\right\|_{L_{\mu}^{p}}^{2}
\end{aligned}
$$

Taking the supremum over all such functions g gives us part (A).
Part (B) follows from Theorems 1, 2 and part A.
In the case of Lebesgue measure both theorems 3B and 4B give the result of Cordoba and Fefferman. However, both demand a stronger condition than $w \in A p(\theta)$. In the next section we will prove a result which will only require $w \in A p(\theta)$, but we will also assume M_{θ} to be bounded on $L_{\nu}^{p}\left(\mathbf{R}^{2}\right), \nu=$ $w^{1-p^{\prime}} d \lambda$, a stronger condition than the above.

5. The main result

The results in this and the following section are related to an extrapolation theorem of Garcia-Cuerva. Before we proceed we will need some notation.

We say that a pair (w, v) of nonnegative locally integrable functions satisfies the $A p(F)$-condition, $1<p<\infty$, and write $(w, v) \in A p(F)$ if for all rectangles R in the family F,

$$
\left(\frac{1}{|R|} \int_{R} w(y) d y\right)\left(\frac{1}{|R|} \int_{R} v(y)^{-1 /(p-1)} d y\right)^{p-1} \leq c
$$

with c independent of R. The smallest such c is called the $A p(F)$-constant of (w, v).

A well known result is that the weak-type inequality for the HardyLittlewood maximal function,

$$
\int_{\{M f>\lambda\}} w(y) d y \leq \frac{c_{p}}{\lambda^{p}} \int_{\mathbf{R}}|f|^{p} v(y) d y
$$

is true if and only if $(w, v) \in A p(\mathbf{R})$. Here c_{p} depends only on the $A p$ constant of (w, v).

We are now ready to prove the following.
TheOrem 5. If $p_{0}>2$ and M_{θ} is bounded on $L_{\nu}^{p^{\prime}}\left(\mathbf{R}^{2}\right), \nu=w^{1-p^{\prime}}$, for $p \in\left(p_{0}-\varepsilon, p_{0}\right), \varepsilon>0$, then the boundedness condition $B C\left(\mu, p_{0}\right)$ is true: For each $g \geq 0, g \in L_{\mu}^{\left(p_{0} / 2\right)^{\prime}}\left(\mathbf{R}^{2}\right)$, there is $a G \geq g, G \in L_{\mu}^{\left(p_{0} / 2\right)^{\prime}}\left(\mathbf{R}^{2}\right)$ with

$$
\|G\|_{L_{\mu}^{\left(p_{0} / 2\right)^{\prime}}} \leq c\|g\|_{L_{\mu}^{\left(p_{0} / 2\right)^{\prime}}}
$$

and $G \cdot w \in A_{2}(\theta)$, and the $A_{2}(\theta)$-constant of $G \cdot w$ depends only on the $A p_{0}(\theta)$-constant of w.

To prove this theorem we need the following lemma:
Lemma 4. Assume that $p>2$ and M_{θ} is bounded on $L_{\nu}^{p^{\prime}}\left(\mathbf{R}^{2}\right), \nu=w^{1-p^{\prime}}$. For $0<\eta<1$ and $g \in L^{p^{\prime} / \eta}\left(\mathbf{R}^{2}\right)$ let

$$
G(y)=\left[M_{\theta}\left(g^{1 / \eta} \cdot w\right)(y) / w(y)\right]^{\eta}
$$

Then
(i) $G \geq g$,
(ii) $(g w, G w) \in A_{\eta+p(1-\eta)}(\theta)$,
(iii) $\|G\|_{L_{\mu}}^{p^{\prime} / \eta} \leq c\|g\|_{L_{\mu}}^{p^{\prime} / \eta}$,
where both c and the $A_{\eta+p(1-\eta)}(\theta)$-constant of $(g w, G w)$ depend only on the $A p(\theta)$ constant of w.

We will postpone the proof of the lemma until after that of the theorem.
Proof (of Theorem 5). Choose $\eta=\left(p_{0}+\varepsilon^{\prime}-2\right) /\left(p_{0}-1\right)$ for some $\varepsilon^{\prime}, \varepsilon>\varepsilon^{\prime}>0$. Then from Lemma 4 we obtain a G such that
(i) $g \leq G$,
(ii) $(g w, G w) \in A_{2-\varepsilon^{\prime}}(\theta)$,
(iii) $\|G\|_{L_{\mu}^{\left(p_{0} / 2\right)^{\prime}}} \leq c\|g\|_{L_{\mu}^{\left(p_{0} / 2\right)^{\prime}}}$
where c and the $A_{2-\varepsilon^{\prime}}(\theta)$ constant depend only on the norm of M_{θ}.
Part (i) is obvious from the definition of G.
Part (ii) is true since for $p=p_{0}-\varepsilon$,

$$
\eta+p(1-\eta)=1+\frac{p-1}{p_{0}-1}(1-\varepsilon)<2-\varepsilon
$$

and so

$$
A_{\eta+p(1-\eta)}(\theta) \subseteq A_{2-\varepsilon}(\theta)
$$

Part (iii) follows from the lemma by interpolating part (iii) of the lemma with

$$
\|G\|_{L_{\mu}^{\infty}} \leq C\|g\|_{L_{\mu}^{\infty}} ;
$$

since

$$
\left(p_{0} / 2\right)^{\prime}=p_{0}^{\prime} / \eta^{\prime} \quad \text { where } \quad \eta^{\prime}=\frac{p_{0}-2}{p_{0}-1}<\eta
$$

so

$$
\left(p_{0} / 2\right)^{\prime}=p_{0}^{\prime} / \eta^{\prime}>p_{0}^{\prime} / \eta
$$

The next step is to replace G by a function H such that $H \cdot w \in A_{2}\left(\theta_{i}\right)$, independent of i. We will show this in the case $\theta_{i}=0$, that is, $H \cdot w \in A_{2}$ in the x_{1} and x_{2} directions. One rotates to obtain the result in each direction θ_{i}, but the notation gets out of hand.

By the Lebesgue differentiation theorem, $(g w, G \cdot w) \in A_{2-\varepsilon^{\prime}}(\theta)$ implies that $(g w, G w) \in A_{2-\varepsilon^{\prime}}$ in each direction $\cdot \theta_{i}$ independently. Thus (assuming for the moment that $\theta_{i}=0$)

$$
\begin{aligned}
& M_{1}: L_{\nu}^{2-\varepsilon^{\prime}}\left(\mathbf{R}^{1}\right) \rightarrow L_{\sigma}^{2-\varepsilon^{\prime}}\left(\mathbf{R}^{1}\right) \quad \text { and } \\
& M_{2}: L_{\nu}^{2-\varepsilon^{\prime}}\left(\mathbf{R}^{1}\right) \rightarrow L_{\sigma}^{2-\varepsilon^{\prime}}\left(\mathbf{R}^{1}\right)
\end{aligned}
$$

are of weak type ($\nu=g w$ and $\sigma=G w$). So by interpolation with the trivial L^{∞} result,

$$
M_{1}: L_{\nu}^{2}\left(x_{1}\right) \rightarrow L_{\sigma}^{2}\left(x_{1}\right) \quad \text { and } \quad M_{2}: L_{\nu}^{2}\left(x_{2}\right) \rightarrow L_{\sigma}^{2}\left(x_{2}\right)
$$

are (strong-type) bounded. Since $M(f) \leq M_{1}\left(M_{2}(f)\right)$ it follows that

$$
M: L_{\nu}^{2}\left(x_{1}, x_{2}\right) \rightarrow L_{\sigma}^{2}\left(x_{1}, x_{2}\right)
$$

is (strong-type) bounded, with norm depending only on the norm of M_{θ}.
Now let $g_{0}=g, g_{1}=G$ and $\nu_{i}=g_{i} \cdot w$. Then

$$
\left\|g_{1}\right\|_{L_{\mu}^{\left(p_{0} / 2\right)^{\prime}} \leq c}\left\|g_{0}\right\|_{L_{\mu}^{\left(p_{0} / 2\right)^{\prime}}}
$$

and

$$
\|M(f)\|_{L_{\nu_{1}}^{2}} \leq K\|f\|_{L_{\nu_{0}}^{2}} \quad \text { for } \quad f \in L_{\mu}^{\left(p_{0} / 2\right)}
$$

with c and K depending only on the norm of M_{θ}.
Proceeding inductively, given g_{j} we can obtain $g_{j+1} \geq g_{j}$ and $\nu_{j+1}=$ $g_{j+1} \cdot w$ so that

$$
\left\|g_{j+1}\right\|_{L_{\mu}^{p_{0} / 2 y}} \leq c\left\|g_{j}\right\|_{L_{w_{0}}^{\left(p_{0} / 2\right)}} \leq c^{j+1}\left\|g_{0}\right\|_{L_{\mu}^{\left(p_{0} / 2\right)}}
$$

and

$$
\|M(f)\|_{L_{\nu_{j}+1}^{2}} \leq K\|f\|_{L_{\nu_{j}}^{2}}^{2}
$$

Now let

$$
H(g)=\sum_{j=0}^{+\infty} \frac{g_{j}(y)}{(c+1)^{j}}
$$

Since

$$
\frac{\left\|g_{j}(y)\right\|_{L_{\mu}^{\left(p_{0} / 2\right)}}}{(c+1)^{j}} \leq\left[\frac{c}{c+1}\right]^{j}\|g\|_{L_{\mu}^{\left(p_{0} / 2 y\right.}}
$$

the series converges, and also $H \geq g$ and

$$
\|H\|_{L_{\mu}^{\left(p_{0} / 2\right)}} \leq(c+1)\|g\|_{L_{\mu}^{\left(p_{0} / 2\right)}}
$$

Now if we let $\nu=H \cdot w$, since

$$
\|M(f)\|_{L_{\nu_{j}+1}^{2}} \leq K\|f\|_{L_{r_{j}}^{2}}^{2}
$$

we have

$$
\|M(f)\|_{L_{\nu}^{2}} \leq \sum_{K=0}^{\infty} \frac{K}{(c+1)^{j}}\|f\|_{L_{\nu}^{2}}=c\|f\|_{L_{\nu}^{2}}
$$

This last inequality implies $H \cdot w \in A_{2}\left(\mathbf{R}^{2}\right)$ with $A_{2}\left(\mathbf{R}^{2}\right)$ norm depending only on the norm of M_{θ}. By replacing the strong maximal function M by the maximal function with rectangles oriented in the direction θ_{i}, one obtains similarly $H \cdot w \in A_{2}\left(\theta_{i}\right)$ with the $A_{2}\left(\theta_{i}\right)$ constant depending only on the norm of M_{θ}. Since this is independent of i, it follows that $H \cdot w \in A_{2}(\theta)$.

Proof of Lemma 4. Note that M_{θ} is bounded on $L_{\nu}^{p^{\prime}}\left(\mathbf{R}^{2}\right), \nu=w^{1-p^{\prime}}$, $w \in A p(\theta)$.
(i) It is obvious that $G \geq g$.
(ii) We must show that $(g w, G w) \in A_{\eta+p(1-\eta)}(\theta)$, i.e.,

$$
\left(\frac{1}{|R|} \int_{R} g(y) w(y) d y\right)\left(\frac{1}{|R|} \int_{R}\left(\frac{M_{\theta}\left(g^{1 / \eta} w\right)(y)}{w(y)}\right)^{-\eta /(q-1)} d y\right)^{q-1} \leq c
$$

for any rectangle R oriented in any of the directions θ_{i}. Here $q=\eta+$ $p(1-\eta)$ so $q-1=(p-1)(1-\eta)>0$. Hence $q>1$.

By Holder's inequality with indices $1 / \eta, 1 / 1-\eta$,

$$
\frac{1}{|R|} \int_{R} g(y) w(y) d y \leq\left(\frac{1}{|R|} \int_{R} g(y)^{1 / \eta} w(y) d y\right)^{\eta}\left(\frac{1}{|R|} \int_{R} w(y) d y\right)^{1-\eta}
$$

Also for $y \in R$,

$$
M_{\theta}\left(g^{1 / \eta} w\right)(y) \geq \frac{1}{|R|} \int_{R} g(x)^{1 / \eta} w(x) d x
$$

Then

$$
\begin{aligned}
& {\left[\frac{1}{|R|} \int_{R}\left(\frac{M_{\theta}\left(g^{1 / \eta} w\right)(y)}{w(y)}\right)^{-\eta /(q-1)} w(y)^{-1 /(\eta-1)}\right]^{q-1}} \\
& \quad \leq\left(\frac{1}{|R|} \int_{R} g(x)^{1 / \eta} w(x)\right)^{-\eta} \cdot\left[\frac{1}{R} \int_{R} w(y)^{(\eta-1) /(q-1)} d y\right]^{q-1} \\
& \quad=\left(\frac{1}{|R|} \int_{R} g(x)^{1 / \eta} w(x) d y\right)^{-\eta}\left(\frac{1}{|R|} \int_{R} w(y)^{-1 /(p-1)} d y\right)^{(p-1)(1-\eta)}
\end{aligned}
$$

So, the $A p(\theta)$ condition is bounded by

$$
\begin{aligned}
& {\left[\frac{1}{|R|} \int_{R} w(y) d y\right]^{1-\eta}\left[\frac{1}{|R|} \int_{R} w(y)^{-1 /(p-1)} d y\right]^{(p-1)(1-\eta)}} \\
& \quad \leq[A p(\theta) \text { constant of } w]^{1-\eta}
\end{aligned}
$$

(iii)

$$
\begin{aligned}
& \int\left[\frac{M_{\theta}\left(g^{1 / \eta} w\right)(y)}{w(y)}\right]^{\eta \cdot p^{\prime} / \eta} w(y) d y \\
& \quad=\int M_{\theta}\left(g^{1 / \eta} w\right)^{p^{\prime}} w(y)^{1-p^{\prime}} d y \leq c \int g^{p^{\prime} / \eta} w(y) d y
\end{aligned}
$$

Finally we have the main result of this section:
ThEOREM 6. If $p_{0}>2$ and M_{θ} is bounded on $L_{\nu}^{p^{\prime}\left(\mathbf{R}^{2}\right) \text {, for } p \in, ~}$ ($p_{0}-\varepsilon, p_{0}$), some $\varepsilon>0$, then the multiplier operator T_{θ} is bounded on $L_{\mu}^{p_{0}}\left(\mathbf{R}^{2}\right)$ with norm depending only on the norm of M_{θ} and the $A p(\theta)$-constant of w.

Proof. This follows directly from Theorems 1 and 5.

6. An extrapolation result

In this section we generalize an extrapolation theorem of Garcia-Cuerva to weights in $A p(\theta)$. The theorem of Garcia-Cuerva states that for any sublinear operator T, if T is bounded on $L_{\mu}^{p_{0}}\left(\mathbf{R}^{2}\right)$ where $d \mu(x)=w(x) d x$, for some $p_{0}, 1<p_{0}<\infty$, and all $w \in A p_{0}\left(\mathbf{R}^{2}\right)$, then T is bounded on $L_{\mu}^{p}\left(\mathbf{R}^{2}\right)$ for all p, $1<p<\infty$, and all $w \in A p\left(\mathbf{R}^{2}\right)$. For more on extrapolation see [7], [15], or [17].

Theorem 7. Assume that T is a sublinear operator satisfying the following conditions:

There is a $p_{0}, 1<p_{0}<\infty$, such that for every $w \in A p_{0}(\theta)$,

$$
\|T f\|_{L_{\mu}^{p_{0}}} \leq c\|f\|_{L_{\mu}^{p_{0}}}
$$

$d \mu(x)=w(x) d x$, where c is independent of f and depends only on the $A p_{0}(\theta)$ constant of w.
(i) For $p_{0}<p<+\infty$ assume that

$$
\begin{equation*}
\left\|M_{\theta} f\right\|_{L_{\mu}^{r}} \leq c^{\prime}\|f\|_{L_{\mu}^{r}} \text { for all } w \in A p_{0}(\theta), c^{\prime} \tag{a}
\end{equation*}
$$

independent in $A p_{0}(\theta)$ and $r \in\left(p_{0}-\varepsilon, p_{0}\right]$ for some $\varepsilon>0$, and

$$
\begin{equation*}
\left\|M_{\theta} f\right\|_{L_{\mu}^{q}} \leq K\|f\|_{L_{\mu}^{q}} \text { if and only if }\left\|M_{\theta} f\right\|_{L_{\nu}^{q^{\prime}}} \leq K^{\prime}\|f\|_{L_{v}^{q^{\prime}}} \tag{b}
\end{equation*}
$$

for $1<q<+\infty, 1 / q^{\prime}+1 / q=1$ and $d \nu(x)=w(x)^{1-q^{\prime}} d x$.
(ii) For $1<p<p_{0}$ assume that $\left\|M_{\theta} f\right\|_{L_{\mu}^{p}} \leq c\|f\|_{L_{\mu}^{p}}$ for c independent in $A p(\theta)$.

Then $\|T f\|_{L_{\mu}^{p}} \leq K(p)\|f\|_{L_{\mu}^{p}}$ for all $p, 1<p<\infty$, and for all $w \in A p(\theta)$ where $K(p)$ is independent in $A p(\theta)$.

Proof. Case (i). For $p_{0}<p<+\infty$, let $w \in A p(\theta)$ and $f \in L_{\mu}^{p}\left(\mathbf{R}^{2}\right)$. To begin we need the following lemma.

Lemma 5. If $\left\|M_{\theta} f\right\|_{L_{\beta}^{\prime}} \leq c\|f\|_{L_{\beta}^{r}}, d \beta(x)=w(x)^{1-r} d x, r \in\left(p^{\prime}-\varepsilon, p^{\prime}\right]$ for some $\varepsilon>0$, and $f \in L_{\sigma}^{r}\left(\mathbf{R}^{2}\right)$, then for each non-negative $g \in L_{\mu}^{\left(p / p_{0}\right)}\left(\mathbf{R}^{2}\right)$ there is $a G \geq g$ such that
$\|G\|_{L_{\mu}^{\left(p / p_{0}\right)^{\prime}}} \leq c\|g\|_{L_{\mu}^{\left(p / 0_{0}\right)}}$ and $G \cdot w \in A p_{0}(\theta)$. Here c is independent of g.

The proof of Lemma 5 is the same as the proof of Theorem 5, with 2 replaced by p_{0}.
To complete the proof of Case (i), note that M_{θ} bounded on $L_{\mu}^{p_{0}}\left(\mathbf{R}^{2}\right)$ implies, by interpolation with the trivial L^{∞} result, that M_{θ} is bounded on $L_{\mu}^{p_{0}}\left(\mathbf{R}^{2}\right), p_{0} \leq p \leq+\infty$. So by hypothesis M_{θ} is bounded on $L_{v}^{p^{\prime}}\left(\mathbf{R}^{2}\right), d \nu(x)$ $=w^{1-p^{\prime}}(x) d \lambda$ for $p_{0} \leq p \leq+\infty$. We may apply Lemma 5 in this range and get

$$
\begin{aligned}
&\|T f\|_{L_{\mu}^{p}}^{p_{p}^{p}}=\left\||T f|^{p_{0}}\right\|_{L_{\mu}^{p_{\mu}} p_{0}}^{p_{0}} \\
&= \sup \int_{\mathbf{R}^{2}}|T f(y)|^{p_{0}} g(y) w(y) d y, \\
& \quad(\text { where the sup is taker } \\
& \leq \sup \int_{\mathbf{R}^{2}}|T f(y)|^{p_{0}} G(y) w(y) d y \\
& \leq \sup c \int_{\mathbf{R}^{2}}|f(y)|^{p_{0}} G(y) w(y) d y \\
& \leq \sup c\left\|f| |^{p_{0}}\right\|_{L_{\mu}^{p / p_{0}} \|}\| \|_{L_{\mu}^{\left(p / p_{0}\right)}} \\
& \leq c\|f\|_{L_{\mu}^{p}}^{p_{0}},
\end{aligned}
$$

$$
\text { (where the sup is taken over }\|g\|_{L_{\mu}^{\left(p / p_{0}\right)^{\prime}}} \leq 1, g \geq 0 \text {) }
$$

with c independent of f and μ.
Case (ii). For $1<p<p_{0}$, let $w \in A p(\theta)$ and $f \in L_{\mu}^{p}\left(\mathbf{R}^{2}\right)$. We also need a lemma here.

Lemma 6. Assume that $1<p<p_{0}, w \in A p(\theta)$ and that

$$
\left\|M_{\theta} f\right\|_{L_{\mu}^{p}} \leq c\|f\|_{L_{\mu}^{p}}
$$

c independent of f. Then for each non-negative $g \in L_{\mu}^{p /\left(p-p_{0}\right)}\left(\mathbf{R}^{2}\right)$, we can find $G \geq g$ such that

$$
\|G\|_{L_{\mu}^{p /\left(p-p_{0}\right)}} \leq c^{\prime}\|g\|_{L_{\mu}^{p} /\left(p-p_{0}\right)}
$$

and $G^{-1} w \in A p_{0}(\theta)$, with both c^{\prime} and the $A p_{0}(\theta)$-constant of $G^{-1} w$ dependent only on the $A p(\theta)$-constant of w.

Proof. This is the dual to Lemma 5 and is proved exactly as in [17], Chapter 9, Proposition 7.5.

To complete the proof of the theorem let

$$
g(x)=\left(|f(x)| /\|f\|_{L_{\mu}^{p}}\right)^{p_{0}-p}
$$

where $f(x) \neq 0, g(x)=0$ elsewhere. Note that

$$
\int_{\{f \neq 0)}|f(x)|^{p_{0}} g(x)^{-1} w(x) d x=\|f\|_{L_{\mu}^{p}}^{p_{0}}
$$

and

$$
\|g\|_{L_{\mu}^{p / p_{0}-p}}=1
$$

Apply Lemma 6 to obtain $G \geq g$ with the given properties. Then

$$
\begin{aligned}
\|T f\|_{L_{\mu}^{p}}^{p_{0}} & =\left[\int_{\mathbf{R}^{2}}\left[\frac{|T(f)(x)|^{p_{0}}}{G(x)}\right]^{p / p_{0}} G(x)^{p / p_{0}} w(x) d x\right]^{p_{0}} \\
& \leq\|G\|_{L_{\mu}^{p / p_{0}-p}} \int_{\mathbf{R}^{2}}|T(f)(x)|^{p_{0}} G(x)^{-1} w(x) d x \\
& \leq c \int_{(f \neq 0)}|f(x)|^{p_{0}} G^{-1}(x) w(x) d x \\
& \leq c \int_{(f \neq 0)}|f(x)|^{p_{0}} g^{-1}(x) w(x) d x=\|f\|_{L_{\mu}^{p}}^{p_{0}}
\end{aligned}
$$

7. Applications

In this section we use the results proven above to obtain two applications. The first concerns an infinite class θ where M_{θ} is known to be bounded. The
second application is a weighted version of the angular Littlewood-Paley operator.

Definition. A sequence $\left\{\theta_{K}\right\}$ is called lacunary provided there is a constant $r<1$ such that $0<\theta_{K+1}<r \theta_{K}, K=1,2, \ldots$.

Theorem. If $\theta=\left\{\theta_{K}\right\}$ is lacunary then $\left\|M_{\theta}\right\|_{L_{\mu}^{p}} \leq c\|f\|_{L_{\mu}^{p}}, d \mu(x)=$ $w(x) d x$, if and only if $w \in A p(\theta)$, where c depends only on the $A p(\theta)$-constant of w.

For a proof of this result see reference [8].

Theorem 8. If $w \in A p(\theta)$ and $A p\left(\mathbf{R}^{2}\right)$, and if $\theta=\left\{\theta_{K}\right\}$ is lacunary, then T_{θ} is bounded on $L_{\mu}^{p}\left(\mathbf{R}^{2}\right) 1<p<+\infty, d \mu(x)=w(x) d \lambda$.

Proof. For $p>2$ the theorem immediately above, combined with Theorem 6, gives the result. For $1<p \leq 2$ we apply Theorem 7, the result on extrapolation.

Theorem 9. Let $\theta=\left\{\theta_{K}\right\}$ be lacunary and let H_{K} be the Hilbert transform in the direction θ_{K}. If $1<p<\infty, w \in A p(\theta)$ and $A p\left(\mathbf{R}^{2}\right)$ and if $f \in L_{\mu}^{p}\left(\mathbf{R}^{2}\right)$ then

$$
\left\|\left(\sum_{k}\left|H_{k}(f)\right|^{2}\right)^{1 / 2}\right\|_{L_{\mu}^{p}} \leq c\|f\|_{L_{\mu}^{p}}
$$

Here c depends on w and p and is independent of f.

Proof. We may assume $p>2$ and apply Theorem 7 to finish the proof.
Since M_{θ} is bounded on $L_{\mu}^{p}\left(\mathbf{R}^{2}\right), 1<p<\infty$, by Theorem 5 , the condition $B C(\mu, p)$ is true for $p>2$. Then by theorem 2 ,

$$
\left\|\left(\sum_{k}\left|H_{k} f_{k}\right|^{2}\right)^{1 / 2}\right\|_{L_{\mu}^{p}} \leq c\left\|\left(\sum_{k}\left|f_{k}\right|^{2}\right)^{1 / 2}\right\|_{L_{\mu}^{p}}
$$

If S_{k} is the dyadic Littlewood-Paley operator defined on $L^{2}\left(\mathbf{R}^{2}\right)$ by

$$
\widehat{S_{k}}(f)(x)=X_{R_{k}}(x) \hat{f}(x)
$$

where each R_{k} is a dyadic rectangle, then Kurtz [9] has shown:

$$
\begin{equation*}
\left\|\left(\sum_{k}\left|S_{k} f\right|^{2}\right)^{1 / 2}\right\|_{L_{\mu}^{p}\left(\mathbf{R}^{2}\right)} \leq c\|f\|_{L_{\mu}^{p}\left(\mathbf{R}^{2}\right)} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|\left(\sum_{k}\left|f_{k}\right|^{2}\right)^{1 / 2}\right\|_{L_{\mu}^{p}\left(\mathbf{R}^{2}\right)} \approx\left\|\left(\sum_{k}\left|S_{k} f_{k}\right|^{2}\right)^{1 / 2}\right\|_{L_{\mu}^{p}\left(\mathbf{R}^{2}\right)} \tag{2}
\end{equation*}
$$

where c is independent of f.
Using this result, it then follows that

$$
\begin{aligned}
\left\|\left(\sum_{k}\left|H_{k} f\right|^{2}\right)^{1 / 2}\right\|_{L_{\mu}^{p}} & \leq c\left\|\left(\sum_{k}\left|S_{k} H_{k} f\right|^{2}\right)^{1 / 2}\right\|_{L_{\mu}^{p}} \\
& =c\left\|\left(\sum_{k}\left|H_{k} S_{k} f\right|^{2}\right)^{1 / 2}\right\|_{L_{\mu}^{p}} \\
& \leq c\left\|\left(\sum_{k}\left|S_{k} f\right|^{2}\right)^{1 / 2}\right\|_{L_{\mu}^{p}} \\
& \leq c\|f\|_{L_{\mu}^{p}}
\end{aligned}
$$

where c is independent of f, and depends on w and p.
As an immediate corollary we have the following version of the Angular Littlewood-Paley inequality.

Theorem 10. Let $\theta=\left\{\theta_{k}\right\}$ be lacunary, $0<\theta_{k}<\pi / 2$, and define the sector σ_{k} by

$$
\sigma_{k}=\left\{x \in \mathbf{R}^{2}: \theta_{k}<\operatorname{argument}(x) \leq \theta_{k+1}\right\}
$$

for $k=0,1,2, \ldots$ Set $\hat{T}_{k}(f)(x)=X_{\sigma_{k}}(x) \hat{f}(x)$. Then if f is supported in $\cup_{k} \sigma_{k}, f \in L_{\mu}^{p}\left(\mathbf{R}^{2}\right)$ and $f \in L_{\mu}^{2}\left(\mathbf{R}^{2}\right), d \mu=w(x) d \lambda(x)$, and if $w \in A p(\theta)$ and $A p\left(\mathbf{R}^{2}\right)$ then

$$
\left\|\left(\sum_{k}\left|T_{k} f\right|^{2}\right)^{1 / 2}\right\|_{L_{\mu}^{p}} \leq c\|f\|_{L_{\mu}^{p}}
$$

where $c=c(\mu, p)$ is independent of f.
Proof. Since $T_{k}=H_{k+1}-H_{k}$ this follows immediately from Theorem 9.

References

1. A.P. Calderon, Inequalities for the maximal function relative to a metric, Studia Math., vol. 57 (1976), pp. 297-306.
2. A. Cordoba and C. Fefferman, A weighted norm inequality for singular integrals, Studia Math., vol. 57 (1976), pp. 97-101.
3. \qquad , On the equivalence between the boundedness of certain classes of maximal and multiplier operators in Fourier analysis, Proc. Nat. Acad. Sci., vol. 74 (1977), pp. 423-425.
4. C. Fefferman, The multiplier problem for the ball, Ann. of Math., vol. 94 (1972), pp. 330-336.
5. C. Fefferman and E.M. Stein, Some maximal inequalities, Amer. J. Math., vol. 1 (1971), pp. 107-115.
6. \qquad , H^{p} spaces of several variables, Acta. Math., vol. 129 (1972), pp. 137-193.
7. J. Garcia-Cuerva, An extrapolation theorem in the theory of A_{p} weights, Proc. Amer. Math. Soc., vol. 187 (1983), pp. 422-426.
8. B. JAWERTH, Weighted inequalities for maximal operators: linearization, localization and factorization, Amer. J. Math., vol. 108 (1986), pp. 361-414.
9. D. Krug, Weighted norm inequalities for multiplier operators, Ph.D. Thesis, Indiana University, 1986.
10. D. Kurtz, Littlewood-Paley and multiplier theorems on weighted L^{p} spaces, Trans. Amer. Math. Soc., vol. 259 (1980), pp. 235-254.
11. D. Kurtz and R. Wheeden, Results on weighted norm inequalities for multipliers, Trans. Am. Math. Soc., vol. 255 (1979), pp. 343-361.
12. K.-C. Lin, Thesis, U.C.L.A., 1984.
13. B. Muckenhoupt, Weighted norm inequalities for classical operators, Proc. Symposia Pure Math., vol. XXXV (1), 1979, pp. 69-84.
14. J.L. Rubio de Francia, Weighted norm inequalities and vector valued inequalities, Springer Lecture Notes in Math., vol. 909, Springer Verlag, N.Y., pp. 86-101.
15. \qquad , Factorization theory and A_{p} weights, Amer. J. Math., vol. 106 (1984), pp. 533-547.
16. E.M. Stein, Singular integrals and differentiability properties of functions, Princeton, 1970.
17. A. Torchinsky, Real variable methods in harmonic analysis, Academic Press, San Diego, Calif., 1986.

Northern Kentucky University
Highland Heights, Kentucky

[^0]: Received September 11, 1989.
 1980 Mathematics Subject Classification (1985 Revision) Primary 42B15; Secondary 42B25.
 ${ }^{1}$ This work is part of the author's dissertation completed at Indiana University under the supervision of Alberto Torchinsky.

