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BOUNDEDNESS OF CERTAIN MULTIPLIER OPERATORS
IN FOURIER ANALYSIS ON WEIGHTED
LEBESGUE SPACES

BY

DonaLp Kruag!

1. Introduction

The purpose of this paper is to extend known results on the relationship
between Hardy-Littlewood type maximal functions and certain multi-direc-
tional generalizations of the Hilbert transform to the case of weighted
Lebesgue spaces. It is well known that the boundedness of the Hardy-
Littlewood maximal function on the spaces LP(R), 1 <p <, is closely
related to the boundedness of the Hilbert transform on these same spaces. In
their paper, On the equivalence between the boundedness of certain classes of
maximal and multiplier operators in Fourier Analysis [3], A. Cordoba and R.
Fefferman study the relationship between two operators, one related to the
Hardy-Littlewood maximal function and one to the Hilbert transform, whose
boundedness properties are not so well known.

Specifically, let 6, > 6, > 6, > ... be a decreasing sequence of angles,
0 < 0, < 7 /2. Define the maximal function M, on L?(R?) by

My(£)(x) = sup 7 [1F ()],

x€R

where each rectangle R c R? is oriented in one of the directions 0,. Let P,
be the subset of the plane shown in Fig. 1. Con51der the multlpher T
(defined initially on L?(R?)) given by Tg( ) =X,(t) f(t), where X, is the
characteristic function of P,, and § denotes the Founer transform of g.

Cordoba and Fefferman have proven the following two results giving the
relationship between the boundedness of M, and Tj:

THEOREM A. If for some p > 2, M, is a bounded operator on L?/?(R?),
then T, is also bounded, but on the space L?(R?).
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TueoreM B. If for some p > 2, T, is bounded on LP(R?), then under the
additional assumption that |{M(Xg) > 1/2}| < CI|E| for all measurable E C
R?, it follows that M, is of weak type [(p/2), (p/2)].

In this paper we extend Theorem A to the case of weighted spaces. Let
w(x, y) be a locally integrable nonnegative function of two variables. Let
du = wdA, where dA denotes Lebesgue measure on R2 (In this paper du
always denotes wdA, for other weights we will use dv or do.) We obtain two
versions of Theorem A; for the precise definitions see the material that
follows.

THEOREM 4B. Ifp > 2, w € A,(0) and w € A,(R?), and if M, is bounded
on LP/P(R?) where v = w'~?/? then T, is bounded on LE(R?), with norm
depending only on the AX0) and A,(R?) constants of w and the norm of M,.

TueEOREM 6. If p, > 2 and M, is bounded on L? (R?), where v = w'™F,
and p € [py, py — €) for some & > 0, then the multiplier operator T, is
bounded on ij"(Rz), with norm depending only on the norm of M, and the
A(8) constant of w.

Theorem 4B gives, in particular, the result of Cordoba and Fefferman in
the case w = 1. However, Theorem 6 implies that w € 4, (0) (rather than
A,) which is what one would hope for.

In proving Theorem 4B we obtain a result relating a weighted integral
inequality to vector-valued inequalities, and in proving Theorem 6 we use
results related to extrapolation. In Section 6 we consider a result on extrapo-
lation in the directions 6,. We finish the paper with several applications of
the results mentioned above, including a weighted version of the angular
Littlewood-Paley inequality.

I would like to express my appreciation to Professor Alberto Torchinsky
for his constant support and encouragement. I especially want to thank him
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for reading an earlier version of this paper and offering numerous helpful
suggestions.

2. A condition which implies boundedness

In this section we use a condition, shown by J.L. Rubio de Francia [14],
[15] to be related to vector-valued inequalities and interpolation, which will
imply the boundedness of the operator 7, on L}. In later sections we will
relate this condition to the boundedness of M,. The boundedness condition
is:

BC(u, p). Let p > 2 be given. For each g in LF/?(R?), g > 0, there is
a G 2 g, G in L?’?(R?) such that

IIGIILg/Z)' < Cp||g||L<,f/2>’

and G -+ w € A,(0). Here ¢ depends only on p and u, and is independent
of g.

A ,(0) denotes the class of all those functions w such that

p—1

1 1 —l/p-1 ) =
s‘,ip(lRl fRW(x,y)abcdy)(lRI wa(x,y) dx dy C<w»

where the supremum is taken over all rectangles in one of the directions 6;,
i=1,2,3,... . The number C is called the A4,(6)-constant for w. We also let
A (RZ) be the A, condition with the supremum taken over rectangles
orlented in the direction of the coordinate axes.

THEOREM 1. Givenp > 2 and w € A (R2) assume that the boundedness
condition BC(u, p) is true. Then Ty is bounded on L2(R?) with norm depend-
ing only on the A (8) and A (Rz)-constants of w, and theA2-constant of G - w.

Proof. Consider the infinite strip

E,={(x,y) € R:2F < x < 2k+1},

Define the multiplier operator S, by SA,,( fXx) =X, Ek(x) . f(x). Kurtz [10]
shows that

Iz = (Z18A2) ], for wea,®).

(A = B means there are constants ¢ and ¢’ such that c4 < B < ¢'A.) Let F,
be the half-plane shown in Fig. 2. Define H,, initially on L?(R?), by
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okl ok ok#1

Fic. 2

(H ) (x) = Xp(x) - f(x). Then H, is essentially the Hilbert transform
oriented in the dlrectlon 0, and consequently is bounded on L"(RZ) for
w € A,6,) (e., A, where the supremum is taken over all rectangles
oriented in the direction 6,). Note, also, that S, T,(f) = H,S,(f): Indeed,

(S T)) " (f) = Xg, " Xp, f= X5, - Xp, - f = (HS) " (f).
Thus

p

IT,(f)lzg < C (lekn(f)lz)l "

/r
Lg

-c (§|Hksk(f)|2)l 2

We estimate this last norm using duality. Choose g > 0, g € L?/?(R?)
with ||gl| re/» < 1, and note that

=C| X IH,
3

szngksk(f)(x)lzg(x)w(x) dx
= I [ JHS(O )P () d
< L [ JHS(N(0)IPG(x)w(x) dx
k "R

< CL [ 1(H)()IPG(x)w(x) dr,
k R
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where G is the function from the boundedness condition, and the last
inequality follows since H, is bounded for G - w € 4,(6,). Hence,

J TS (o) d

<cf TISuH()IG(x)w(x) dx
R?

p/2 2/p
sc[sz(;sk(f)(x)lz) w(x)dx]

]1-—2/1)

x| [ (G(x))"Pw(x) dx
R2

< cliflzz - legllgm < clifliZ.
If we take the supremum of all such functions g it follows that
ITe( )l < cliflicg,

where ¢ depends only on the A,(#)-constant of G - w and the A4 p(RZ)-con-
stant of w.

In the next three sections we discuss conditions on M, that imply the
boundedness condition, and hence boundedness of 7.

3. Weighted vector-valued inequalities
Rubio de Francia [14] has shown that the boundedness condition BC(u, p),

is equivalent to certain weighted vector-valued inequalities. We will show
that the same type of result is true for the weights in Ap(6).

THEOREM 2. Given a weight w and p > 2, the following conditions are
equivalent:

(a)

(o]

<G,
LP

®

(z)”

LE
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where M; is the maximal function with supremum taken over all rectangles
oriented in the direction 0;, f; € L}L’(RZ), i=12,....

1/2 172
(b) (EIH,f,-IZ) <c (Zlfjlz)
j LE J LE
and
|72 2
(2|H,+f,| ) <c (Zlf,-l )
i Lp j Ly

where H; is the Hilbert transform in the direction 0; and H;* the Hilbert
transform in the direction 0; + /2, and f; € Lﬁ(RZ), j=12,....

(c) The boundedness condition BC(, p): For each g > 0, g € L{?/? there
isa G = g with

||G||L(:/2)' < K||g||L(,f/2)’

and G - w € A,0).
Here c,,, c,,, and c}, depend only on K and p and the A,(8)-constant of G - w.

To prove this we will need to assume the following result of Rubio de
Francia [15]:

THEOREM. Let F = {T}} be a family of sublinear operators T;, T;: L% — L1,
then

<c,

)

(z]”

19

;L L

M

if and only if for r = (q/2) and g = 0, g € L), there is a G € L), such that
G, < cligllz;, with G = g and

[ILA*G(x) dp < c, [If*G(x) i,

forj=1,2,..., with c, independent of j.
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We will assume this result and move on to the proof of Theorem 2.
(¢) implies (a).

2

[Z'M;f,-lz]l/z

- supilefj(x)lzg(x)w(x) dx

where the sup is taken over g > 0, llgllp> < 1

< sup Zflefj(x)lzG(x)w(x) dx

<c,|sup ¥ [Ifi(x)’G(x)w(x) dx)
8
2

<c,| sup
g

3]

NGl gprar
LE

2

172
<c, [Zlfjlz]
J

Lg

The second inequality follows since M; is bounded on Li(RZ) for u = w(x) dx
in A,(6,).

(c) implies (b). Since both H; and H;* are bounded on L%(R?) for w in
A6), for j = 1,2,..., the proof is exactly as (c) implies (a) above, with M;
replaced by H; (or H;*).

(a) implies (c). Since the vector valued inequality holds then, by the
theorem of Rubio de Francia stated above, for any nonnegative g in L¥/?,
there is a G with g < G,

IGlle» < c'llgllgy»

and
JIM PG (x)w(x) dx < c [IfPG(x)w(x) dx

for ¢ independent of f € Lf and j =1,2,3,... . This implies that G - w €
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A(6,) with A,(6;) constant independent of j. Hence G - w € 4,(0) and thus
G satisfies the condition for boundedness BC(u, p).

(b) implies (c). This follows as above, since we get both

JIHF(x)PG(x)w(x) dr < ¢, [If()G(x)w(x) d

and

JIH* F(0) [ G(x)w(x) dv < e, [IF(x)PG(x)w(x) dx

for all j, which implies that G - w € A,(6;) with A4,(6;)-constant independent
of j. Hence G -w € 4 (0) Note: In the above proof we used the fact that if
H; and H;* are bounded on L2(R?), then w € A,(6;). The idea behind this
is as follows For convenience of notation let’s suppose the Hilbert trans-
forms H, and H, are bounded on L2; here H, is the Hilbert transform in
the direction of the x-axis and similarly for H,. We will also let M, and M,
be the one-dimensional Hardy-Littlewood maximal functions in the direction
of the x and y axes respectively. Then w(:,y) € 4,(R!) with constant
independent of y and w(x, - ) € A,(R!) with constant independent of x.
Hence

IMCF) 2@y < UM (M, )2z < clifllz

and this implies w € 4,(R?).

4. A weighted integral inequality

The main result of this section is a weighted integral inequality for the
strong maximal function. From this the first of the theorems in which
boundedness of M, implies that of T, follows.

Lemma 1. Ifw € A, (R, 1 < p < o, then for some ¢ > 0, w € A,_,(R?)
with A, (R2)-constant and € dependmg only on p and the A (R2)-constant
of w.

Proof. A.P. Calderon has proven that if w € A,(R) then w € 4,_.(R)
where ¢ and the A,__(R)-constant of w depend only on p and the A (R)
constant of w. (See (1] Theorems 1 and 2 as well as the proof of Theorem 2.)

In this case, for each x, w(x, —) € 4,(R) with constant independent of x.
Hence w(x, —) € A,_,(R) with ¢ and the A,_ . (R)-constant of w(x, —)
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independent of x. Similarly w(—, y) € 4,_.(R) with ¢ and constant inde-
pendent of y. So w € 4,_,(R?) with ¢ and A4,_,(R*)-constant depending
only on p and the A4 p_s(Rz)-constant of w.

More notation will be needed before we state Lemma 2. For f in LP(R?)

let M (f) be the Hardy-Littlewood maximal function of f in the x-variable
only (similarly for M,(f)). For a weight w define

M(f)(x) = s:p;{R—) [£(x) du(x)

where the supremum is taken over all rectangles R containing x with sides
parallel to the axes and du(x) = w(x) dx.

Lemma 2. Ifw € A,(R?), 1 <p < =, then

LM (M, (£))(x)Pe(x) du(x) < ¢, [ [F(x)IPM,(M(8))(%) dpu(x)

with c,, independent of f and g and depending only on p and the A p(Rz)-con-
stant of w.

Proof. Let q = p — &. Then for any rectangle R,

(%["g(w)w(x) dx)(TI%TfR(Mw(g)(x)w(x))-l/q-l dx)"‘l

< (I-;—I/;zg(x)w(x) dx)

q-1

L w(R) vast
X‘(IRl '[R( Jr8(¥)(w(y) dy) w(x) dx)

qg—1

< %W(R)(I%I-flzw(x)_l/q_ldx)

< A, (R?)-constant of w.

So (gw,(M,g)w) € A,_(R?) with constant no more than the A4, ,(R?)
constant of w.
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As in Lemma 1, this implies that (gw, (M, (g))w) € A,_,(R") uniformly in
each variable. Hence,

C p—e
’ y) de < o= Jo M M, dx.
j;Mx(My(f))>x)g(x Y)W(x y) a? ‘/;12 Y(f) (g)W(x)

By interpolating with the trivial L“,';(Rz) result, the corresponding strong-
type inequality holds for p. Hence, integrating in the x;-variable alone,

[ M(M,(£))"(x)8(xw(x) vy < [ M(£)())"M(8)(x)w(x) d,.

Likewise, (M, (g)w, M (M (g)w) € A,_,(R?) and so proceeding as above
and integrating in the x,-variable we now have

J[ MM, 1)) (x) 8 (xIw(x) diy i
< cf/;If(x)l"M”(MM(g))(x)w(x) dx, dx,.

This lemma will enable us to prove two theorems which show that the
boundedness of M, implies that of T,. Define

M, (£)(x) = sup g [ £) du(x)

where the supremum is taken over all rectangles oriented in the direction 6.
Let

M, o(£)(x) = supM, (f)(x).

Tueorem 3. Ifp > 2, w € A,(8) and w € A,(R?) and if
IM,, o( F)llgrr < cllfligrr  forall f € LP/P(R?)
then
A)

!/
<d,

L

forallf, e L?,

(zmasr)”

(2]

Lg

and
(B) T, is bounded on ij(Rz) with norm depending only on the constant ¢
above, and on the A,(R*) and A,(R?) constants of w.
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Proof. By duality. Let
g € LY (R?), liglle» < 1.

Then
[, ZIM5 8 (x) dis(x)
<CT [ 150 ((6)) () ()

< o[ I M o0 0(00) ) ()

2

IA
o

IM,,,6(M,.,o(8))lpr
p

"

(]

L

IA
)

(zur)”

Part (B) follows immediately from part (A), Theorem 1 and Theorem 2.

THeoREM 4. Ifp > 2, w € A,(0) and w € A,(R?), and if M, is bounded
on LP/P(R?), v = w'=#/?' then
(A)

<c
Lg

, du(x) =w(x)da,

LE

1/2
(T’

()"

and
(B) T, is bounded on L ﬁ(RZ) with norm depending only on the norm of M,
and on the A,(R?) and A,(R?*)-constants of w.

Proof. We use another version of duality. The dual of L2/ 2(R?) is
LP/?(R?), where (f, g) = [fgdx. Let g € L?/?(R?) with norm less than
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or equal to 1, then
LS5 ) o) d < 5 [ 151m,(0(0)) ()
R j j R

< cszgmleo(Mo(g))(%) dx

2

IA
o

1/2
( Z|f,~|2) 1My Mo( &)l e
J Lz

2

IA
o

(7]

Lg

Taking the supremum over all such functions g gives us part (A).
Part (B) follows from Theorems 1, 2 and part A.

In the case of Lebesgue measure both theorems 3B and 4B give the result
of Cordoba and Fefferman. However, both demand a stronger condition than
w € Ap(8). In the next section we will prove a result which will only require
w € Ap(6), but we will also assume M, to be bounded on LP(R3?), v =
wl~? dA, a stronger condition than the above.

5. The main result

The results in this and the following section are related to an extrapolation
theorem of Garcia-Cuerva. Before we proceed we will need some notation.

We say that a pair (w,v) of nonnegative locally integrable functions
satisfies the Ap(F)-condition, 1 < p < », and write (w, v) € Ap(F) if for all
rectangles R in the family F,

r-1

o roro) oo o

with ¢ independent of R. The smallest such c is called the Ap(F)-constant
of (w, v).

A well known result is that the weak-type inequality for the Hardy-
Littlewood maximal function,

[ w(y)dy < 25 [IfFo(y) dy,
(Mf>2) AP I
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is true if and only if (w,v) € Ap(R). Here ¢, depends only on the Ap
constant of (w, v).

We are now ready to prove the following.

Tueorem 5. If p, > 2 and M, is bounded on LF(R?), v = w'™P for
p € (py — &, py), € >0, then the boundedness condition BC(u, p,) is true:
For each g > 0, g € L?/P(R?), there is a G > g, G € L?/?(R?) with

IGllpo < cllgllrgor

and G -w € Ay(0), and the A)X0)-constant of G -w depends only on the
Ap(8)-constant of w.

To prove this theorem we need the following lemma:

LEMMA 4. Assume that p > 2 and M, is bounded on LP'(R?), v = w! ™7,
For 0 <mn <1andgeL?/"(R?) let :

G(y) = [My(gV" - w)(») /w(»)]".

Then
i Gz=zg,
(i) (gw,Gw) €4, ,q_,\0),
i) IGIE/™ < cllglE/™,
where both ¢ and the A, _,\0)-constant of (gw,Gw) depend only on the
Ap(6) constant of w.

We will postpone the proof of the lemma until after that of the theorem.

Proof (of Theorem 5). Choose n = (p,+ ¢ —2)/(p,— 1) for some

g',e > & > 0. Then from Lemma 4 we obtain a G such that
i g<G,

Gi) (gw,Gw) € 4,_.(0),

(i) NGl < cligllzgpor
where ¢ and the A4,_,(6) constant depend only on the norm of M,.

Part (i) is obvious from the definition of G.

Part (ii) is true since for p = p, — &,

p—1
—_— -_— p— < —
n+p(l—-m)=1+ 5 1(1 g)<2-e¢
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and so
An +p(l—-n)(0) - A2-—e(0) .

Part (iii) follows from the lemma by interpolating part (iii) of the lemma
with

IGllz < Cliglle=;
since

’ ’ ’ [ p -—2
(Po/2)' =po/n' where u' == <7

SO
(po/2)" =po'//7" > Do/

The next step is to replace G by a function H such that H - w € 4,(6)),
independent of i. We will show this in the case 6, = 0, that is, H - w € 4, in
the x; and x, directions. One rotates to obtain the result in each direction
0,, but the notation gets out of hand.

By the Lebesgue differentiation theorem, (gw,G - w) € A,__(0) implies

that (gw,Gw) € A,_,. in each direction-6; independently. Thus (assuming
for the moment that 6, = 0)

M;: L27¢(R!) > L2 *(R!) and
M LR L3 (R)

are of weak type (v = gw and o = Gw). So by interpolation with the trivial
L” result,

My Li(x,) > L2(x;) and M, Li(xy) = L7 (%)
are (strong-type) bounded. Since M(f) < M(M,(f)) it follows that
M: Li(xy, x5) = L3 (%, %,)

is (strong-type) bounded, with norm depending only on the norm of M,.
Now let gy =g, g, = G and v, = g, - w. Then

g1/l oy < cllgollzgpory,
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and

(Po/2)
M)z, < Klfllz, for feLPor?,
with ¢ and K depending only on the norm of M,.
Proceeding inductively, given g; we can obtain g;,, >g; and v;,; =

gj+1 W SO that

lgj+1lleo < clig;lligo < c/*HigollLgpos

and

M)z, < Kliflzz.

Now let
+ o0
gj(.V)
H(g) = e
(2) jz.g:o (c+ 1)1

Since

"8,'( Y)"Lgfoﬂ)’
(c +1)’

c J
< [ 51| ellugo

the series converges, and also H > g and
IIHIIL(fo/z)' <(c+ 1)I|g||Lgfo/2)'.

Now if we let v = H - w, since

”M(f)”L?,i < K"f“L?,j,

+1

we have

M)z < ¥ —K—

2 = 2,
E e x 1),IlfIILV clifliz
This last inequality implies H - w € A,(R?) with 4,(R?) norm depending
only on the norm of M,. By replacing the strong maximal function M by the
maximal function with rectangles oriented in the direction 6;, one obtains
similarly H - w € 4,(6;,) with the 4,(f;) constant depending only on the
norm of M,. Since this is independent of i, it follows that H - w € 4,(9).
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Proof of Lemma 4. Note that M, is bounded on LP(R?), » = w!~P
w € Ap(0).

(i) It is obvious that G > g.

(i) We must show that (gw,Gw) € 4, , ,_(0), i.e.,

1/ -n/(g—1D a-1
(i[5 w) dy)(m;l f[ e dy) <e,

for any rectangle R oriented in any of the directions 6, Here ¢ = n +
pd—-—m)sog—1=(p— 1A —-n)>0.Hence g > 1.
By Holder’s inequality with indices 1/1, 1/1 — n,

1-7

& e 0w v < (g7 [ ) (a7 w2 9]
Also for y € R,
My(2"/w)(3) = g7 [#(x)/ () ds.

1/n, -n/(g-1)
1 '[R(Mo(g/ )(Y)) w(y)

IR[ w(y)

q—1
-1/(n-1)
IR|

< (%fzeg(x)l/nw(x))_n ' [%LW(Y)("‘I)/(‘I‘D dyr_l

1 )(p—l)(l—n)

[ oo ) g o 0o

So, the Ap(6) condition is bounded by

[I-l—!}—lwa(Y) dy]l_n[m}l-wa(y)—l/(p—n dy](p'IXI—n)

< [Ap(6) constant of w]'™".
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(iii)

n np'/n
f Mo(gl/ w)(y) w(y) dy

w(y)
= [My(8"/™w)" w(y)' " dy < c[87/"w(y) dy.
Finally we have the main result of this section:
THEOREM 6. If py,>2 and M, is bounded on LP(R?), for p €
(py — &, py), some & > 0, then the multiplier operator T, is bounded on
L2%(R?) with norm depending only on the norm of M, and the Ap(8)-constant

of w.

Proof. This follows directly from Theorems 1 and 5.

6. An extrapolation result

In this section we generalize an extrapolation theorem of Garcia-Cuerva to
weights in A4p(6). The theorem of Garcia-Cuerva states that for any sublinear
operator T, if T is bounded on LZo(R?) where du(x) = w(x)dx, for some
Po» 1 <py < », and all w € Ap,(R?), then T is bounded on LZ(R?) for all p,
1 <p < «, and all w € Ap(R?). For more on extrapolation see [7], [15], or
[17].

THEOREM 7. Assume that T is a sublinear operator satisfying the following
conditions:
There is a py, 1 < p, < @, such that for every w € Ap(0),
1 7fll 2o < cllfll Lzo,

du(x) = w(x) dx, where c is independent of f and depends only on the Ap(6)
constant of w.

(1) Forpy <p < +x assume that
(2) 1M, fllz;, < c'lifllz;, for allw € Apy(6), ¢’
independent in Ap(0) and r € (p, — &, p,] for some € > 0, and
(b) 1My il < Klfllzg if and only if M, fllg < K'lIflzg,

for 1 <q < +w,1/q' +1/q =1 and dv(x) = w(x)' ¥ dx.
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(ii) For 1 <p <p, assume that |M,fl| Lz < clifll g for c independent in
Ap(6).

Then IITfIILp < K(p)IIfIILp for all p, 1 <p <, and for all w € Ap(9)
where K(p) is mdependent in Ap(0)

Proof. Case (i). For py <p < +w, let w € Ap(9) and f e LE(R?). To
begin we need the following lemma.

Lemva 5. If [IM,fllzy, < c[IfIIL dB(x) =w(x)!""dx, re(p' —¢, p'l
for some € > 0, and f € Ir " (R2), then for each non-negative g € L{P/Po (RZ)
there is a G > g such that

IGllgpreor < cliglligprro and G - w € Apo(8). Here c is independent of g.

The proof of Lemma 5 is the same as the proof of Theorem 5, with 2
replaced by p,,.

To complete the proof of Case (i), note that M, bounded on L,{O(Rz)
implies, by interpolation with the trivial L” result, that M, is bounded on
L”O(Rz) Po <P < +%. So by hypothesis M, is bounded on LP'(R?), dv(x)
= w!™P(x) dA for p, < p < +». We may apply Lemma 5 in thls range and
get

IZF IS = N1 TF1Po o
= sup [ |TF(»)Ig(y)w(y) dy,
RZ
(where the sup is taken over ligll oo <1, 8 = 0)
< sup [ |TF(»)"G(y)w(y) dy
RZ
< sup chZIf(y)I”°G(y)w(y) dy

< sup c||If1P [/l Gl Lgp /vy
< cllfIZs,
with ¢ independent of f and u.

Case (ii). For 1 < p < p,, let w € Ap(#) and f € LZ(R?). We also need a
lemma here.



486 DONALD KRUG
LEMMA 6. Assume that 1 < p < p,, w € Ap(0) and that
”Mof”Lg < C"f”L};

¢ independent of f. Then for each non-negative g € L2/?~P(R?), we can find
G > g such that

NGl erw-r0 < c'llgllLp/w-po

and G™'w € Ap(8), with both c' and the Ap(6)-constant of G~ 'w dependent
only on the Ap(8)-constant of w.

Proof. This is the dual to Lemma 5 and is proved exactly as in [17],

Chapter 9, Proposition 7.5.
To complete the proof of the theorem let

g(x) = (IF(x)I/lfllg) ",

where f(x) # 0, g(x) = 0 elsewhere. Note that

J AP ) =

and

ligllzpreo-r = 1.

Apply Lemma 6 to obtain G > g with the given properties. Then

Po

Do 12/Po
17718, = [ Lo PGS sy )

< Il g/mo-» j IT(F)(2)P°G(x) " 'w(x) dx
R
Scf IF(x)IP° G~ (x)w(x) dx
{f+0)
< cj(#o)lf(x)V’Og-l(x)w(x) dx = [IfI175.

7. Applications

In this section we use the results proven above to obtain two applications.
The first concerns an infinite class § where M, is known to be bounded. The
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second application is a weighted version of the angular Littlewood-Paley
operator.

DerINITION. A sequence {6y} is called lacunary provided there is a
constant r < 1 such that 0 < 0y, <rfg, K=1,2,....

Tueorem. If 6 ={0x} is lacunary then |IM,llrp <cllfllLz, du(x) =
w(x) dx, if and only if w € Ap(8), where ¢ depends only on the Ap(6)-constant
of w.

For a proof of this result see reference [8].

TuEOREM 8. If w € Ap(8) and Ap(R?), and if 0 = {0} is lacunary, then ’
T, is bounded on LE(R*) 1 < p < +o, du(x) = w(x) dA.

Proof. For p > 2 the theorem immediately above, combined with Theo-
rem 6, gives the result. For 1 < p < 2 we apply Theorem 7, the result on
extrapolation.

THEOREM 9. Let 0 = {0y} be lacunary and let Hy be the Hilbert transform
in the direction 0. If 1 <p < «, w € Ap(6) and Ap(R?) and if f € LE(R?)
then

< cllfllz.
p

"

(Scne)”

L

Here c depends on w and p and is independent of f.

Proof. We may assume p > 2 and apply Theorem 7 to finish the proof.
Since M, is bounded on L,‘j(Rz), 1 < p < 0, by Theorem 5, the condition
BC(u, p) is true for p > 2. Then by theorem 2,

<c
L

(Zmnr)

(zwr)

LA

If S, is the dyadic Littlewood-Paley operator defined on L*(R?) by

S(£)(x) = Xp (x)f(x)
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where each R, is a dyadic rectangle, then Kurtz [9] has shown:

1/2
(1) (Z|skf|2)
LIR?)
and
1/2
©) (zwe) )
k LIR?)

where c is independent of f.
Using this result, it then follows that

<
Ly

c

( ; lHkﬂZ)l/z

[2)

<

o

. (Xkllskfklz)m

=< C||f||L5(R2)

LIR?)

(§IskafI2)l/2

(
(

A

1/2
ZlHkskflz)

k

)»

k

LE

1/2
|skf|2)

LE

< clifllzg

where ¢ is independent of f, and depends on w and p.

As an immediate corollary we have the following version

Littlewood-Paley inequality.

Tueorem 10. Let 6 = {6,} be lacunary, 0 < 6, < 7/2,

sector a; by

o, = {x € R?: 9, < argument(x) < 0,,,},

for k=0,1,2,. Set T,(f)Xx)=X,

Ap(R?) then

where ¢ = c(u, p) is independent of f.

Proof. Since T, = H,,,

(ZITkﬂZ)l "

(x) f(x). Then if f is supported in
Uiop fE L”(RZ) and f € L%(R?), du. = w(x) d\(x), and if w € Ap(0) and

<clifllg

LE

— H, this follows immediately from Theorem 9.

of the Angular

and define the
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