SOME REMARKS ON COMPLEX POWERS OF ($-\Delta$) AND UMD SPACES

BY
Sylvie Guerre-Delabriere

Introduction and notations

If X is a Banach space, $(\Omega, \mathscr{A}, \mu)$ a measure space and $1 \leq p<+\infty$, we will denote by $L_{p}(\Omega, X)\left(L_{p}(\Omega)\right.$ if $\left.X=\mathbf{R}\right)$, the Banach space of classes of Bochner measurable functions f from Ω to X such that

$$
\int_{\Omega}\|f(t)\|_{X}^{p} d \mu(t)<+\infty
$$

equipped with the norm

$$
\|f\|_{p}=\int_{\Omega}\|f(t)\|_{X}^{p} d \mu(t)^{1 / p}
$$

We will also denote by $C_{0}^{\infty}(\mathbf{R}, X)\left(C_{0}^{\infty}(\mathbf{R})\right.$ if $\left.X=\mathbf{R}\right)$ the space of C^{∞}-functions from \mathbf{R} to X such that $\lim _{t \rightarrow \pm \infty}\|f(t)\|=0$, equipped with the norm

$$
\|f\|_{\infty}=\sup \left\{\|f(t)\|_{X}, t \in \mathbf{R}\right\}
$$

We recall that X is UMD if martingale differences with values in X converge unconditionally in $L_{2}(\Omega, X)$ where Ω is any probability space, that is: there exists a constant $C>0$, such that whenever $\left(M_{k}\right)_{k \in \mathbf{N}}$ is a bounded martingale in $L_{2}(\Omega, X)$ and $\left(\varepsilon_{k}\right)_{k \in \mathrm{~N}}$ is a choice of signs,

$$
\left\|\sum_{k=1}^{\infty} \varepsilon_{k} d_{k}\right\|_{2} \leq C\left\|\sum_{k=1}^{\infty} d_{k}\right\|_{2} \quad \text { where } d_{k+1}=M_{k+1}-M_{k}
$$

By a martingale, we mean that there exists an increasing sequence of σ-subalgebras $\left(\mathscr{A}_{k}\right)_{k \in \mathrm{~N}}$ of \mathscr{A} such that $E^{\mathscr{A}_{k}}\left[M_{k+1}\right]=M_{k}$, where $E^{\mathscr{A}_{k}}$ is the conditional expectation with respect to \mathscr{A}_{k}. It is well known that this

[^0]condition is equivalent to the ζ-convexity of X and also to the fact that the X-valued Hilbert transform $\mathscr{H} \otimes \mathrm{Id}_{X}$ is a bounded operator on $L_{2}(\mathbf{R}, X)$. These results were proved by D. Burkholder [Bu] and J. Bourgain [B ${ }_{1}$].

We will denote by Δ the Laplace operator on $C_{0}^{\infty}(\mathbf{R})$. We will use the well known fact that Δ is a convolution operator and the Fourier transform of its distribution kernel K is $K(x)=-x^{2}$ on \mathbf{R}.

Here we are interested in the operator $(-\Delta)^{i s}$ where $s \in \mathbf{R}$: in agreement with theory of complex powers of operator [K], we will define this operator as the convolution by the kernel K_{s}, such that $\hat{K}_{s}(x)=\left(x^{2}\right)^{i s}$ on \mathbf{R}. We know by results of E. Stein [S_{1}], $\left[\mathrm{S}_{2}\right]$ or of R. Edwards and G. Gaudry [EG], that this operator is bounded on $L_{p}(\mathbf{R})$ for all $p \in(1,+\infty)$. As a consequence of T. McConnel in $\left[\mathrm{B}_{2}\right]$ or J. Bourgain [M], it is easy to see that if X is UMD, then $(-\Delta)^{i s} \otimes \mathrm{Id}_{X}$ is a bounded operator on $L_{p}(\mathbf{R}, X)$ for all $p \in(1,+\infty)$ and $s \in \mathbf{R}$.

Using techniques introduced in $\left[B_{1}\right]$, we are going to prove an inverse property.

Main result

Theorem. Let $1<p<\infty$ and X be a Banach space. If $(-\Delta)^{i s} \otimes \mathrm{Id}_{X}$ is a bounded operator on $L_{p}(\mathbf{R}, X)$ for all $s \in \mathbf{R}$, then X is a UMD space.

Proof. First of all, we can suppose that $p=2$ (by using the results of T. Coulhon and D. Lamberton [CL]).

Then, it is shown in [V] that, under the hypothesis of the theorem,

$$
s \rightarrow(-\Delta)^{i s} \otimes \mathrm{Id}_{X}
$$

is a strongly continuous group and thus the norm of $(-\Delta)^{i s} \otimes \mathrm{Id}_{X}$ is uniformly bounded for s in compact subsets of \mathbf{R}.

We are going to work with the scalar multiplier $\left(x^{2}\right)^{i s}, x \in \mathbf{R}$ on $L_{2}(\mathbf{R}, X)$. By the usual transference techniques developed by R. Coifman and G. Weiss in [CW] which are applicable in the vector valued setting as well by results of J. Bourgain $\left[\mathrm{B}_{2}\right]$, if \mathbf{T} denotes the torus, we know that the discrete multiplier $\left(\left(n^{2}\right)^{i s}\right)_{n \in \mathrm{Z}}$ is bounded on $L_{2}(\mathrm{~T}, X)$.

By changing s to $s / 2$ to simplify the notation we can work with the multiplier $m_{s}(n)=|n|^{i s}$ and suppose that its norm is less than A for all $s \in[-1,+1]$. That means that if

$$
f(\theta)=\sum_{j \in \mathbf{Z}} \lambda_{j} e^{i j \theta} \in L_{2}(\mathbf{T}, X)
$$

and

$$
m_{s} f(\theta)=\sum_{j \in \mathbf{Z}} m_{s}(j) \lambda_{j} e^{i j \theta}
$$

then

$$
\left\|m_{s} f\right\|_{L_{2}(\mathbf{T}, X)} \leq A\|f\|_{L_{2}(\mathbf{T}, X)} \quad \text { for } s \in[-1,+1]
$$

To prove that X is UMD, we are going to consider, as in [B_{1}], bounded X-valued martingales $\left(M_{k}\right)_{k \in \mathbf{N}}$ on $\mathbf{T}^{\mathbf{N}}$, associated with the filtration induced by the coordinates, defined by the inductive rule

$$
M_{k+1}\left(\theta_{1}, \ldots, \theta_{k+1}\right)=M_{k}\left(\theta_{1} \cdots \theta_{k}\right)+\phi_{k}\left(\theta_{1}, \ldots, \theta_{k}\right) \varphi_{k}\left(\theta_{k+1}\right)
$$

(so that $\left.d_{k+1}\left(\theta_{1}, \ldots, \theta_{k+1}\right)=\phi_{k}\left(\theta_{1}, \ldots, \theta_{k}\right) \varphi_{k}\left(\theta_{k+1}\right)\right)$ with

$$
\begin{gathered}
\left(\theta_{1}, \ldots, \theta_{k+1}\right) \in \mathbf{T}^{k+1} \\
\phi_{k} \in L_{2}\left(\mathbf{T}^{k}, X\right) \\
\varphi_{k} \in L_{\infty}(\mathbf{T}), \quad \int_{\mathbf{T}} \varphi_{k}(t) d t=0 \\
\left\|\sum_{k=1}^{\infty} d_{k}\right\|_{L_{1}\left(\mathbf{T}^{\mathbf{N}}, X\right)}<+\infty
\end{gathered}
$$

By an approximation argument, we can assume first that $d_{k}=0$ for $k>k_{0}$ and second that the $\phi_{k^{-}}$and φ_{k}-functions are respectively X-valued and \mathbf{R}-valued trigonometrical polynomials, namely, for $k \leq k_{0}$,

$$
\left\{\begin{array}{l}
\phi_{k}\left(\theta_{1}, \ldots, \theta_{k}\right)=\sum_{\left|j_{1}\right| \leq L_{k, 1}} \cdots \sum_{\left|j_{k}\right| \leq L_{k, k}} a_{j_{1} \cdots j_{k}} e^{i j_{1} \theta_{1}} \cdots e^{i j_{k} \theta_{k}} \\
\varphi_{k}(\theta)=\sum_{|j| \leq K_{k}} b_{j} e^{i j \theta}, \quad b_{0}=0
\end{array}\right.
$$

where

$$
\begin{aligned}
& K_{k}, L_{k, j} \in \mathbf{N} \quad \text { for } 1 \leq j \leq k, 1 \leq k \leq k_{0}, \\
& a_{j_{1} \cdots j_{k}} \in X \quad \text { for }\left|j_{1}\right| \leq L_{k, 1}, \ldots,\left|j_{k}\right| \leq L_{k, k}, \\
& b_{j} \in \mathbf{R} \quad \text { for }|j| \leq K_{k}, \quad b_{0}=0 .
\end{aligned}
$$

Then, with this notation we have to show that there exists a constant C
(independent of k_{0}) such that for all choices of $\operatorname{signs}\left(\varepsilon_{k}\right)_{k \in \mathbf{N}}$, we have

$$
\left\|\sum_{k=1}^{k_{0}} \varepsilon_{k} d_{k+1}\left(\theta_{1} \cdots \theta_{k+1}\right)\right\|_{L_{2}\left(\mathbf{T}^{\mathrm{N}}, X\right)} \leq C\left\|\sum_{k=1}^{k_{0}} d_{k+1}\left(\theta_{1} \cdots \theta_{k+1}\right)\right\|_{L_{2}\left(\mathbf{T}^{\mathrm{N}}, X\right)}
$$

If f is a trigonometric polynomial on \mathbf{T}, defined by

$$
f(\theta)=\sum_{|j| \leq L} \lambda_{j} e^{i j \theta}
$$

we will denote by $\operatorname{sp}(f)$, the set of integers j such that $\lambda_{j} \neq 0$.
We are going to use Bourgain's transform [B]: For ψ in T, and for a monotone increasing \mathbf{N}-valued sequence $\left(N_{k}\right)_{k \in N}$, we can define

$$
\begin{aligned}
F(\psi) & =\sum_{k=1}^{k_{0}} \phi_{k}\left(\theta_{1}+N_{1} \psi, \ldots, \theta_{k}+N_{k} \psi\right) \varphi_{k}\left(\theta_{k+1}+N_{k+1} \psi\right) \in L_{2}(\mathbf{T}, X) \\
f_{k}(\psi) & =\phi_{k}\left(\theta_{1}+N_{1} \psi, \ldots, \theta_{k}+N_{k} \psi\right) \varphi_{k}\left(\theta_{k+1}+N_{k+1} \psi\right) \in L_{2}(\mathbf{T}, X) \\
S_{k} & =\sum_{j=1}^{k} N_{j} L_{k, j} \in \mathbf{N} .
\end{aligned}
$$

Since $b_{0}=0$, with this notation, we get

$$
\operatorname{sp}\left(f_{k}\right) \subset\left[-S_{k}-N_{k+1} K_{k}, S_{k}-N_{k+1}\right] \cup\left[-S_{k}+N_{k+1}, S_{k}+N_{k+1} K_{k}\right]
$$

The aim is to prove that we can choose $s \in \mathbf{R}$ and an increasing sequence $\left(N_{k}\right)_{k \in \mathbf{N}}$ of integers such that the multiplier $m_{s}(n)=|n|^{i s}, n \in \mathbf{Z}$, acts almost like a given choice of $\operatorname{sign} \varepsilon_{k}$ on each f_{k}.

Lemma 1. Let $\delta_{k}>0, s>0, \varepsilon_{k}= \pm 1$ and choose $\varepsilon_{k}=e^{i p_{k} \pi}$ with $p_{k} \in \mathbf{N}$. Then

$$
e^{\left(p_{k} \pi-\delta_{k}\right) / s} \leq|n| \leq\left. e^{\left(p_{k} \pi+\delta_{k}\right) / s} \Rightarrow| | n\right|^{i s}-\varepsilon_{k} \mid \leq \delta_{k}
$$

Proof of Lemma 1. It is an easy application of the inequalities

$$
\left||n|^{i s}-\varepsilon_{k}\right|=\left|e^{i s \log |n|}-e^{i p_{k} \pi}\right| \leq\left|p_{k} \pi-s \log \right| n| |
$$

and

$$
\left|p_{k} \pi-s \log \right| n\left|\left|\leq \delta_{k} \Leftrightarrow e^{\left(p_{k} \pi-\delta_{k}\right) / s} \leq|n| \leq e^{\left(p_{k} \pi+\delta_{k}\right) / s} .\right.\right.
$$

Lemma 2. There exist $s \in(0,1]$, two increasing \mathbf{N}-valued sequences $\left(N_{k}\right)_{k \in \mathbf{N}}$ and $\left(p_{k}\right)_{k \in \mathbf{N}}$ and a decreasing non-negative sequence $\left(\delta_{k}\right)_{k \in \mathbf{N}}$, converging to 0 such that

$$
\begin{gather*}
\delta_{k+1} \leq \frac{\varepsilon}{2^{k+1}} \frac{1}{\left\|f_{k}\right\|_{L_{2}(\mathbf{T}, X)}}, \tag{1}\\
e^{i p_{k+1} \pi}=\varepsilon_{k+1} \tag{2}\\
{\left[N_{k+1}-S_{k}, N_{k+1} K_{k}+S_{k}\right] \subset\left[e^{\left(p_{k+1} \pi-\delta_{k+1}\right) / s}, e^{\left(p_{k+1}^{\left.\pi+\delta_{k+1}\right) / s}\right]}\right.} \\
N_{k+1}-S_{k} \geq N_{k} K_{k-1}-S_{k-1}
\end{gather*}
$$

Proof of Lemma 2. First of all, note that (1), (2), (4) can be verified with $N_{k} \rightarrow+\infty, p_{k} \rightarrow+\infty, \delta_{k} \rightarrow 0$ sufficiently fast.

The main problem is to deal with (3).
An easy computation shows that (3) is equivalent to

$$
\frac{p_{k+1} \pi-\delta_{k+1}}{\log \left(N_{k+1}-S_{k}\right)} \leq s \leq \frac{p_{k+1} \pi-\delta_{k+1}}{\log \left(N_{k+1} K_{k}+S_{k}\right)}
$$

Choose

$$
p_{k+1} \cong \frac{s}{\pi} \log N_{k+1}, \quad N_{k} \rightarrow+\infty
$$

Then, up to negligible terms, the inequalities become

$$
\begin{aligned}
s-\frac{\delta_{k+1}}{\log N_{k+1}} & \lesssim s \lesssim \frac{s \log N_{k+1}+\delta_{k+1}}{\log \left(N_{k+1} K_{k}\right)} \\
& =s-\frac{s \log K_{k}}{\log \left(N_{k+1} K_{k}\right)}+\frac{\delta_{k+1}}{\log \left(N_{k+1} K_{k}\right)}
\end{aligned}
$$

This condition can be realised if and only if

$$
s \log K_{k} \leq \delta_{k+1}
$$

that is,

$$
s \leq \frac{\delta_{k+1}}{\log K_{k}}
$$

So, if we choose s less than

$$
\inf _{k<k_{0}}\left\{\frac{\delta_{k+1}}{\log K_{k}}\right\}
$$

then if (N_{k}) tends to $+\infty$ sufficiently fast, (1)-(4) hold.

Back to the proof of the theorem. Let $\varepsilon>0$ and $\left(\varepsilon_{k}\right)_{k \in \mathbf{N}}$ be any sequence of signs.

Let us suppose that $s,\left(N_{k}\right)_{k \in \mathbf{N}},\left(p_{k}\right)_{k \in \mathbf{N}}$ and $\left(\delta_{k}\right)_{k \in \mathbf{N}}$ are given by Lemma 2. Then, assuming (1)-(4), we are going to describe the action of the multiplier $m_{s}(n)=|n|^{i s}, n \in \mathbf{Z}$, on $F(\psi)$:

With (1)-(4) it is clear that for $k \leq k_{0}$,

$$
\begin{array}{r}
\operatorname{sp}\left(f_{k}\right) \subset\left[-e^{\left(p_{k+1} \pi+\delta_{k+1}\right) / s},-e^{\left(p_{k+1} \pi-\delta_{k+1}\right) / s}\right] \\
\cup\left[e^{\left(p_{k+1} \pi-\delta_{k+1}\right) / s}, e^{\left(p_{k+1} \pi-\delta_{k+1}\right) / s}\right]
\end{array}
$$

Then, we can write

$$
\left\|m_{s} F(\psi)-\sum_{k=1}^{k_{0}} \varepsilon_{k} f_{k}(\psi)\right\|_{L_{2}(\mathbf{T}, X)} \leq \sum_{k=1}^{k_{0}} \delta_{k+1}\left\|f_{k}\right\|_{L_{2}(\mathbf{T}, X)} \leq \varepsilon
$$

And then, by hypothesis,

$$
\begin{aligned}
\left\|\sum_{k=1}^{k_{0}} \varepsilon_{k} f_{k}(\psi)\right\|_{L_{2}(\mathbf{T}, X)} & \leq\left\|m_{s} F\right\|_{L_{2}(\mathbf{T}, X)}+\varepsilon \\
& \leq A\|F\|_{L_{2}(\mathbf{T}, X)}+\varepsilon
\end{aligned}
$$

We can integrate this last inequality in $\theta_{1}, \cdot, \theta_{k}, \ldots$ Using the invariance of the measure on \mathbf{T} by the transform $\theta_{j} \rightarrow \theta_{j}+N_{j} \psi$, it is easy to see that we obtain

$$
\left\|\sum_{k=1}^{k_{0}} \varepsilon_{k} \phi_{k} \varphi_{k}\right\|_{L_{2}\left(\mathbf{T}^{\mathbf{N}}, X\right)} \leq A\left\|\sum_{k=1}^{k_{0}} \phi_{k} \varphi_{k}\right\|_{L_{2}\left(\mathbf{T}^{\mathbf{N}}, X\right)}+\varepsilon
$$

or equivalently,

$$
\left\|\sum_{k=1}^{k_{0}} \varepsilon_{k} d_{k+1}\right\|_{L_{2}\left(\mathbf{T}^{\mathrm{N}}, X\right)} \leq A\left\|\sum_{k=1}^{k_{0}} d_{k+1}\right\|_{L_{2}\left(\mathbf{T}^{\mathrm{N}}, X\right)}+\varepsilon .
$$

Letting $\varepsilon \rightarrow 0$ proves the theorem with $C=A$.
Remark. This theorem is also true for some other operators on $L_{2}(\mathbf{R}, X)$ of type $T \otimes \mathrm{Id}_{X}$, where T is a convolution operator on $L_{2}(\mathbf{R})$ with "nice" associated multiplier.

The origin of my interest in complex powers of operators is the paper of G. Dore and A. Venni [DV]. See also [G] for an extension of their result.

I am very grateful to B. Maurey who showed me the starting point of this proof for analytic martingales. I must thank also Y. Raynaud who helped me to understand this subject and with whom I had a lot of very fruitful conversations.

I want to mention that T. Coulhon gave me a lot of motivation to work on this question by his great knowledge of the subject.

References

$\left[B_{1}\right]$ J. Bourgain, Some remarks on Banach spaces in which martingale difference sequences are unconditional, Ark. Mat., vol. 21 (1983), pp. 163-168.
$\left[\mathrm{B}_{2}\right] \quad$, Vector valued singular integrals and the $H^{1}-B M O$ duality. Probability theory and harmonic analysis, 1986, pp. 1-19.
[Bu] D.L. Burkholder, A geometrical characterisation of Banach spaces in which martingale difference sequences are unconditional, Ann. Prob., vol. 9 (1981), pp. 997-1011.
[CW] R.R. Coifman and G. Weiss, Transference methods in analysis, C.B.M.S. regional conference series, vol. 31, Amer. Math. Soc., Providence, R.I., 1971.
[CL] T. Coulhon and D. Lamberton, Régularité L^{p} pour les équations d'évolution, Séminaire d'Analyse Fonctionnelle PARIS VI-VII, 1984-85, pp. 155-165.
[C] M.G. Cowling, Harmonic analysis on semi-groups, Ann. Math., vol. 117 (1983), pp. 267-283.
[DV] G. Dore and A. Venni, On the closedness of the sum of two closed operators, Math. Zeitschr., vol. 196 (1987), pp. 189-201.
[EG] R.E. Edwards and G.I. Gaudry, Littlewood Paley and multiplier theory. Springer Verlag, New York, 1977.
[G] S. Guerre, On the closedness of the sum of closed operators on a UMD space, Contemporary Math., vol. 85 (1989), pp. 239-251.
[K] H. Komatsu, Fractional powers of operators, Pacific J. Math., vol. 19 (1966), pp. 285-345.
[M] T. McConnell, On Fourier multiplier transformations of Banach-valued functions, Trans. Amer. Math. Soc., vol. 285 (1984), pp. 739-757.
$\left[\mathrm{S}_{1}\right]$ E.M. Stein, Topics in harmonic analysis related to the Littlewood Paley theory, Ann. Math. Studies, Princeton Univ. Press, Princeton, N.J., 1970.
$\left[\mathrm{S}_{2}\right] \ldots$, Singular integrals and differentiability properties of functions, Princeton University Press, Princeton, N.J., 1970.
[V] A. Venni, Some instances of the use of complex powers of linear operators, Semesterbericht Funktionalanalysis, Tübingen, Sommersemester, 1988, pp. 1-12.

Universite Paris VI
Paris

[^0]: Received July 24, 1989.
 1980 Mathematics Subject Classification (1985 Revision). Primary 47A05, 47A50; Secondary 46E40.

