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INVOLUTIONS AND STATIONARY POINT FREE Z4-ACTIONS

BY

CLAUDINA IZEPE RODRIGUES

1. Introduction

This paper studies fixed point sets of involutions and Z2-fixed point sets of
stationary point free Z4-actions.

In Section 2, the interest is to determine which bordism classes in the
unoriented bordism ring ,///, can be realized as the fixed point set of an
involution on an n-dimensional manifold. Denoting by In the subgroup of
these classes in #//., we are going to prove that I . < n "J if n is even;
and for n odd I is the set of classes in <_n with zero Euler
characteristic mod 2.

In Section 3, the Z2-fixed sets of stationary point free Za-actions will be
studied. Let ,/’mz4 (st pt. free) be the m-dimensional bordism group of
manifolds with stationary point free Z4-action. Considering a Z4-action
restricted to Z2 we get an involution, and the fixed set of this involution with
the action induced by the Zn-action is an element in the bordism group of
free involutions.
We are going to study the following question: Which classes in the bordism

group of free in involutions #F,z2 (free) can be realized as the Z2-fixed point
set of a Z4-action in #Ymz4 (st. pt. flee)?
Denoting by Imz2 the set of these classes and considering Am ( . /)

j<m

N ’,, where , is the set of classes in 4/, with zero Euler characteristic
mod 2, the main result of this section is the following theorem.

THEOREM (a) For m odd,

ImZ2 #/Z2(free) + Am[ S0, --1] + [ ’j=l j=O
odd
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(b) For m even

m

Imz2= () #l/Zz(free) +Am[S -1] + Am_I[S 1, -1]
j=0
j even

I wish to express my gratitude to Professor R.E. Stong for suggesting this
problem and I also thank FAPESP (Fundao de Amparo h Pesquisa do
Estado de So Paulo-Brasil) for financial support.

2. Involutions

Let //, be the unoriented bordism ring of smooth manifolds and //,z2
the unrestricted bordism group of smooth manifolds with involution.

Being given a closed manifold M with an involution T, the fixed point set
of [Mn, T] is a disjoint union of closed manifolds Fj, 0 < j < n.

Consider the homomorphism

-+ +/+"
j<_n

which assigns to [Mn, T] the class ]j<_n[FJ], where the disjoint union

I,.)j <n Fj is the fixed point set of T. Denote by I the image of Fn. In what
follows, we are going to determine the image of the homomorphism Fn. To
do this, we need the following lemmas.

LEMMA 2.1. Let [Mn] be in //. ff o’[Mn] 0 mod 2, then for every
integer k > O, there exists a (n + k)-manifold with involution [Wn+k, T] such
that the fixed point set is bordant to Mn.

Proof First, the lemma holds for k 0 since the involution [Mn, id]
fixes Mn.
Now, suppose that k > 1. By [3, 4.5], we have the bordism class of M

admits a representative fibred over the circle since [M"] 0 mod2, i.e.,
there exists a closed manifold Fn-1 with involution such that [Mn]
[(Fn-1 X S1)/(t )< l)]. Then, considering the manifold with involution

[wn+k,T] [(Fn-1 X sk+l)/(t X 1), 1 X T’]
+[Fn-1 Rek+l, T"]

where

T’" ( xo, x 1, x2, xk + 1) ( Xo, Xl, -x2, --Xk + 1)
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and

T"" [Xo, XI, X2,...,Xk+I] [Xo, X1,--X2,... --Xk+l]

it is easy to see that the fixed point set of the involution T is bordant to

(Fn-1 X S1)/(t X 1).

Hence, the class [Mn] is represented by a manifold which is the fixed point
set of [Wn+k, T]. Therefore, the lemma holds for all k.

LEMMA 2.2. Fix an integer k > O. Let [Mm] and [Nn] be in 1/m and n
respectively, for m, n < 2k + 1. If &r[M + ,."[Nn] 0 mod 2, then there
exists a (2k + 1)-manifold with involution [W2k + 1, T] such that the class of the
fixed point set of T is bordant to [m + INn].

Proof. If [Mm =-off’[Nn] =-0 mod2, it is clear that there exists
[W2k+ 1, T] with fixed point set bordant to [Mm] + [Nn], by (2.1).

Thus, we only need to consider the case [M’] [Nn] 1 mod 2. In
this case, we have rn 2j and n 21, since m if rn is odd.
We may suppose j < I. Consider the involution

[w?k+I, TI]--[M xgp2/-2j+1X Rp2k-2’, 1 Xt1Xt2],
where

1" [X0,..., X21-2j+1] -> I--x0, Xl,..., X21-2j+1]

and

2" IX0,... X2k-21] I--X0, XI,..., X2k-21 ].

The fixed point set F of 1 x 2 is

F Mm X (RP0 U RP21-2j) X (RP0 U RP2k-2l-1)
M U (M X RP2k-2/-1) U (Mm X RP2l-2j)
U(M X RP21-2j X gp2k-21-1).

Therefore, [F] [Mm] + [M >( RP2l-2j] since 2k 21 1 is odd.
Now, note that

.’[Mm )< RP2l-2j U N 0 mod 2,

since f[Mm] f[RP2l-2j] ,.[Nn] 1 mod2. Then, there exists an
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involution [W22k+l, T2] with fixed point set in the class [Mm X RP21-2j] --[N], by (2.1).
Finally, the class of the fixed point set of

[W,T] [w12k+1, T1] -I-[W22k+1, T2]

[Mm] + INn].

THEOREM 2.3. (a) The homomorphism F is onto for n 2k even; i.e.,

j<_n

(b) The image of F is the subgroup of classes in
characteristic, if n 2k + 1 is odd.

]
<_ f with zero Euler

Proof (a) First considering the involution [Mn, id] we see that the class
[Mn] belongs to In. This means that n c In. Now, by Capobianco [2, p. 339]
we have cIn for k<j<2k and j4:2k- 1. Forj=2k- 1, Lemma
(2.1) implies that -///2k- I,, since 2k- 62k- 1"

Finally, it remains to show that . c I for 0 < j < k. To prove this, take
M in :.. Consider the involution RP2- 2j, T where

T" [Xo,..., Xek_2j [--Xo, Xl,... X2k_2j ].

So, the class of the fixed point set of the involution [RP2k-2j X M M,
T twist is

[RP Mi] + [RP2k-2j-1 X M]

which is bordant to [Mj] since 2k- 2j- 1 is odd. Then, c I for
O<j<k

(b) By [3, 27.2], the image is contained in ,, i.e., the subgroup with zero
Euler characteristic. We use now the lemma (2.2) and (2.1) to conclude that
the classes in )._<2/ J with zero Euler characteristic are in the image.
Hence, the theorem follows at once.

3. Stationary point free Z4-actions

Let //,z4 (st. pt. free) be the unoriented bordism group of stationary point
free Z4-actions and M/,z2 (free) the unoriented bordism group of free
involutions.
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Consider the homomorphism

FZm 2" //mZ4( st.pt,free) --* ] .z2(free)
j<m

which assigns to [Mm, T] the class of the Z2-fixed point set of [Mm, T].
Recall the restriction homomorphism

p" /mZ4( st .pt.free ) #l/mz2

assigning to M, T] the involution M, T2 ]. The fixed point set of M, T2 is
the disjoint union of closed submanifolds U._<m F. Then, considering tj--
T/F., j 0,..., m, we have

FZm2([M,T]) I) [Fj, t.].
j<_m

In this section we are going to study the image of the homomorphism F.Z:
Now, let z4 (st. pt. free, free) be the relative bordism group of

stationary point free Zn-actions on manifolds with boundary for which the
action is free on the boundary. There exist the isomorphism

/,Za( st.pt,free, free) ] l/,Z_( free)(BO(C) )
k=O

by [1, pp. 85], and the sequence

0 ---) F’,Z4(st.pt.free) ] ./F’,Z2_k(free)(BOk(C)) L 4/,z4(free) 0
k=0

of 1/,-modules and homomorphisms is split exact, where 0 is the boundary
homomorphism.

Further, for all k odd, we have the isomorphism

" /,z4( free) (R),/, Y, ( BSOk ) - Y,z( free)( BOk(C) ) (3.1)

which assigns to [N, t] [P, sc] the class of

[(ND)/(t2 1),t 1] (see [5, 4.1]).

Also, we have the homomorphism

ffZ2" /Z4( st pt .free, free) l/,Z ( free )

mapping the class [M, T] into the class of Z2-fixed point set of [M, T], and
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the restriction homomorphism

p" F’,z(free) - U,z2(free)

mapping the class [M, T] into the class [M, T2].
Next, considering the homomorphism

m

p O. D #UmZSk( free)(BOk(C)) L /mZ4(free) L /mZ2(freg)
k=O

for m even, we are going to analyze the kernel of p 0 restricted to the
summands with k odd.

THEOREM 3.2. For m even, if a is in the kernel of the homomorphism p O
restricted to the summands with k odd, then the ZE-fixed point set of a belongs
to

f,[S, -1] + ", _I[S1, -1].

Proof
into

First, by [5; 5.1], Fz2 restricted to the summands with k odd maps

M/,[S, -1] + ,., _1[S 1, -1].

Now, we are going to prove that if an element x belongs to the kernel of p 0
restricted to the summands with k odd, then the Z2-fixed point set of x is in

&r, [S,-1] + &r, _1[S1,-11.

For k odd, we have the isomorphism

4/,z( free)( BOk(C) ) d/,z4( free) (R)d/, ./Y, ( BSOk)

(see [5; 4.1]); and recall that J/,z4(free) is freely generated as an ./Y, module
by extensions of the antipodal action on even dimensional spheres and by
restrictions of circle actions on odd dimensional spheres. Therefore, for k
odd, we can take as generators of M/mZ_k(free)(BOk(C)) the classes

Y(2I, J, ([ S2l XZ2 Z4 1 X [RP’, e’])
and

Y,2I+ 1, J’, ([ S21+ 1, i1, RP", :



702 CLAUDINA IZEPE RODRIGUES

where [RPJ, sc J] and [RPJ’,:J’] are generators

’n-21-1(BSO,) respectively (obs. rn n + k).
Thus, as in [5; 6.2] we have

of

_
2/(BSO,) and

,- 11[s(s"),-1]
if a Y(2I, J)

if a Y(21+ 1, J’)

Moreover, the Z2-fLxed point set of the generators are

f [RP21 X RPJ][s0, -1]
[CP’ RPJ’][S 1, -1]

if a Y(2I, J)

if a Y(21+ 1, J’)

Now, taking the map

f" RP2l+1 X RPJ’ --+ RP

that classifies the bundle [RP2/+1 X RPJ’, /1 ) ")/2] with ’)/1 the line bundle
over RP2t+1 and T2 the line bundle over RPJ’, we have that the Whitney
number (CWm_2, O’m_l) of the map f, where c Ce2l+l X 1 and a21+l is the
generator of HI(Rp2I+I; Z2) is given by

(CWm-2,0"m-,) "-’((21+1 X 1)Wm_2,0"m_l)

--{(O21+1 X 1)( 21+2)21O2l+121 X 5(RP(J’) ’m- 1)

Further, we have

,.,-’(CPt X RPJ’)= (l- 1)/3t (RPJ’) mod 2,

where/3 is the generator of H2(Cpt; Z2).
Next, observe that ..2"(CPt RPJ’) (CWm_2,0"m_l) and (Rp2/x

RPJ) 0 mod 2, since the dimension of RP2l X RPJ is 21 + (n 2/) n
odd.

Finally, it is easy to see that these facts don’t depend on k, since k is odd.
Hence, if

X Y’.(al, jy(2l, J) + bl, j,y(2l+l,j,))

with at, j, bt, J, Z2 is in the kernel of CWm_ 2 p oO restricted to the sum-
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mands with k odd, then we can see that the Z2-fixed point set of x is in
,,[S0, 1] + ’, _l[S 1, 1].

Next, consider the homomorphism

CWm_2 poO" ] l/mZSk( free)(BOk) Z2
k<m

where CWm_ 2" ./I/mZSa(free) "--)Z 2 maps a into the Whitney number

THEOREM 3.3. For rn even, the homomorphism CWm_ 2

the summands with k even is the zero homomorphism.
p O restricted to

Proof. Take rn n + k, k 2j even. Let :’ be a k-bundle over M
with M having a Zn-action such that the restriction to Z2 acts trivially.
Further, this Za-action is covered by a Zn-action on the total space of sck and
the induced Z2-action acts by multiplication by -1 in the fibers of
covering a free Z2-action on the base.

Observe that p 0([ sc, M ]) RP(:), A ], where RP(s ) is the associated
(m 1)-dimensional projective space and h is the canonical line bundle over
RP(sC). Next, the total Stiefel-Whitney class of RP(:k) is given by

W(Rp(k)) W(M) + ( E (1 + c) k-iu
i=0

where v Y’.ki=oU is the total Whitney class of s’. Moreover, we have the
relation E/=0ce-’v O.

Therefore, the Whitney number (CWm_ 2, [RP(:’)]) is

( CWm-2’ [Re(k)]) CWn(M) k 2
c + k 3 u1

+...

+ k 2
c v + +v_
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Now, since k 2j and M is n-dimensional, we have

(CWm-2, [RV(k)]) --(jWn(M)ck-1 -[-- U1Wn_l(M)ck-l, [Rp(k)])
=-j,’[M] +(UIWn_I(M),[M])
--=(U1Wn_I,(M),[M])

since ’[M] 0 mod 2 due to the fact that we have a free Z2-action on M.
Next, we are going to see that (VlW I(M), [M]) -= 0 mod 2. First, recall

that u W (det sck), where det sck is the determinant bundle of sok. More-
over, we have det :k / ksCk the k-exterior power of the bundle :k. So, we
can see that the Za-action T on sc k induce a Z2-action on det sok. In fact, let
X X /k X2 /k /k Xk be in A ksCk with X k. Then T2(x) (-x1) /
(-x2) A A (-xk) x since k is even.

Therefore, we get the commutative diagram

det :k (det k)/z2

M M/Z2

with det sck having a Z2-action covering a free Z2-action on M. Thus,

(U1Wn_I(M), [M]) ( wl(det k)Wn_l(M), [M])
( rr* (Wl((det k)/Zz)Wn_ (M/Zz)), [M l)
( Wl((det k)/z2)Wn_l(M/Z2), 7r, [M])

=0 mod2,

since zr, M 2[M/Z2 =- 0 mod 2.

THEOREM 3.4. For m even, if a is in the kernel of the boundary homomor-
phism O, then the ZE-fixed point set of a is in

) iz2(free) + .[S, -1] + ,_l[S1, -1].
1=0
j even

Proof. We have CWm_ 2 p 0(a) 0, since O(a) 0 Therefore, by (3.2)
and (3.3) the result follows at once.

LEMMA 3.5. Let [Nn, t] be in 4/.z(free). For k > O, there exists a
stationary point free Za-action [W"+2k, T] such that the Z2-fixed point set is
[Nn, t].
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Proof
where

Suppose k > 0 and consider the Z4-action [Rp2k X N, T t],

v [Xo, Xl,..., [Xo, Xl,...,

The Z2-fixed point set is the class [N, t] + [RP2k-1 N, t] which is
equal to IN, t] since the free involution [RP2k- l, i] bounds as involution and
then [RP2k- N, t] bounds as free involution.

Finally, for k 0, taking [N, t] as stationary point free Z4-action, the
Zz-fixed point set is [N, t].

Next, denote by Imz2 the image of the homomorphism Fmz2. Considering

Am ( " <_ "J ) 0 /’,, we have the following lemma.

LEMMA 3.6. Am[S O, -1] + Am_l[S1, -1] c Imz:

Proof If [N] Am, by Theorem (2.3) there exists an involution [W1m, 1]
with the fixed point set bordant to N. Thus, the stationary point free
Za-action [W1 z Z4, tl i] has Z2-fixed point set bordant to [N][S, 1].
Therefore, Am[S0, -1] c Imz.
Now, if [M] Am_l, again by (2.3) there exists an involution [W2m-l, t2]

such that the fixed point set is [M]. Then, the Zn-action [(w2m-1 S1)
/(t2 1), 1 i] has the class [M][S l, -1] as Z2-fixed point set. Hence,
Am_I[S1, -1] c IZm and the lemma holds.

Now, we can state the main result of this section.

THEOREM 3.7. (a) For m odd,

m

(ImZ2 (] ,jz2(free) + Am[ S, 1 +
j=l
j odd

m-1

) S -1]

(b) For m even,

m

ImZ2 ) ,.z2(free) + Am[ S, 1] + A
j=0
j even

m_l[S -1]

Proof
see that

First, since m is odd, then using [5; 5.1] and [3; 27.2], it is easy to

m

IZ [ 4z( free ) + , IS
j=l
j odd

,--1] if- ,//,/,IS 1, --1]
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Now, if j is odd then m-j is even and Lemma 3.5 implies that
4/y z2(free) c IZm .

Further, note that if we have N- 1, j odd, then [N- 1][S1, 1] belongs to

Imz by Lemma 3.5 since the codimension is even; and if j is even
[NJ-1][S 1, -1] belongs to Imz by Lemma 3.6 since ’(N- 1) 0 rood 2.
Hence, applying Lemma (3.6) again, part (a) of the theorem follows at

once.
(b) By Theorem 3.4 we have

IZm (7_. Nj.Z2(free) + U,[S, -1] + ,g _l[S 1, -1].
j=0
even

Now, considering j even, Lemma 3.5 implies l/fz2(free)c Imz2 since the
codimension is even. Therefore, applying Lemma 3.6 we have the result.
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