INVOLUTIONS AND STATIONARY POINT FREE $\mathbf{Z}_4\text{-}\mathbf{ACTIONS}$

BY

CLAUDINA IZEPE RODRIGUES

1. Introduction

This paper studies fixed point sets of involutions and \mathbb{Z}_2 -fixed point sets of stationary point free \mathbb{Z}_4 -actions.

In Section 2, the interest is to determine which bordism classes in the unoriented bordism ring \mathscr{N}_* can be realized as the fixed point set of an involution on an *n*-dimensional manifold. Denoting by I_n the subgroup of these classes in \mathscr{N}_* , we are going to prove that $I_n = \bigoplus_{j \le n} \mathscr{N}_j$ if *n* is even; and for *n* odd I_n is the set of classes in $\bigoplus_{j \le n} \mathscr{N}_j$ with zero Euler characteristic mod 2.

In Section 3, the \mathbb{Z}_2 -fixed sets of stationary point free \mathbb{Z}_4 -actions will be studied. Let $\mathscr{N}_m^{\mathbb{Z}_4}$ (st. pt. free) be the *m*-dimensional bordism group of manifolds with stationary point free \mathbb{Z}_4 -action. Considering a \mathbb{Z}_4 -action restricted to \mathbb{Z}_2 we get an involution, and the fixed set of this involution with the action induced by the \mathbb{Z}_4 -action is an element in the bordism group of free involutions.

We are going to study the following question: Which classes in the bordism group of free in involutions $\mathcal{N}_{*}^{\mathbb{Z}_2}$ (free) can be realized as the \mathbb{Z}_2 -fixed point set of a \mathbb{Z}_4 -action in $\mathcal{N}_m^{\mathbb{Z}_4}$ (st. pt. free)?

Denoting by $I_m^{\mathbb{Z}_2}$ the set of these classes and considering $A_m = (\bigoplus_{j \le m} \mathcal{N}_j)$ $\cap \mathcal{X}_*$, where \mathcal{X}_* is the set of classes in \mathcal{N}_* with zero Euler characteristic mod 2, the main result of this section is the following theorem.

THEOREM. (a) For m odd,

$$I_m^{\mathbf{Z}_2} = \bigoplus_{\substack{j=1\\j \text{ odd}}}^m \mathscr{N}_j^{\mathbf{Z}_2}(free) + A_m[S^0, -1] + \left(\bigoplus_{j=0}^{m-1} \mathscr{N}_j\right)[S^1, -1]$$

1991 Mathematics Subject Classification. Primary 57R85; Secondary 57Q20.

© 1992 by the Board of Trustees of the University of Illinois Manufactured in the United States of America

Received February 12, 1991.

(b) For m even

$$I_{m}^{\mathbf{Z}_{2}} = \bigoplus_{\substack{j=0\\j \text{ even}}}^{m} \mathcal{N}_{j}^{\mathbf{Z}_{2}}(free) + A_{m}[S^{0}, -1] + A_{m-1}[S^{1}, -1]$$

I wish to express my gratitude to Professor R.E. Stong for suggesting this problem and I also thank FAPESP (Fundação de Amparo à Pesquisa do Estado de São Paulo-Brasil) for financial support.

2. Involutions

Let \mathscr{N}_* be the unoriented bordism ring of smooth manifolds and $\mathscr{N}_*^{\mathbf{Z}_2}$ the unrestricted bordism group of smooth manifolds with involution.

Being given a closed manifold M^n with an involution T, the fixed point set of $[M^n, T]$ is a disjoint union of closed manifolds F^j , $0 \le j \le n$.

Consider the homomorphism

$$F_n: \mathscr{N}_n^{\mathbf{Z}_2} \to \bigoplus_{j \le n} \mathscr{N}^j$$

which assigns to $[M^n, T]$ the class $\bigoplus_{j \le n} [F^j]$, where the disjoint union $\bigcup_{j \le n} F^j$ is the fixed point set of T. Denote by I_n the image of F_n . In what follows, we are going to determine the image of the homomorphism F_n . To do this, we need the following lemmas.

LEMMA 2.1. Let $[M^n]$ be in \mathcal{N}_n . If $\mathscr{X}[M^n] \equiv 0 \mod 2$, then for every integer $k \geq 0$, there exists a (n + k)-manifold with involution $[W^{n+k}, T]$ such that the fixed point set is bordant to M^n .

Proof. First, the lemma holds for k = 0 since the involution $[M^n, id]$ fixes M^n .

Now, suppose that $k \ge 1$. By [3, 4.5], we have the bordism class of M^n admits a representative fibred over the circle since $\mathscr{X}[M^n] \equiv 0 \mod 2$, i.e., there exists a closed manifold F^{n-1} with involution t such that $[M^n] = [(F^{n-1} \times S^1)/(t \times -1)]$. Then, considering the manifold with involution

$$[W^{n+k}, T] = [(F^{n-1} \times S^{k+1}) / (t \times -1), 1 \times T'] + [F^{n-1} \times RP^{k+1}, t \times T'']$$

where

$$T': (x_0, x_1, x_2, \dots, x_{k+1}) \mapsto (x_0, x_1, -x_2, \dots, -x_{k+1})$$

698

$$T'': [x_0, x_1, x_2, \dots, x_{k+1}] \mapsto [x_0, x_1, -x_2, \dots, -x_{k+1}],$$

it is easy to see that the fixed point set of the involution T is bordant to

$$(F^{n-1} \times S^1) / (t \times -1).$$

Hence, the class $[M^n]$ is represented by a manifold which is the fixed point set of $[W^{n+k}, T]$. Therefore, the lemma holds for all k.

LEMMA 2.2. Fix an integer $k \ge 0$. Let $[M^m]$ and $[N^n]$ be in \mathcal{N}_m and \mathcal{N}_n respectively, for $m, n \le 2k + 1$. If $\mathscr{X}[M^m] + \mathscr{X}[N^n] \equiv 0 \mod 2$, then there exists a (2k + 1)-manifold with involution $[W^{2k+1}, T]$ such that the class of the fixed point set of T is bordant to $[M^m] + [N^n]$.

Proof. If $\mathscr{X}[M^m] \equiv \mathscr{X}[N^n] \equiv 0 \mod 2$, it is clear that there exists $[W^{2k+1}, T]$ with fixed point set bordant to $[M^m] + [N^n]$, by (2.1).

Thus, we only need to consider the case $\mathscr{X}[M^m] \equiv \mathscr{X}[N^n] \equiv 1 \mod 2$. In this case, we have m = 2j and n = 2l, since $\mathscr{X}_m = \mathscr{N}_m$ if m is odd.

We may suppose $j \leq l$. Consider the involution

$$\left[W_{1}^{2k+1}, T_{1}\right] = \left[M^{m} \times RP^{2l-2j+1} \times RP^{2k-2l}, 1 \times t_{1} \times t_{2}\right],$$

where

$$t_1: [x_0, \dots, x_{2l-2j+1}] \mapsto [-x_0, x_1, \dots, x_{2l-2j+1}]$$

and

$$t_2: [x_0, \dots, x_{2k-2l}] \mapsto [-x_0, x_1, \dots, x_{2k-2l}].$$

The fixed point set F of $1 \times t_1 \times t_2$ is

$$F = M^m \times (RP^0 \cup RP^{2l-2j}) \times (RP^0 \cup RP^{2k-2l-1})$$

= $M^m \cup (M^m \times RP^{2k-2l-1}) \cup (M^m \times RP^{2l-2j})$
 $\cup (M^m \times RP^{2l-2j} \times RP^{2k-2l-1}).$

Therefore, $[F] = [M^m] + [M^m \times RP^{2l-2j}]$ since 2k - 2l - 1 is odd. Now, note that

$$\mathscr{X}[M^m \times RP^{2l-2j} \cup N^n] \equiv 0 \bmod 2,$$

since $\mathscr{X}[M^m] \equiv \mathscr{X}[RP^{2l-2j}] \equiv \mathscr{X}[N^n] \equiv 1 \mod 2$. Then, there exists an

involution $[W_2^{2k+1}, T_2]$ with fixed point set in the class $[M^m \times RP^{2l-2j}] + [N^n]$, by (2.1).

Finally, the class of the fixed point set of

$$[W, T] = [W_1^{2k+1}, T_1] + [W_2^{2k+1}, T_2]$$

is

$$[M^m] + [N^n].$$

THEOREM 2.3. (a) The homomorphism F_n is onto for n = 2k even; i.e.,

$$I_n = \bigoplus_{j \le n} \mathscr{N}_j.$$

(b) The image of F_n is the subgroup of classes in $\bigoplus_{j \le n} \mathcal{N}_j$ with zero Euler characteristic, if n = 2k + 1 is odd.

Proof. (a) First considering the involution $[M^n, \text{id}]$ we see that the class $[M^n]$ belongs to I_n . This means that $\mathcal{N}_n \subset I_n$. Now, by Capobianco [2, p. 339] we have $\mathcal{N}_j \subset I_n$ for $k \leq j \leq 2k$ and $j \neq 2k - 1$. For j = 2k - 1, Lemma (2.1) implies that $\mathcal{N}_{2k-1} \subset I_n$ since $\mathcal{N}_{2k-1} = \mathcal{X}_{2k-1}$.

(2.1) implies that $\mathscr{N}_{2k-1} \subset I_n$ since $\mathscr{N}_{2k-1} = \mathscr{X}_{2k-1}$. Finally, it remains to show that $\mathscr{N}_j \subset I_n$ for $0 \le j \le k$. To prove this, take $[M^j]$ in \mathscr{N}_j . Consider the involution $[RP^{2k-2j}, T]$ where

$$T: [x_0, \dots, x_{2k-2j}] \mapsto [-x_0, x_1, \dots, x_{2k-2j}].$$

So, the class of the fixed point set of the involution $[RP^{2k-2j} \times M^j \times M^j, T \times twist]$ is

$$[RP^0 \times M^j] + [RP^{2k-2j-1} \times M^j]$$

which is bordant to $[M^j]$ since 2k - 2j - 1 is odd. Then, $\mathcal{N}_j \subset I_n$ for $0 \le j \le k$

(b) By [3, 27.2], the image is contained in \mathscr{X}_* , i.e., the subgroup with zero Euler characteristic. We use now the lemma (2.2) and (2.1) to conclude that the classes in $\bigoplus_{j \le 2k+1} \mathscr{N}_j$ with zero Euler characteristic are in the image. Hence, the theorem follows at once.

3. Stationary point free Z_4 -actions

Let $\mathscr{N}_*^{\mathbf{Z}_4}$ (st. pt. free) be the unoriented bordism group of stationary point free \mathbf{Z}_4 -actions and $\mathscr{N}_*^{\mathbf{Z}_2}$ (free) the unoriented bordism group of free involutions.

699

Consider the homomorphism

$$F_m^{\mathbf{Z}_2}: \mathscr{N}_m^{\mathbf{Z}_4}(st.pt.free) \to \bigoplus_{j \le m} \mathscr{N}_j^{\mathbf{Z}_2}(free)$$

which assigns to $[M^m, T]$ the class of the \mathbb{Z}_2 -fixed point set of $[M^m, T]$. Recall the restriction homomorphism

$$\rho: \mathscr{N}_m^{\mathbf{Z}_4}(st.pt.free) \to \mathscr{N}_m^{\mathbf{Z}_2}$$

assigning to [M, T] the involution $[M, T^2]$. The fixed point set of $[M, T^2]$ is the disjoint union of closed submanifolds $\bigcup_{j \le m} F^j$. Then, considering $t_j \equiv T/F_j$, $j = 0, \ldots, m$, we have

$$F_m^{\mathbf{Z}_2}([M,T]) = \bigoplus_{j \le m} [F^j, t_j].$$

In this section we are going to study the image of the homomorphism $F_m^{\mathbb{Z}_2}$. Now, let $\mathscr{N}_*^{\mathbb{Z}_4}$ (st. pt. free, free) be the relative bordism group of stationary point free \mathbb{Z}_4 -actions on manifolds with boundary for which the action is free on the boundary. There exist the isomorphism

$$\mathscr{N}_{*}^{\mathbf{Z}_{4}}(st.pt.free, free) \cong \bigoplus_{k=0}^{*} \mathscr{N}_{*-k}^{\mathbf{Z}_{2}}(free)(BO_{k}(C^{\infty}))$$

by [1, pp. 85], and the sequence

$$0 \to \mathscr{N}_{*}^{\mathbf{Z}_{4}}(st.pt.free) \xrightarrow{i_{*}} \bigoplus_{k=0}^{*} \mathscr{N}_{*-k}^{\mathbf{Z}_{2}}(free) (BO_{k}(C^{\infty})) \xrightarrow{\partial} \mathscr{N}_{*}^{\mathbf{Z}_{4}}(free) \to 0$$

of \mathcal{N}_* -modules and homomorphisms is split exact, where ∂ is the boundary homomorphism.

Further, for all k odd, we have the isomorphism

$$\varphi \colon \mathscr{N}_{*}^{\mathbb{Z}_{4}}(free) \otimes_{\mathscr{N}_{*}} \mathscr{N}_{*}(BSO_{k}) \to \mathscr{N}_{*}^{\mathbb{Z}_{2}}(free)(BO_{k}(C^{\infty}))$$
(3.1)

which assigns to $[N, t] \times [P, \xi]$ the class of

$$\left[(N \times D\xi)/(t^2 \times -1), t \times 1 \right] \quad (\text{see } [5, 4.1]).$$

Also, we have the homomorphism

$$\overline{F}_{Z_2}: \mathscr{N}^{Z_4}_*(st.pt.free, free) \to \mathscr{N}^{Z_2}_*(free)$$

mapping the class [M, T] into the class of Z_2 -fixed point set of [M, T], and

the restriction homomorphism

$$\rho: \mathscr{N}_*^{\mathbb{Z}_4}(free) \to \mathscr{N}_*^{\mathbb{Z}_2}(free)$$

mapping the class [M, T] into the class $[M, T^2]$.

Next, considering the homomorphism

$$\rho \circ \partial \colon \bigoplus_{k=0}^{m} \mathscr{N}_{m-k}^{\mathbb{Z}_{2}}(free) (BO_{k}(C^{\infty})) \xrightarrow{\partial} \mathscr{N}_{m}^{\mathbb{Z}_{4}}(free) \xrightarrow{\rho} \mathscr{N}_{m}^{\mathbb{Z}_{2}}(free)$$

for *m* even, we are going to analyze the kernel of $\rho \circ \partial$ restricted to the summands with *k* odd.

THEOREM 3.2. For m even, if α is in the kernel of the homomorphism $\rho \circ \partial$ restricted to the summands with k odd, then the \mathbb{Z}_2 -fixed point set of α belongs to

$$\mathscr{X}_{*}[S^{0}, -1] + \mathscr{X}_{*-1}[S^{1}, -1].$$

Proof. First, by [5; 5.1], $\overline{F}_{\mathbb{Z}_2}$ restricted to the summands with k odd maps into

$$\mathcal{N}_{*}[S^{0}, -1] + \mathcal{N}_{*-1}[S^{1}, -1].$$

Now, we are going to prove that if an element x belongs to the kernel of $\rho \circ \partial$ restricted to the summands with k odd, then the \mathbb{Z}_2 -fixed point set of x is in

$$\mathscr{X}_{*}[S^{0}, -1] + \mathscr{X}_{*-1}[S^{1}, -1].$$

For k odd, we have the isomorphism

$$\mathcal{N}_{*}^{\mathbf{Z}_{2}}(free)(BO_{k}(C^{\infty})) \simeq \mathcal{N}_{*}^{\mathbf{Z}_{4}}(free) \otimes_{\mathcal{N}_{*}} \mathcal{N}_{*}(BSO_{k})$$

(see [5; 4.1]); and recall that $\mathscr{N}_{*}^{\mathbb{Z}_{4}}(free)$ is freely generated as an \mathscr{N}_{*} module by extensions of the antipodal action on even dimensional spheres and by restrictions of circle actions on odd dimensional spheres. Therefore, for k odd, we can take as generators of $\mathscr{N}_{m-k}^{\mathbb{Z}_{2}}(free)(BO_{k}(C^{\infty}))$ the classes

$$y_{(2l,J)} = \left(\left[S^{2l} \times_{\mathbf{Z}_2} \mathbf{Z}_4, 1 \times i \right], \left[RP^J, \xi^J \right] \right)$$

and

$$y_{(2l+1,J')} = \left([S^{2l+1}, i], [RP^{J'}, \xi^{J'}] \right)$$

where $[RP^{J}, \xi^{J}]$ and $[RP^{J'}, \xi^{J'}]$ are generators of $\mathcal{N}_{n-2l}(BSO_{k})$ and $\mathcal{N}_{n-2l-1}(BSO_k)$ respectively (obs. m = n + k).

Thus, as in [5; 6.2] we have

$$\rho \circ \partial(\alpha) = \begin{cases} 0 & \text{if } \alpha = y_{(2l,J)} \\ [S^{2l+1}, -1][S(\xi^{J'}), -1] & \text{if } \alpha = y_{(2l+1,J')} \end{cases}$$

Moreover, the \mathbb{Z}_2 -fixed point set of the generators are

$$\overline{F}_{\mathbf{Z}_2}(\alpha) = \begin{cases} [RP^{2l} \times RP^J][S^0, -1] & \text{if } \alpha = y_{(2l,J)} \\ [CP^l \times RP^{J'}][S^1, -1] & \text{if } \alpha = y_{(2l+1,J')} \end{cases}$$

Now, taking the map

$$f: RP^{2l+1} \times RP^{J'} \to RP^{\infty}$$

that classifies the bundle $[RP^{2l+1} \times RP^{J'}, \gamma_1 \otimes \gamma_2]$ with γ_1 the line bundle over RP^{2l+1} and γ_2 the line bundle over $RP^{J'}$, we have that the Whitney number $\langle cw_{m-2}, \sigma_{m-1} \rangle$ of the map f, where $c = \alpha_{2l+1} \times 1$ and α_{2l+1} is the generator of $H^1(\mathbb{R}P^{2l+1}; \mathbb{Z}_2)$, is given by

$$\langle cw_{m-2}, \sigma_{m-1} \rangle = \left\langle (\alpha_{2l+1} \times 1)w_{m-2}, \sigma_{m-1} \right\rangle$$

$$= \left\langle (\alpha_{2l+1} \times 1) \begin{pmatrix} 2l+2\\2l \end{pmatrix} \alpha_{2l+1}^{2l} \times \mathscr{X}(RP(\xi^{J'}), \sigma_{m-1}) \right\rangle$$

$$= \left\langle (\alpha_{2l+1} \times 1) \begin{pmatrix} 2l+2\\2l \end{pmatrix} \times \mathscr{X}(RP^{J'}) \mathscr{X}(RP^{k-1}), \sigma_{m-1} \right\rangle$$

Further, we have

$$\mathscr{X}(\mathbb{C}P^{l}\times RP^{J'}) \equiv \binom{l+1}{l}\beta^{l}\times \mathscr{X}(RP^{J'}) \mod 2,$$

where β is the generator of $H^2(\mathbb{C}P^l; \mathbb{Z}_2)$. Next, observe that $\mathscr{X}(\mathbb{C}P^l \times \mathbb{R}P^{J'}) \equiv \langle cw_{m-2}, \sigma_{m-1} \rangle$ and $\mathscr{X}(\mathbb{R}P^{2l} \times \mathbb{R}P^J) \equiv 0 \mod 2$, since the dimension of $\mathbb{R}P^{2l} \times \mathbb{R}P^J$ is 2l + (n - 2l) = nodd.

Finally, it is easy to see that these facts don't depend on k, since k is odd. Hence, if

$$x = \sum \left(a_{l,J} y_{(2l,J)} + b_{l,J'} y_{(2l+1,J')} \right),$$

with $a_{l,J}, b_{l,J'} \in \mathbb{Z}_2$ is in the kernel of $cw_{m-2} \circ \rho \circ \partial$ restricted to the sum-

mands with k odd, then we can see that the \mathbb{Z}_2 -fixed point set of x is in $\mathscr{X}_*[S^0, -1] + \mathscr{X}_{*-1}[S^1, -1]$.

Next, consider the homomorphism

$$cw_{m-2} \circ \rho \circ \partial$$
: $\bigoplus_{k \le m} \mathscr{N}_{m-k}^{\mathbf{Z}_2}(free)(BO_k) \to \mathbf{Z}_2$

where cw_{m-2} : $\mathcal{N}_{m-1}^{\mathbb{Z}_2}(free) \to \mathbb{Z}_2$ maps α into the Whitney number $\langle cw_{m-2}, [\alpha] \rangle$.

THEOREM 3.3. For m even, the homomorphism $cw_{m-2} \circ \rho \circ \partial$ restricted to the summands with k even is the zero homomorphism.

Proof. Take m = n + k, k = 2j even. Let ξ^k be a k-bundle over M^n with M^n having a \mathbb{Z}_4 -action such that the restriction to \mathbb{Z}_2 acts trivially. Further, this \mathbb{Z}_4 -action is covered by a \mathbb{Z}_4 -action on the total space of ξ^k and the induced \mathbb{Z}_2 -action acts by multiplication by -1 in the fibers of ξ^k covering a free \mathbb{Z}_2 -action on the base.

Observe that $\rho \circ \partial([\xi^k, M^n]) = [RP(\xi^k), \lambda]$, where $RP(\xi^k)$ is the associated (m-1)-dimensional projective space and λ is the canonical line bundle over $RP(\xi^k)$. Next, the total Stiefel-Whitney class of $RP(\xi^k)$ is given by

$$W(RP(\xi^k)) = W(M) + \left(\sum_{i=0}^k (1+c)^{k-i} v_i\right)$$

where $v = \sum_{i=0}^{k} v_i$ is the total Whitney class of ξ^k . Moreover, we have the relation $\sum_{i=0}^{k} c^{k-i} v_i = 0$.

Therefore, the Whitney number $\langle cw_{m-2}, [RP(\xi^k)] \rangle$ is

$$\left\langle cw_{m-2}, \left[RP(\xi^k) \right] \right\rangle = \left\langle cw_n(M) \left\{ \begin{pmatrix} k \\ k-2 \end{pmatrix} c^{k-2} + \begin{pmatrix} k-1 \\ k-3 \end{pmatrix} c^{k-3} v_1 \right. \right. \\ \left. + \cdots + v_{k-2} \right\}, \left[RP(\xi^k) \right] \right\rangle$$

$$\left. + \left\langle cw_{n-1}(M) \left\{ \begin{pmatrix} k \\ k-1 \end{pmatrix} c^{k-1} \right. \\ \left. + \begin{pmatrix} k-1 \\ k-2 \end{pmatrix} c^{k-2} v_1 + \cdots + v_{k-1} \right\}, \right.$$

$$\left[RP(\xi^k) \right] \right\rangle$$

Now, since k = 2j and M is *n*-dimensional, we have

$$\left\langle cw_{m-2}, \left[RP(\xi^k) \right] \right\rangle \equiv \left\langle jw_n(M)c^{k-1} + v_1w_{n-1}(M)c^{k-1}, \left[RP(\xi^k) \right] \right\rangle$$
$$\equiv j\mathscr{X}[M] + \left\langle v_1w_{n-1}(M), [M] \right\rangle$$
$$\equiv \left\langle v_1w_{n-1}, (M), [M] \right\rangle$$

since $\mathscr{X}[M] \equiv 0 \mod 2$ due to the fact that we have a free \mathbb{Z}_2 -action on M.

Next, we are going to see that $\langle v_1 w_{n-1}(M), [M] \rangle \equiv 0 \mod 2$. First, recall that $v_1 = w_1$ (det ξ^k), where det ξ^k is the determinant bundle of ξ^k . Moreover, we have det $\xi^k = \wedge^k \xi^k$ the k-exterior power of the bundle ξ^k . So, we can see that the \mathbb{Z}_4 -action T on ξ^k induce a \mathbb{Z}_2 -action on det ξ^k . In fact, let $x = x_1 \wedge x_2 \wedge \cdots \wedge x_k$ be in $\wedge^k \xi^k$ with $x_i \in \xi^k$. Then $T^2(x) = (-x_1) \wedge (-x_2) \wedge \cdots \wedge (-x_k) = x$ since k is even.

Therefore, we get the commutative diagram

with det ξ^k having a \mathbb{Z}_2 -action covering a free \mathbb{Z}_2 -action on M. Thus,

$$\langle v_1 w_{n-1}(M), [M] \rangle = \langle w_1(\det \xi^k) w_{n-1}(M), [M] \rangle$$

= $\langle \pi^* (w_1((\det \xi^k) / \mathbb{Z}_2) w_{n-1}(M / \mathbb{Z}_2)), [M] \rangle$
= $\langle w_1((\det \xi^k) / \mathbb{Z}_2) w_{n-1}(M / \mathbb{Z}_2), \pi_*[M] \rangle$
= 0 mod 2,

since $\pi_*[M] = 2[M/\mathbb{Z}_2] \equiv 0 \mod 2$.

THEOREM 3.4. For m even, if α is in the kernel of the boundary homomorphism ∂ , then the \mathbb{Z}_2 -fixed point set of α is in

$$\bigoplus_{\substack{j=0\\j \text{ even}}} \mathscr{N}_j^{\mathbf{Z}_2}(free) + \mathscr{X}_*[S^0, -1] + \mathscr{X}_{*-1}[S^1, -1].$$

Proof. We have $cw_{m-2} \circ \rho \circ \partial(\alpha) = 0$, since $\partial(\alpha) = 0$ Therefore, by (3.2) and (3.3) the result follows at once.

LEMMA 3.5. Let $[N^n, t]$ be in $\mathcal{N}_*^{\mathbb{Z}_2}(\text{free})$. For $k \ge 0$, there exists a stationary point free \mathbb{Z}_4 -action $[W^{n+2k}, T]$ such that the \mathbb{Z}_2 -fixed point set is $[N^n, t]$.

Proof. Suppose k > 0 and consider the \mathbb{Z}_4 -action $[\mathbb{RP}^{2k} \times N, T \times t]$, where

$$T: [x_0, x_1, \dots, x_{2k}] \mapsto [x_0, -x_2, x_1, \dots, -x_{2k}, x_{2k-1}].$$

The \mathbb{Z}_2 -fixed point set is the class $[N, t] + [RP^{2k-1} \times N, i \times t]$ which is equal to [N, t] since the free involution $[RP^{2k-1}, i]$ bounds as involution and then $[RP^{2k-1} \times N, i \times t]$ bounds as free involution.

Finally, for k = 0, taking [N, t] as stationary point free \mathbb{Z}_4 -action, the \mathbb{Z}_2 -fixed point set is [N, t].

Next, denote by $I_m^{\mathbb{Z}_2}$ the image of the homomorphism $F_m^{\mathbb{Z}_2}$. Considering $A_m = (\bigoplus_{j \le m} \mathscr{N}_j) \cap \mathscr{X}_*$, we have the following lemma.

Lemma 3.6.
$$A_m[S^0, -1] + A_{m-1}[S^1, -1] \subset I_m^{\mathbb{Z}_2}$$

Proof. If $[N] \in A_m$, by Theorem (2.3) there exists an involution $[W_1^m, t_1]$ with the fixed point set bordant to N. Thus, the stationary point free \mathbb{Z}_4 -action $[W_1^m \times_{\mathbb{Z}_2} \mathbb{Z}_4, t_1 \times i]$ has \mathbb{Z}_2 -fixed point set bordant to $[N][S^0, -1]$. Therefore, $A_m[S^0, -1] \subset I_m^{\mathbb{Z}_2}$.

Now, if $[M] \in A_{m-1}$, again by (2.3) there exists an involution $[W_2^{m-1}, t_2]$ such that the fixed point set is [M]. Then, the \mathbb{Z}_4 -action $[(W_2^{m-1} \times S^1)/(t_2 \times -1), 1 \times i]$ has the class $[M][S^1, -1]$ as \mathbb{Z}_2 -fixed point set. Hence, $A_{m-1}[S^1, -1] \subset I_m^{\mathbb{Z}_2}$ and the lemma holds.

Now, we can state the main result of this section.

THEOREM 3.7. (a) For m odd,

m

$$I_m^{\mathbf{Z}_2} = \bigoplus_{\substack{j=1\\j \text{ odd}}}^m \mathscr{N}_j^{\mathbf{Z}_2}(free) + A_m[S^0, -1] + \left(\bigoplus_{j=0}^{m-1} \mathscr{N}_j\right)[S^1, -1]$$

(b) For m even,

$$I_{m}^{\mathbf{Z}_{2}} = \bigoplus_{\substack{j=0\\ j \text{ even}}}^{m} \mathcal{N}_{j}^{\mathbf{Z}_{2}}(free) + A_{m}[S^{0}, -1] + A_{m-1}[S^{1}, -1]$$

Proof. First, since m is odd, then using [5; 5.1] and [3; 27.2], it is easy to see that

$$I_m^{Z_2} \subset \bigoplus_{\substack{j=1\\j \text{ odd}}}^m \mathscr{N}_j^{Z_2}(free) + \mathscr{X}_*[S^0, -1] + \mathscr{N}_*[S^1, -1]$$

Now, if j is odd then m-j is even and Lemma 3.5 implies that $\mathcal{N}_j^{\mathbf{Z}_2}(free) \subset I_m^{\mathbf{Z}_2}$.

Further, note that if we have N^{j-1} , *j* odd, then $[N^{j-1}][S^1, -1]$ belongs to $I_m^{\mathbb{Z}_2}$ by Lemma 3.5 since the codimension is even; and if *j* is even $[N^{j-1}][S^1, -1]$ belongs to $I_m^{\mathbb{Z}_2}$ by Lemma 3.6 since $\mathscr{X}(N^{j-1}) \equiv 0 \mod 2$.

Hence, applying Lemma (3.6) again, part (a) of the theorem follows at once.

(b) By Theorem 3.4 we have

$$I_m^{\mathbf{Z}_2} \subset \bigoplus_{\substack{j=0\\j \text{ even}}} N_j^{\mathbf{Z}_2}(free) + \mathscr{X}_*[S^0, -1] + \mathscr{X}_{*-1}[S^1, -1].$$

Now, considering j even, Lemma 3.5 implies $\mathcal{N}_j^{\mathbb{Z}_2}(free) \subset I_m^{\mathbb{Z}_2}$ since the codimension is even. Therefore, applying Lemma 3.6 we have the result.

REFERENCES

- 1. R.P. BEEM, On the bordism of almost free \mathbb{Z}_{2^k} actions, Trans. Amer. Math. Soc., vol. 225 (1977), pp. 83–105.
- 2. F.L. CAPOBIANCO, Fixed sets of involutions, Pacific J. of Math., vol. 75 (1978), pp. 339-345.
- 3. P.E. CONNER and E.E. FLOYD, Differentiable periodic maps, Springer, New York, 1964.
- 4. _____, Fibring within a cobordism class, Michigan Math. J., vol. 12 (1965), pp. 33-47.
- 5. C.I. RODRIGUES, \mathbb{Z}_2 -fixed sets of stationary point free \mathbb{Z}_4 -actions, to appear.

Universidade Estadual de Campimas Campinas, Brazil