INVOLUTIONS AND STATIONARY POINT FREE Z_{4}-ACTIONS

BY
Claudina Izepe Rodrigues

1. Introduction

This paper studies fixed point sets of involutions and \mathbf{Z}_{2}-fixed point sets of stationary point free \mathbf{Z}_{4}-actions.

In Section 2, the interest is to determine which bordism classes in the unoriented bordism ring \mathscr{N}_{*} can be realized as the fixed point set of an involution on an n-dimensional manifold. Denoting by I_{n} the subgroup of these classes in \mathscr{N}_{*}, we are going to prove that $I_{n}=\bigoplus_{j \leq n} \mathscr{N}_{j}$ if n is even; and for n odd I_{n} is the set of classes in $\bigoplus_{j \leq n} \mathscr{N}_{j}$ with zero Euler characteristic mod 2.

In Section 3, the \mathbf{Z}_{2}-fixed sets of stationary point free \mathbf{Z}_{4}-actions will be studied. Let $\mathscr{N}_{m}^{\mathbf{Z}_{4}}$ (st. pt. free) be the m-dimensional bordism group of manifolds with stationary point free \mathbf{Z}_{4}-action. Considering a \mathbf{Z}_{4}-action restricted to \mathbf{Z}_{2} we get an involution, and the fixed set of this involution with the action induced by the \mathbf{Z}_{4}-action is an element in the bordism group of free involutions.

We are going to study the following question: Which classes in the bordism group of free in involutions $\mathscr{N}_{*}^{\mathbf{Z}_{2}}$ (free) can be realized as the \mathbf{Z}_{2}-fixed point set of a \mathbf{Z}_{4}-action in $\mathscr{N}_{m}^{\mathbf{Z}_{4}}$ (st. pt. free)?

Denoting by $I_{m}^{\mathbf{Z}_{2}}$ the set of these classes and considering $A_{m}=\left(\bigoplus_{j \leq m} \mathscr{N}_{j}\right)$ $\cap \mathscr{X}_{*}$, where \mathscr{X}_{*} is the set of classes in \mathscr{N}_{*} with zero Euler characteristic mod 2, the main result of this section is the following theorem.

Theorem. (a) For m odd,

$$
I_{m}^{\mathbf{Z}_{2}}=\bigoplus_{\substack{j=1 \\ j \text { odd }}}^{m} \mathscr{N}_{j}^{\mathbf{z}_{2}}(\text { free })+A_{m}\left[S^{0},-1\right]+\left(\bigoplus_{j=0}^{m-1} \mathscr{N}_{j}\right)\left[S^{1},-1\right]
$$

(b) For m even

$$
I_{m}^{\mathbf{Z}_{2}}=\bigoplus_{\substack{j=0 \\ j \text { even }}}^{m} \mathscr{N}_{j}^{\mathbf{Z}_{2}}(\text { free })+A_{m}\left[S^{0},-1\right]+A_{m-1}\left[S^{1},-1\right]
$$

I wish to express my gratitude to Professor R.E. Stong for suggesting this problem and I also thank FAPESP (Fundação de Amparo à Pesquisa do Estado de São Paulo-Brasil) for financial support.

2. Involutions

Let \mathscr{N}_{*} be the unoriented bordism ring of smooth manifolds and $\mathscr{N}_{*}^{\mathbf{Z}_{2}}$ the unrestricted bordism group of smooth manifolds with involution.

Being given a closed manifold M^{n} with an involution T, the fixed point set of $\left[M^{n}, T\right]$ is a disjoint union of closed manifolds $F^{j}, 0 \leq j \leq n$.

Consider the homomorphism

$$
F_{n}: \mathscr{N}_{n}^{\mathbf{z}_{2}} \rightarrow \underset{j \leq n}{\bigoplus} \mathscr{N}^{j}
$$

which assigns to $\left[M^{n}, T\right]$ the class $\bigoplus_{j \leq n}\left[F^{j}\right]$, where the disjoint union $\cup_{j \leq n} F^{j}$ is the fixed point set of T. Denote by I_{n} the image of F_{n}. In what follows, we are going to determine the image of the homomorphism F_{n}. To do this, we need the following lemmas.

Lemma 2.1. Let $\left[M^{n}\right]$ be in \mathscr{N}_{n}. If $\mathscr{X}\left[M^{n}\right] \equiv 0 \bmod 2$, then for every integer $k \geq 0$, there exists $a(n+k)$-manifold with involution $\left[W^{n+k}, T\right]$ such that the fixed point set is bordant to M^{n}.

Proof. First, the lemma holds for $k=0$ since the involution [M^{n}, id] fixes M^{n}.

Now, suppose that $k \geq 1$. By [3, 4.5], we have the bordism class of M^{n} admits a representative fibred over the circle since $\mathscr{X}\left[M^{n}\right] \equiv 0 \bmod 2$, i.e., there exists a closed manifold F^{n-1} with involution t such that $\left[M^{n}\right]=$ $\left[\left(F^{n-1} \times S^{1}\right) /(t \times-1)\right]$. Then, considering the manifold with involution

$$
\begin{aligned}
{\left[W^{n+k}, T\right]=} & {\left[\left(F^{n-1} \times S^{k+1}\right) /(t \times-1), 1 \times T^{\prime}\right] } \\
& +\left[F^{n-1} \times R P^{k+1}, t \times T^{\prime \prime}\right]
\end{aligned}
$$

where

$$
T^{\prime}:\left(x_{0}, x_{1}, x_{2}, \ldots, x_{k+1}\right) \mapsto\left(x_{0}, x_{1},-x_{2}, \ldots,-x_{k+1}\right)
$$

and

$$
T^{\prime \prime}:\left[x_{0}, x_{1}, x_{2}, \ldots, x_{k+1}\right] \mapsto\left[x_{0}, x_{1},-x_{2}, \ldots,-x_{k+1}\right]
$$

it is easy to see that the fixed point set of the involution T is bordant to

$$
\left(F^{n-1} \times S^{1}\right) /(t \times-1)
$$

Hence, the class [M^{n}] is represented by a manifold which is the fixed point set of $\left[W^{n+k}, T\right]$. Therefore, the lemma holds for all k.

Lemma 2.2. Fix an integer $k \geq 0$. Let $\left[M^{m}\right]$ and $\left[N^{n}\right]$ be in \mathscr{N}_{m} and \mathscr{N}_{n} respectively, for $m, n \leq 2 k+1$. If $\mathscr{X}\left[M^{m}\right]+\mathscr{X}\left[N^{n}\right] \equiv 0 \bmod 2$, then there exists a $(2 k+1)$-manifold with involution $\left[W^{2 k+1}, T\right]$ such that the class of the fixed point set of T is bordant to $\left[M^{m}\right]+\left[N^{n}\right]$.

Proof. If $\mathscr{X}\left[M^{m}\right] \equiv \mathscr{X}\left[N^{n}\right] \equiv 0 \bmod 2$, it is clear that there exists [$\left.W^{2 k+1}, T\right]$ with fixed point set bordant to $\left[M^{m}\right]+\left[N^{n}\right]$, by (2.1).

Thus, we only need to consider the case $\mathscr{X}\left[M^{m}\right] \equiv \mathscr{X}\left[N^{n}\right] \equiv 1 \bmod 2$. In this case, we have $m=2 j$ and $n=2 l$, since $\mathscr{X}_{m}=\mathscr{N}_{m}$ if m is odd.

We may suppose $j \leq l$. Consider the involution

$$
\left[W_{1}^{2 k+1}, T_{1}\right]=\left[M^{m} \times R P^{2 l-2 j+1} \times R P^{2 k-2 l}, 1 \times t_{1} \times t_{2}\right]
$$

where

$$
t_{1}:\left[x_{0}, \ldots, x_{2 l-2 j+1}\right] \mapsto\left[-x_{0}, x_{1}, \ldots, x_{2 l-2 j+1}\right]
$$

and

$$
t_{2}:\left[x_{0}, \ldots, x_{2 k-2 l}\right] \mapsto\left[-x_{0}, x_{1}, \ldots, x_{2 k-2 l}\right]
$$

The fixed point set F of $1 \times t_{1} \times t_{2}$ is

$$
\begin{aligned}
F= & M^{m} \times\left(R P^{0} \cup R P^{2 l-2 j}\right) \times\left(R P^{0} \cup R P^{2 k-2 l-1}\right) \\
= & M^{m} \cup\left(M^{m} \times R P^{2 k-2 l-1}\right) \cup\left(M^{m} \times R P^{2 l-2 j}\right) \\
& \cup\left(M^{m} \times R P^{2 l-2 j} \times R P^{2 k-2 l-1}\right)
\end{aligned}
$$

Therefore, $[F]=\left[M^{m}\right]+\left[M^{m} \times R P^{2 l-2 j}\right]$ since $2 k-2 l-1$ is odd.
Now, note that

$$
\mathscr{X}\left[M^{m} \times R P^{2 l-2 j} \cup N^{n}\right] \equiv 0 \bmod 2
$$

since $\mathscr{X}\left[M^{m}\right] \equiv \mathscr{X}\left[R P^{2 l-2 j}\right] \equiv \mathscr{X}\left[N^{n}\right] \equiv 1 \bmod 2$. Then, there exists an
involution $\left[W_{2}^{2 k+1}, T_{2}\right.$] with fixed point set in the class $\left[M^{m} \times R P^{2 l-2 j}\right]+$ [N^{n}], by (2.1).

Finally, the class of the fixed point set of

$$
[W, T]=\left[W_{1}^{2 k+1}, T_{1}\right]+\left[W_{2}^{2 k+1}, T_{2}\right]
$$

is

$$
\left[M^{m}\right]+\left[N^{n}\right]
$$

Theorem 2.3. (a) The homomorphism F_{n} is onto for $n=2 k$ even; i.e.,

$$
I_{n}=\bigoplus_{j \leq n} \mathscr{N}_{j}
$$

(b) The image of F_{n} is the subgroup of classes in $\oplus_{j \leq n} \mathscr{N}_{j}$ with zero Euler characteristic, if $n=2 k+1$ is odd.

Proof. (a) First considering the involution [M^{n}, id] we see that the class [M^{n}] belongs to I_{n}. This means that $\mathscr{N}_{n} \subset I_{n}$. Now, by Capobianco [2, p. 339] we have $\mathscr{N}_{j} \subset I_{n}$ for $k \leq j \leq 2 k$ and $j \neq 2 k-1$. For $j=2 k-1$, Lemma (2.1) implies that $\mathscr{N}_{2 k-1} \subset I_{n}$ since $\mathscr{N}_{2 k-1}=\mathscr{X}_{2 k-1}$.

Finally, it remains to show that $\mathscr{N}_{j} \subset I_{n}$ for $0 \leq j \leq k$. To prove this, take [M^{j}] in \mathscr{N}_{j}. Consider the involution [$R P^{2 k-2 j}, T$] where

$$
T:\left[x_{0}, \ldots, x_{2 k-2 j}\right] \mapsto\left[-x_{0}, x_{1}, \ldots, x_{2 k-2 j}\right]
$$

So, the class of the fixed point set of the involution [$R P^{2 k-2 j} \times M^{j} \times M^{j}$, $T \times t w i s t]$ is

$$
\left[R P^{0} \times M^{j}\right]+\left[R P^{2 k-2 j-1} \times M^{j}\right]
$$

which is bordant to $\left[M^{j}\right]$ since $2 k-2 j-1$ is odd. Then, $\mathscr{N}_{j} \subset I_{n}$ for $0 \leq j \leq k$
(b) By [3, 27.2], the image is contained in \mathscr{X}_{*}, i.e., the subgroup with zero Euler characteristic. We use now the lemma (2.2) and (2.1) to conclude that the classes in $\oplus_{j \leq 2 k+1} \mathscr{N}_{j}$ with zero Euler characteristic are in the image. Hence, the theorem follows at once.

3. Stationary point free $\mathbf{Z}_{\mathbf{4}}$-actions

Let $\mathscr{N}_{*}^{\mathbf{Z}_{4}}$ (st. pt. free) be the unoriented bordism group of stationary point free \mathbf{Z}_{4}-actions and $\mathscr{N}_{*}^{\mathbf{Z}_{2}}$ (free) the unoriented bordism group of free involutions.

Consider the homomorphism

$$
F_{m}^{\mathbf{Z}_{2}}: \mathscr{N}_{m}^{\mathbf{Z}_{4}}(\text { st.pt.free }) \rightarrow \bigoplus_{j \leq m} \mathscr{N}_{j}^{\mathbf{Z}_{2}}(\text { free })
$$

which assigns to $\left[M^{m}, T\right]$ the class of the \mathbf{Z}_{2}-fixed point set of $\left[M^{m}, T\right.$]. Recall the restriction homomorphism

$$
\rho: \mathscr{N}_{m}^{\mathbf{Z}_{4}}(\text { st.pt.free }) \rightarrow \mathscr{N}_{m}^{\mathbf{Z}_{2}}
$$

assigning to $\left[M, T\right.$] the involution [M, T^{2}]. The fixed point set of $\left[M, T^{2}\right.$] is the disjoint union of closed submanifolds $\bigcup_{j \leq m} F^{j}$. Then, considering $t_{j} \equiv$ $T / F_{j}, j=0, \ldots, m$, we have

$$
F_{m}^{\mathbf{Z}_{2}}([M, T])=\bigoplus_{j \leq m}\left[F^{j}, t_{j}\right]
$$

In this section we are going to study the image of the homomorphism $F_{m}^{\mathbf{Z}_{2}}$.
Now, let $\mathscr{N}_{*}^{\mathbf{Z}_{4}}$ (st. pt. free, free) be the relative bordism group of stationary point free \mathbf{Z}_{4}-actions on manifolds with boundary for which the action is free on the boundary. There exist the isomorphism

$$
\mathscr{N}_{*}^{\mathbf{Z}_{4}}(\text { st } . \text { pt.free }, \text { free }) \cong \bigoplus_{k=0} \mathscr{N}_{*_{-k}}^{\mathbf{Z}_{2}}(\text { free })\left(B O_{k}\left(C^{\infty}\right)\right)
$$

by [1, pp. 85], and the sequence

$$
0 \rightarrow \mathscr{N}_{*}^{\mathbf{Z}_{4}}(\text { st.pt.free }) \xrightarrow{i_{*}} \bigoplus_{k=0}^{*} \mathscr{N}_{*_{-k}}^{\mathbf{Z}_{2}}(\text { free })\left(B O_{k}\left(C^{\infty}\right)\right) \xrightarrow{\partial} \mathscr{N}_{*}^{\mathbf{Z}_{4}}(\text { free }) \rightarrow 0
$$

of \mathscr{N}_{*}-modules and homomorphisms is split exact, where ∂ is the boundary homomorphism.

Further, for all k odd, we have the isomorphism

$$
\begin{equation*}
\varphi: \mathscr{N}_{*}^{\mathbf{Z}_{4}}(\text { free }) \otimes_{\mathscr{N}_{*}} \mathscr{N}_{*}\left(B S O_{k}\right) \rightarrow \mathscr{N}_{*}^{\mathbf{Z}_{2}}(\text { free })\left(B O_{k}\left(C^{\infty}\right)\right) \tag{3.1}
\end{equation*}
$$

which assigns to $[N, t] \times[P, \xi]$ the class of

$$
\left[(N \times D \xi) /\left(t^{2} \times-1\right), t \times 1\right] \quad(\operatorname{see}[5,4.1])
$$

Also, we have the homomorphism

$$
\bar{F}_{Z_{2}}: \mathscr{N}_{*}^{Z_{4}}(\text { st.pt.free, free }) \rightarrow \mathscr{N}_{*}^{Z_{2}}(\text { free })
$$

mapping the class $[M, T]$ into the class of Z_{2}-fixed point set of $[M, T]$, and
the restriction homomorphism

$$
\rho: \mathscr{N}_{*}^{Z_{4}}(\text { free }) \rightarrow \mathscr{N}_{*}^{Z_{2}}(\text { free })
$$

mapping the class [M, T] into the class [M, T^{2}].
Next, considering the homomorphism

$$
\rho \circ \partial: \bigoplus_{k=0}^{m} \mathscr{N}_{m-k}^{\mathbf{Z}_{2}}(\text { free })\left(B O_{k}\left(C^{\infty}\right)\right) \xrightarrow{\partial} \mathscr{N}_{m}^{\mathbf{Z}_{4}}(\text { free }) \xrightarrow{\rho} \mathscr{N}_{m}^{\mathbf{Z}_{2}}(\text { free })
$$

for m even, we are going to analyze the kernel of $\rho \circ \partial$ restricted to the summands with k odd.

Theorem 3.2. For m even, if α is in the kernel of the homomorphism $\rho \circ \partial$ restricted to the summands with k odd, then the \mathbf{Z}_{2}-fixed point set of α belongs to

$$
\mathscr{X}_{*}\left[S^{0},-1\right]+\mathscr{X}_{*-1}\left[S^{1},-1\right] .
$$

Proof. First, by [5; 5.1], $\bar{F}_{\mathbf{Z}_{2}}$ restricted to the summands with k odd maps into

$$
\mathscr{N}_{*}\left[S^{0},-1\right]+\mathscr{N}_{*-1}\left[S^{1},-1\right] .
$$

Now, we are going to prove that if an element x belongs to the kernel of $\rho \circ \partial$ restricted to the summands with k odd, then the \mathbf{Z}_{2}-fixed point set of x is in

$$
\mathscr{X}_{*}\left[S^{0},-1\right]+\mathscr{X}_{*-1}\left[S^{1},-1\right] .
$$

For k odd, we have the isomorphism

$$
\mathscr{N}_{*}^{\mathbf{Z}_{2}}(\text { free })\left(B O_{k}\left(C^{\infty}\right)\right) \simeq \mathscr{N}_{*}^{\mathbf{Z}_{4}}(\text { free }) \otimes_{\mathscr{N}_{*}} \mathscr{N}_{*}\left(B S O_{k}\right)
$$

(see [5; 4.1]); and recall that $\mathscr{N}_{*}^{\mathbf{Z}_{4}}($ free $)$ is freely generated as an \mathscr{N}_{*} module by extensions of the antipodal action on even dimensional spheres and by restrictions of circle actions on odd dimensional spheres. Therefore, for k odd, we can take as generators of $\mathscr{N}_{m-k}^{\mathbf{Z}_{2}}($ free $)\left(B O_{k}\left(C^{\infty}\right)\right)$ the classes

$$
y_{(2 l, J)}=\left(\left[S^{2 l} \times_{\mathbf{z}_{2}} \mathbf{Z}_{4}, 1 \times i\right],\left[R P^{J}, \xi^{J}\right]\right)
$$

and

$$
y_{\left(2 l+1, J^{\prime}\right)}=\left(\left[S^{2 l+1}, i\right],\left[R P^{J^{\prime}}, \xi^{J^{\prime}}\right]\right)
$$

where $\left[R P^{J}, \xi^{J}\right]$ and $\left[R P^{J^{\prime}}, \xi^{J^{\prime}}\right]$ are generators of $\mathscr{N}_{n-2 l}\left(B S O_{k}\right)$ and $\mathscr{N}_{n-2 l-1}\left(B S O_{k}\right)$ respectively (obs. $m=n+k$).

Thus, as in [5; 6.2] we have

$$
\rho \circ \partial(\alpha)= \begin{cases}0 & \text { if } \alpha=y_{(2 l, J)} \\ {\left[S^{2 l+1},-1\right]\left[S\left(\xi^{J^{\prime}}\right),-1\right]} & \text { if } \alpha=y_{\left(2 l+1, J^{\prime}\right)}\end{cases}
$$

Moreover, the \mathbf{Z}_{2}-fixed point set of the generators are

$$
\bar{F}_{\mathbf{Z}_{2}}(\alpha)= \begin{cases}{\left[R P^{2 l} \times R P^{J}\right]\left[S^{0},-1\right]} & \text { if } \alpha=y_{(2 l, J)} \\ {\left[\mathbf{C} P^{l} \times R P^{\prime}\right]\left[S^{1},-1\right]} & \text { if } \alpha=y_{\left(2 l+1, J^{\prime}\right)}\end{cases}
$$

Now, taking the map

$$
f: R P^{2 l+1} \times R P^{J^{\prime}} \rightarrow R P^{\infty}
$$

that classifies the bundle $\left[R P^{2 l+1} \times R P^{J^{\prime}}, \gamma_{1} \otimes \gamma_{2}\right.$] with γ_{1} the line bundle over $R P^{2 l+1}$ and γ_{2} the line bundle over $R P^{J^{\prime}}$, we have that the Whitney number $\left\langle c w_{m-2}, \sigma_{m-1}\right\rangle$ of the map f, where $c=\alpha_{2 l+1} \times 1$ and $\alpha_{2 l+1}$ is the generator of $H^{1}\left(R P^{2 l+1} ; \mathbf{Z}_{2}\right)$, is given by

$$
\begin{aligned}
\left\langle c w_{m-2}, \sigma_{m-1}\right\rangle & =\left\langle\left(\alpha_{2 l+1} \times 1\right) w_{m-2}, \sigma_{m-1}\right\rangle \\
& =\left\langle\left(\alpha_{2 l+1} \times 1\right)\binom{2 l+2}{2 l} \alpha_{2 l+1}^{2 l} \times \mathscr{X}\left(R P\left(\xi^{J^{\prime}}\right), \sigma_{m-1}\right\rangle\right. \\
& =\left\langle\left(\alpha_{2 l+1} \times 1\right)\binom{2 l+2}{2 l} \times \mathscr{X}\left(R P^{J^{\prime}}\right) \mathscr{X}\left(R P^{k-1}\right), \sigma_{m-1}\right\rangle
\end{aligned}
$$

Further, we have

$$
\mathscr{X}\left(\mathbf{C} P^{l} \times R P^{J^{\prime}}\right) \equiv\binom{l+1}{l} \beta^{l} \times \mathscr{X}\left(R P^{J^{\prime}}\right) \quad \bmod 2
$$

where β is the generator of $H^{2}\left(\mathbf{C} P^{l} ; \mathbf{Z}_{2}\right)$.
Next, observe that $\mathscr{X}\left(\mathbf{C} P^{l} \times R P^{J^{\prime}}\right) \equiv\left\langle c w_{m-2}, \sigma_{m-1}\right\rangle$ and $\mathscr{X}\left(R P^{2 l} \times\right.$ $\left.R P^{J}\right) \equiv 0 \bmod 2$, since the dimension of $R P^{2 l} \times R P^{J}$ is $2 l+(n-2 l)=n$ odd.

Finally, it is easy to see that these facts don't depend on k, since k is odd. Hence, if

$$
x=\sum\left(a_{l, J} y_{(2 l, J)}+b_{l, J^{\prime}} y_{\left(2 l+1, J^{\prime}\right)}\right)
$$

with $a_{l, J}, b_{l, J^{\prime}} \in \mathbf{Z}_{2}$ is in the kernel of $c w_{m-2} \circ \rho \circ \partial$ restricted to the sum-
mands with k odd, then we can see that the \mathbf{Z}_{2}-fixed point set of x is in $\mathscr{X}_{*}\left[S^{0},-1\right]+\mathscr{X}_{*-1}\left[S^{1},-1\right]$.

Next, consider the homomorphism

$$
c w_{m-2} \circ \rho \circ \partial: \bigoplus_{k \leq m} \mathscr{N}_{m-k}^{\mathbf{Z}_{2}}(\text { free })\left(B O_{k}\right) \rightarrow \mathbf{Z}_{2}
$$

where $c w_{m-2}: \mathscr{N}_{m-1}^{\mathbf{Z}_{2}}($ free $) \rightarrow \mathbf{Z}_{2}$ maps α into the Whitney number $\left\langle c w_{m-2},[\alpha]\right\rangle$.

Theorem 3.3. For m even, the homomorphism $c w_{m-2} \circ \rho \circ \partial$ restricted to the summands with k even is the zero homomorphism.

Proof. Take $m=n+k, k=2 j$ even. Let ξ^{k} be a k-bundle over M^{n} with M^{n} having a \mathbf{Z}_{4}-action such that the restriction to \mathbf{Z}_{2} acts trivially. Further, this \mathbf{Z}_{4}-action is covered by a \mathbf{Z}_{4}-action on the total space of ξ^{k} and the induced \mathbf{Z}_{2}-action acts by multiplication by -1 in the fibers of ξ^{k} covering a free \mathbf{Z}_{2}-action on the base.

Observe that $\rho \circ \partial\left(\left[\xi^{k}, M^{n}\right]\right)=\left[R P\left(\xi^{k}\right), \lambda\right]$, where $R P\left(\xi^{k}\right)$ is the associated ($m-1$)-dimensional projective space and λ is the canonical line bundle over $R P\left(\xi^{k}\right)$. Next, the total Stiefel-Whitney class of $R P\left(\xi^{k}\right)$ is given by

$$
W\left(R P\left(\xi^{k}\right)\right)=W(M)+\left(\sum_{i=0}^{k}(1+c)^{k-i} v_{i}\right)
$$

where $v=\sum_{i=0}^{k} v_{i}$ is the total Whitney class of ξ^{k}. Moreover, we have the relation $\sum_{i=0}^{k} c^{k-i} v_{i}=0$.

Therefore, the Whitney number $\left\langle c w_{m-2},\left[R P\left(\xi^{k}\right)\right]\right\rangle$ is

$$
\begin{gathered}
\left\langle c w_{m-2},\left[R P\left(\xi^{k}\right)\right]\right\rangle=\left\langlec w _ { n } (M) \left\{\binom{ k}{k-2} c^{k-2}+\binom{k-1}{k-3} c^{k-3} v_{1}\right.\right. \\
\left.\left.+\cdots+v_{k-2}\right\},\left[R P\left(\xi^{k}\right)\right]\right\rangle \\
+\left\langlec w _ { n - 1 } (M) \left\{\binom{ k}{k-1} c^{k-1}\right.\right. \\
\left.+\binom{k-1}{k-2} c^{k-2} v_{1}+\cdots+v_{k-1}\right\}, \\
\left.\left[R P\left(\xi^{k}\right)\right]\right\rangle
\end{gathered}
$$

Now, since $k=2 j$ and M is n-dimensional, we have

$$
\begin{aligned}
\left\langle c w_{m-2},\left[R P\left(\xi^{k}\right)\right]\right\rangle & \equiv\left\langle j w_{n}(M) c^{k-1}+v_{1} w_{n-1}(M) c^{k-1},\left[R P\left(\xi^{k}\right)\right]\right\rangle \\
& \equiv j \mathscr{X}[M]+\left\langle v_{1} w_{n-1}(M),[M]\right\rangle \\
& \equiv\left\langle v_{1} w_{n-1},(M),[M]\right\rangle
\end{aligned}
$$

since $\mathscr{X}[M] \equiv 0 \bmod 2$ due to the fact that we have a free \mathbf{Z}_{2}-action on M.
Next, we are going to see that $\left\langle v_{1} w_{n-1}(M),[M]\right\rangle \equiv 0 \bmod 2$. First, recall that $v_{1}=w_{1}\left(\operatorname{det} \xi^{k}\right)$, where $\operatorname{det} \xi^{k}$ is the determinant bundle of ξ^{k}. Moreover, we have $\operatorname{det} \xi^{k}=\wedge^{k} \xi^{k}$ the k-exterior power of the bundle ξ^{k}. So, we can see that the \mathbf{Z}_{4}-action T on ξ^{k} induce a \mathbf{Z}_{2}-action on det ξ^{k}. In fact, let $x=x_{1} \wedge x_{2} \wedge \cdots \wedge x_{k}$ be in $\wedge^{k} \xi^{k}$ with $x_{i} \in \xi^{k}$. Then $T^{2}(x)=\left(-x_{1}\right) \wedge$ $\left(-x_{2}\right) \wedge \cdots \wedge\left(-x_{k}\right)=x$ since k is even.

Therefore, we get the commutative diagram

with $\operatorname{det} \xi^{k}$ having a \mathbf{Z}_{2}-action covering a free \mathbf{Z}_{2}-action on M. Thus,

$$
\begin{aligned}
\left\langle v_{1} w_{n-1}(M),[M]\right\rangle & =\left\langle w_{1}\left(\operatorname{det} \xi^{k}\right) w_{n-1}(M),[M]\right\rangle \\
& =\left\langle\pi^{*}\left(w_{1}\left(\left(\operatorname{det} \xi^{k}\right) / \mathbf{Z}_{2}\right) w_{n-1}\left(M / \mathbf{Z}_{2}\right)\right),[M]\right\rangle \\
& =\left\langle w_{1}\left(\left(\operatorname{det} \xi^{k}\right) / \mathbf{Z}_{2}\right) w_{n-1}\left(M / \mathbf{Z}_{2}\right), \pi_{*}[M]\right\rangle \\
& \equiv 0 \bmod 2,
\end{aligned}
$$

since $\pi_{*}[M]=2\left[M / \mathbf{Z}_{2}\right] \equiv 0 \bmod 2$.
Theorem 3.4. For m even, if α is in the kernel of the boundary homomorphism ∂, then the \mathbf{Z}_{2}-fixed point set of α is in

$$
\bigoplus_{\substack{j=0 \\ j \text { even }}} \mathscr{N}_{j}^{\mathbf{Z}_{2}}(\text { free })+\mathscr{X}_{*}\left[S^{0},-1\right]+\mathscr{X}_{*-1}\left[S^{1},-1\right] .
$$

Proof. We have $c w_{m-2} \circ \rho \circ \partial(\alpha)=0$, since $\partial(\alpha)=0$ Therefore, by (3.2) and (3.3) the result follows at once.

Lemma 3.5. Let $\left[N^{n}, t\right]$ be in $\mathscr{N}_{*}^{\mathbf{Z}_{2}}($ free $)$. For $k \geq 0$, there exists a stationary point free \mathbf{Z}_{4}-action $\left[W^{n+2 k}, T\right]$ such that the \mathbf{Z}_{2}-fixed point set is [N^{n}, t].

Proof. Suppose $k>0$ and consider the \mathbf{Z}_{4}-action $\left[R P^{2 k} \times N, T \times t\right.$], where

$$
T:\left[x_{0}, x_{1}, \ldots, x_{2 k}\right] \mapsto\left[x_{0},-x_{2}, x_{1}, \ldots,-x_{2 k}, x_{2 k-1}\right]
$$

The \mathbf{Z}_{2}-fixed point set is the class $[N, t]+\left[R P^{2 k-1} \times N, i \times t\right]$ which is equal to [N, t] since the free involution $\left[R P^{2 k-1}, i\right.$] bounds as involution and then $\left[R P^{2 k-1} \times N, i \times t\right.$] bounds as free involution.

Finally, for $k=0$, taking [N, t] as stationary point free \mathbf{Z}_{4}-action, the \mathbf{Z}_{2}-fixed point set is [N, t].

Next, denote by $I_{m}^{\mathbf{Z}_{2}}$ the image of the homomorphism $F_{m}^{\mathbf{Z}_{2}}$. Considering $A_{m}=\left(\oplus_{j \leq m} \mathscr{N}_{j}\right) \cap \mathscr{X}_{*}$, we have the following lemma.

Lemma 3.6. $A_{m}\left[S^{0},-1\right]+A_{m-1}\left[S^{1},-1\right] \subset I_{m}^{\mathbf{Z}_{2}}$
Proof. If $[N] \in A_{m}$, by Theorem (2.3) there exists an involution [W_{1}^{m}, t_{1}] with the fixed point set bordant to N. Thus, the stationary point free \mathbf{Z}_{4}-action [$W_{1}^{m} \times_{\mathbf{Z}_{2}} \mathbf{Z}_{4}, t_{1} \times i$] has \mathbf{Z}_{2}-fixed point set bordant to [$\left.N\right]\left[S^{0},-1\right.$]. Therefore, $A_{m}\left[S^{0},-1\right] \subset I_{m}^{\mathbf{Z}_{2}}$.

Now, if $[M] \in A_{m-1}$, again by (2.3) there exists an involution [W_{2}^{m-1}, t_{2}] such that the fixed point set is $[M]$. Then, the \mathbf{Z}_{4}-action $\left[\left(W_{2}^{m-1} \times S^{1}\right)\right.$ $\left./\left(t_{2} \times-1\right), 1 \times i\right]$ has the class $[M]\left[S^{1},-1\right]$ as \mathbf{Z}_{2}-fixed point set. Hence, $A_{m-1}\left[S^{1},-1\right] \subset I_{m}^{\mathbf{Z}_{2}}$ and the lemma holds.

Now, we can state the main result of this section.
Theorem 3.7. (a) For m odd,

$$
I_{m}^{\mathbf{Z}_{2}}=\bigoplus_{\substack{j=1 \\ j \text { odd }}}^{m} \mathscr{N}_{j}^{\mathbf{Z}_{2}}(\text { free })+A_{m}\left[S^{0},-1\right]+\left(\bigoplus_{j=0}^{m-1} \mathscr{N}_{j}\right)\left[S^{1},-1\right]
$$

(b) For m even,

$$
I_{m}^{\mathbf{Z}_{2}}=\bigoplus_{\substack{j=0 \\ j \text { even }}}^{m} \mathscr{N}_{j}^{\mathbf{Z}_{2}}(\text { free })+A_{m}\left[S^{0},-1\right]+A_{m-1}\left[S^{1},-1\right]
$$

Proof. First, since m is odd, then using [5; 5.1] and [3; 27.2], it is easy to see that

$$
I_{m}^{Z_{2}} \subset \bigoplus_{\substack{j=1 \\ j \text { odd }}}^{m} \mathscr{N}_{j}^{Z_{2}}(\text { free })+\mathscr{X}_{*}\left[S^{0},-1\right]+\mathscr{N}_{*}\left[S^{1},-1\right]
$$

Now, if j is odd then $m-j$ is even and Lemma 3.5 implies that $\mathscr{N}_{j}^{\mathbf{Z}_{2}}($ free $) \subset I_{m}^{\mathbf{Z}_{2}}$.

Further, note that if we have N^{j-1}, jodd, then $\left[N^{j-1}\right]\left[S^{1},-1\right]$ belongs to $I_{m}^{\mathbf{Z}_{2}}$ by Lemma 3.5 since the codimension is even; and if j is even $\left[N^{j-1}\right]\left[S^{1},-1\right]$ belongs to $I_{m}^{\mathbf{Z}_{2}}$ by Lemma 3.6 since $\mathscr{X}\left(N^{j-1}\right) \equiv 0 \bmod 2$.

Hence, applying Lemma (3.6) again, part (a) of the theorem follows at once.
(b) By Theorem 3.4 we have

$$
I_{m}^{\mathbf{Z}_{2}} \subset \bigoplus_{\substack{j=0 \\ j \text { even }}} N_{j}^{\mathbf{Z}_{2}}(\text { free })+\mathscr{X}_{*}\left[S^{0},-1\right]+\mathscr{X}_{*-1}\left[S^{1},-1\right]
$$

Now, considering j even, Lemma 3.5 implies $\mathscr{N}_{j}^{\mathbf{Z}_{2}}($ free $) \subset I_{m}^{\mathbf{Z}_{2}}$ since the codimension is even. Therefore, applying Lemma 3.6 we have the result.

References

1. R.P. Beem, On the bordism of almost free $\mathbf{Z}_{2^{k}}$ actions, Trans. Amer. Math. Soc., vol. 225 (1977), pp. 83-105.
2. F.L. Capobianco, Fixed sets of involutions, Pacific J. of Math., vol. 75 (1978), pp. 339-345.
3. P.E. Conner and E.E. Floyd, Differentiable periodic maps, Springer, New York, 1964.
4. \qquad , Fibring within a cobordism class, Michigan Math. J., vol. 12 (1965), pp. 33-47.
5. C.I. Rodrigues, \mathbf{Z}_{2}-fixed sets of stationary point free \mathbf{Z}_{4}-actions, to appear.

Universidade Estadual de Campimas
Campinas, Brazil

