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ON ONE-DIMENSIONAL METRIC FOLIATIONS
IN EINSTEIN SPACES

BY

Horo KYUNG PAK

1. Introduction

Let (M, g, -) be a compact Einstein manifold with a one-dimensional
metric foliation -. We shall give a sufficient condition that the leaf space
M/,-admits a Kihler-Einstein Satake manifold structure in a natural way.
The main result (Theorem 5) somewhat improves a well-known result of L.
B6rard Bergery [Be, Theorem 9.76] for principal S 1-bundles with a compact
Einstein basis.

2. A structure theorem of (M, g, c-)

Let - be a one-dimensional metric foliation (equivalently, - is a
Riemannian flow) on a compact Riemannian manifold (M, g) of dimension
rn k + 1. The metric g induces the orthogonal splitting TM ,- ,
where is identified with the normal bundle Q TM/,., by means of g.

Let V be the Levi-Civita connection with curvature tensor R on (M, g).
Let D be the canonical transversal Levi-Civita connection on oe,g with
respect to the metric glx and R9 its curvature tensor [KT2], [TV]. The
O’Neill structure tensors T and A of type (1, 2) for - and are naturally
defined by

(2.1) TEIE2 o,IVT/.EaI/E2 "k-

and

(2.2) AE1E2 a,aVoEl/’E2 + UVote,EaOc-/aE2,

for arbitrary vector fields E and E2 on M. Here we denote by 7v( ) and
( ) the --part and o-part of ( ) respectively. Let N Trace T be the
mean curvature vector field for 5-. Hereafter, we denote by V one of the two
vertical vector fields of unit length, and by X, Y, Z basic vector fields.
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LEMMA 1. If - is isoparametric, i.e., the mean curvature one-form , or
equivalently N, of - is basic (see [GG] ), then AxV is basic for any basic
vector field X.

Proof We note that AxV is basic if and only if Vg(AxV, Y) 0 for any
basic vector fields X and Y. Then we have, by using O’Neill’s formulas,

2Vg(AxV Y) 2Vg(AxY, V)
2g((TvA)xY, V) + 2g(AvvxY + AxTvY, V)
g(VvN X) g(VxN, Y)
dc(Y, X),

so that AxV is basic if and only if dc(X, Y) 0. The well-known fact [KT2]
that K is closed whenever it is basic completes the proof.

LEMMA 2. There exists on M a Riemannian metric g with respect to which
is metric and the cohomology class [] 0 if and only if there exists on M a
Riemannian metric , with respect to which - is a geodesic, metric foliation.

Proof By assumption, df for a basic function f on M. We claim that
e-fV is Killing. Obviously (Le-zvg)(V,V)= 0, and the vanishing of
(Le-vg)(X,Y) follows from the fact that [F(-), ] c F(-). Here and
hereafter, we denote by , the space of basic vector fields for - and by
F( ) the space of sections of ( ). Since

g(V,[V,X]) g(V, TvX)

we have

(Le-,vg)(V,X) -g([e-fV, V],X) g(V, [e-fV, X])
-g(V, e-f[V, X] X(e-f)V)

---0.

Finally, if we renormalize the metric by

g e2gl-+ gl,

is a bundle-like metric and e -fV is a unit Killing vector field for (M, -).
Thus - is a geodesic, metric foliation with respect to .
The converse is trivial.

Hereafter, we denote g and V instead of and e -fV given in the proof of
Lemma 2 respectively. Then - is a one-dimensional geodesic, metric folia-
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tion generated by a unit Killing vector field V on (M, g). Now, we assume
that (M, g, -) is Einstein and transversally Einstein, i.e., Ric clg for a
real constant c and the transversal Ricci curvature tensor Ric satisfies
Ric= Czglge, for a real constant c2. Since .- is a geodesic foliation, the
O’Neill formulas for the curvatures imply that

clg(X,X) Ric(X, X) g(RxvX, V) + __,g(nxr X,Y,)

2g(Rcy X,Y,) 2g(AxV, AxV)

c2g(X, X) 21AxVI 2.

Then, setting c (c2
ization trick, we have

Cl)/2, where c is nonnegative and using the polar-

(2.3) g(AxV, AyV) =cg(X,Y).

Note that c 0 if and only if A is identically zero. In this case (M, g) is
locally a Riemannian product. In what follows we exclude this case and then
we may put c 1.

Let J be the endomorphism of defined by

(2.4) J(X) AxV (V is fixed).

Then (2.3) implies that

g(JZX, Y) g(AAxvV, Y ) -g(AxV, AyV) -g(X,Y),

i.e., J2 Id. Thus in this way we have an almost complex structure on W,
constant along the leaves by Lemma 1. Therefore, we can suppose that k is
even, e.g., k 2n.

LEMMA 3. f(X, Y) g(X, JY) is a basic closed 2-form forXand Y .
Proof Clearly f is a basic 2-form. Let 0 be the dual one-form of V.

Then we have

dO(X,Y) -0([X,Y]) -2g(AxY, V) -2f(X,Y),

which implies that is closed.

LEMMA 4. The transversal scalar curvature ScalD of - is nonnegative.



ON ONE-DIMENSIONAL METRIC FOLIATIONS 597

Proof By the O’Neill formulas for the Ricci curvatures, we have

(2.6)

MRiC(
V, V) dvolM fMIA 12 dvol,

Y’ Ric( X,, X,) Seal9 2 IZl 2

By (2.5), we have C _. 0, and hence

(2.7) Sealz 2ncllSl 2 + 2IAI 2 >_ 0.

Define a tensor K of type (1, 2) on by

(2.8) ,.///( X, X) o+za{[X,Y] + J JX, Y + J X, JY [JX, JY]},
X,Y ,,

which is a basic vector field. We say that J is integrable if // identically
vanishes. Such a foliation - has a complex structure only in the normal
direction [KT1].
Now by Lemma 4, - is a geodesic, transversally Einstein, metric foliation

with nonnegative transversal scalar curvature. With an argument similar to
the proof of Sekigawa [Se], we have

(2.9) DJ O.

Thus by Lemma 3 and (2.9), //vanishes identically, i.e., J is a complex
structure.

Now if all the leaves of are closed, the leaf space M/..- is a compact
Satake manifold [Mo] with the almost Kihler structure J rr,J, where
7r" M M/ is the canonical projection. Moreover, we have proved that J
is a complex structure in the sense of Kamber-Tondeur [KT1]. Thus M/o- is
a compact Kihler-Einstein Satake manifold.
Summing up, we have:

THEOREM 5. Let (M, ) be a manifold of dimension k + 1 with a
one-dimensional foliation -. Then there exists on M a Riemannian metric g
with respect to which - is metric and the cohomology class [K] 0 if and only
if there exists on M a Riemannian metric , with respect to which - is a
geodestic, metric foliation. Moreover, if (M, ,, ,-) is locally irreducible, Ein-
stein and transversally Einstein, and if all the leaves of are closed, then the
leaf space M/-admits a natural compact Kiihler-Einstein Satake metric
whose Kiihler form to is given by 1 zr*to up to a scalar factor, and the
projection 7r M - M/- is a Satake morphism.
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Remarks. (A) In case that a leaf of - is not closed in the Theorem 5,
the leaves of - are all diffeomorphic to R1. In this case, the behavior of
leaves is more complicated. That is, since each leaf . is generated by a
nonsingular unit Killing vector field on a compact Riemannian manifold
(M, g), the closure _’ of .’ is a compact, Abelian subgroup in the compact
isometry group of (M, g), so a torus T of dimension r (2 < r < m) (we refer
to [Mo, Appendix A], [Ka]). But our arguments are not applicable when
dim -> 1.

(B) A. Ranjan [R] proved that if Ric < 0, a compact Riemannian manifold
M cannot have a one-dimensional metric foliation.

(C) Theorem 5 is related to the following result.

PROPOSITION 6 (See L. B6rard Bergery [Be, Theorem 9.76]). Let (B, h) be
a compact Einstein manifold and rr: M--, (B, h) be a principal Sa-bundle,
classified by the integral cohomology of B. Then M admits a (unique) S-invariant Einstein Riemannian metric g such that rc is a Riemannian submer-
sion with totally geodesic fibres if and only if we have either (a) A 0, and a

finite covering ofM is the Riemannian product B Sa, or (b) A 4 O, and there
exists on B a Kiihler structure (f, h, w) such that

(D) Ph. Tondeur-L. Vanhecke [TV] proved that if a one-dimensional
metric foliation on a locally irreducible symmetric space (M, g)with geodesic
leaves is transversally symmetric, the ambient space (M, g) is of constant
curvature, and conversely. And D. Gromoll-K. Grove [GG] also proved that
if - is a one-dimensional metric foliation on a nonnegative constant
curvature space, - is either flat or homogeneous, equivalently isoparamet-
ric.

(E) In case that (B, h, J, w) is a Kihler-Einstein space of negative Ricci
curvature, the metric g on M may be replaced by an Einstein Lorentz metric
with signature (1, dim B). For such examples, see [Be], [Ma], [NT].
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