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SPACES AND APPLICATIONS

RICHARD ROCHBERG AND ZHIJIAN WU

1. Introduction

Let D be the unit disk of the complex plane C and dA(z) 1/Tr dr dy be
the normalized Lebesgue measure on D. For a < 1, let

dZ,(z) (2 2a)(1 Izle)1-2 dA(z).

The Sobolev space L’ is the Hilbert space of functions u" D C, for which
the norm

2

/ /

1/2

is finite. The space D,, is the subspace of all analytic functions in La’". This
scale of spaces includes the Dirichlet type spaces (a > 0), the Hardy space
(a 0) and the Bergman spaces (a < 0). (The Hardy and Bergman spaces
are usually described differently, however see Lemma 3 of Section 3.) Let

and let

/ {g D’g(O) O}

/6 g is a polynomial on D" g(0) 0}.

Clearly P is dense in/),,. Let P denote the orthogonal projection from L2,a

onto /}. For a function f L2’ it is possible to define the (small) Hankel
operator with symbol f, h, on/6 by (see also [Wl])
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When we say hot) is bounded, we mean there exists a constant C > 0 such
that

IIhT(g)ll CIIgll , Vg

If we use the normalized monomials as a basis for/)ot
as a basis for Dot, then the matrix of h,ot) is

and their conjugates

J/k+Lot

Here

2n
B(n 2-2a) --nzot/3n, 2-2a

(B(’, ) is the classical Beta function) and {fn} are the Taylor coefficients of
the analytic part of the symbol f:

Pot(f )(z) E Lzn.

For a < 1, define the space Wot to be the space of all analytic functions f
on D for which

Ilfll sup g(z) 121 f’(z) 12 dAot( z ) < oo.
Ilgll.<l

Clearly Wot c_ Dot. And it is easy to see that Wot B (Bloch space) if
a < 0; W0 BMO and Wot Dot if a > 1/2. (See [Wl] and [W3] for more
about W,.)
There are many equivalent norm characterizations of Dot. The one that we

are going to present here can be viewed as a generalization of one of the
results in [AFP, Proposition 3.6] (see also [AFJP]).
The question of characterizing the symbol functions on D for which the

Hankel operators on the Dirichlet type space Dot are bounded was raised in
[W1]. The space Wot is related to the boundedness of the Hankel operators
(See [Ax], [P], [RS], [AFP] and [J] for a < 0; [W2] for a > 1/2). Our
decomposition theorem for Wot (Theorem 3 below) includes theorems similar
to those proved in [R] and [RS] for the Bloch space (= Wot, a < 0) and the
space BMO (= W0).
Throughout this paper, we will use the symbol C to denote a positive

constant which may vary at each occurrence, but will not depend on any
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function or measure that we deal with. We also use the symbol
comparable.
Our main results are:

-- to mean

THEOREM 1. Suppose g is an analytic function on D, a _< 1/2, tr, " > 1
and min(tr, z) + 2a > -1. Then we have

Ig(z)-g(w)l )"
!1 wl3+++2

(1 Ill 2 (1 Iwl 2 dZ(z) dZ(w)

folg’(z)l(1 -[zl2)l-2dZ(z).
TnEOREU 2. Assume f is analytic on D and a 1/2, then h is bounded

if and only iff W.

For any ed z in D, 8z is the point measure on D defined by

1 ifw =z;z(W) 0 ifwz.

THEOREM 3. Let a 1/2 andb> 1/2 if a= 1/2, b> 1 if<l/2.
There exists a do > O, so that for 0 < d < do and any d-lattice {zj} in D, we
have:

(a) Iff e W then

(1- Izjl2) b-1/2+a
(1.1) f(z) EAj

=o (1 -z)b

(b) /f {Aj} satisfies

E IAyl 2 < Clfl2
j=O

j=O

then f, defined by (1.1), converges in D, with

Ilfll2w < C IA12i
j=O

(The d-lattice and the norm II I1 will be defined in Section 2.)
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For a 1/2 and tr z, Theorem 1 is proved in [AFP, Proposition 3.6]
(see also [AFJP])with "--." Notice that (see [AFJP])we can’t prove
Theorem 1 by using the identity

If( Z ) f( W )12 If( z )12 f( z )f(w) f( z )f( w ) + If( w )l2

and then integrating each term; that will simply give oo oo oo / oo. We
should be very careful when we use Fubini’s theorem. Theorem 2 is also true
for a > 1/2 (see [W2] or [W4]). Theorem 3 has its root in [CR], [R] and [RS].
Proofs for Theorem 2 (or Theorem 3) for the case of a < 0 can be found, for
example, in [P], [R] and [W4] (or [CR], [R] and [RS]). The difficulties, for the
case of 0 < a _< 1/2, are that the reproducing kernel of the space D,, unlike
the other case, can’t give us sufficient information (see for example [RW] and
[W4]) and, unlike the 0-Carleson measure, the a-Carleson measure can’t be
characterized by a single box (see [G], [A], [S] and [J]). Our method, however,
works for all a _< 1/2.

In Section 2 we will give the background and the preliminaries needed for
the rest part of this paper. In Section 3, we will prove Theorem 1. In Section
4, we will apply Theorem 1 to get Theorem 2 and 3. Finally we will end this
paper with some questions.
We would like to thank the referee for his many very helpful comments.

2. Background and preliminaries

For/3 > -land0<p<o%let

dlt(z) (1 +/3)(1 [z[2)t dA(z).

The Bergman space Ap’I3 is the space of all analytic functions in LP(dlzl3).
L(do) and A’( D_(I+)/2) are Hilbert spaces. The orthogonal projec-
tion from L(dl) to A’ is (see [Zl)

(1 w)+2
d/z(z).

In particular if u A2’/, then

fI, u( z)u(w)
(1 2w)

This formula is sometimes called the reproducing formula of A2’ t3.
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Denote by K.(z, w) the reproducing kernel of the space /.. We know
K.(., w) Z). and the orthogonal projection P." L2’"--,/). is (see also
[W2])

Ou OK.(2.1) P,(u)(w) -(z)--(z,w)dA.(z).

It has the property

On
o

(2.2) -g-(P.(u))(w) fo (1 .w)3_Z. dA.(z), u L2’"

The Bloch space B and the space BMO, on D, are defined respectively to be
the functions f which are analytic in D and satisfy (see [G] or [Z])

IlfllB sup {]f’(z)](1 Iz12)} < 0;
zD

fi) (1 Iz12)(1 Iwl 2) If’ 2

I1 2wl z (w)

Let w D, let (bw be the function defined by dw(Z) (w z)/(1 z).
We know 4)w: D--. D is an analytic, 1-1, and onto map. The hyperbolic
distance on D, which is Moebius invariant, is defined by

d(z, w) log

A sequence {zj} in D is called a d-lattice, (see [R]), if every point of D is
within hyperbolic distance 5d of some zj and no two points of this sequence
are within hyperbolic distance d/5 of each other.
A nonnegative measure/x on D is called an a-Carleson measure if

fD g(z)12 d/z(z) < CIIgll2, Vg

The best constant C, denoted by I1 I1, is said to be the a-Carleson measure
norm of .

0-Carleson measures are just the classical Carleson measures (see [G]).
There are many equivalent characterizations on a-Carleson measure (see
[A], [KS], [S] and [J]). In this paper, however, we don’t need them. The above
definition seems easier to work with in our proofs. The space W. can also be
defined as the space of all analytic functions f on D for which the measure
If’(z)l 2 dA.(z) is an a-Carleson measure.
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The following results can be found in [R, Theorems 2.2, 2.10] (see also
[CR] and [RS]).

THEOREM A. Suppose 0 < p < oo, -1 < [3 and b > (1 + 13)/p +
max(l, l/p). There is a positive number do such that for any 0 < d < do and
any d-lattice {zj}, there is a C C([3, p, b, d) so that"

(a) Iff Ap, then

(1- Izjl2) b-(2+la)/p
(2.3) f(z) E Aj

i--o (1 -z)
with

(b) Conversely, if {hj} satisfies E=olhjlP < oo, then f, defined by (2.3),
converges in Ap’ with

THEOREM B. Suppose b > 1. There is a positive do such that for any d,
0 < d < do, and any d-lattice {zj[, there is a C > 0 so that"

(a) Iff B (or BMO), then

(2.4) f(z)

with

i=o (1

or

sup {Ix.l} _< CIIfll,
j>o

j=O 0

(b) Conversely, if {Aj} satisfies

or

SU

’Xjl’(1 -]zj’2)6.,
j=O
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then f, defined by (2.4), converges in the weak* topology in B (or BMO) with

Ilflt c sup
jao

Remark. The assumption on (b) of Theorem A in JR] is b > (2 +
/3)max(i, l/p). It is easy to check that we can change to the above assump-
tion (for the detail see [Wl]). The original form of Theorem B in [R] also
contains the results for Besov spaces.
The ideas of the proofs of Theorem A and B in [CR], [R] and [RS], which

we also need here, are to start with the reproducing formula

fD f(z) (1 Izl 2f(w) =(b-l)
(1-.w) b )

b-2
dA(z), b>l,

and then to approximate this integral by a Riemann sum

( Zf)(w) C E f( zy)lOyl
(1- ]zjlZ)

-z

(1 -w)
Here {Dj} is a proper disjoint cover of D, and IDl =fD dA(z)is the
normalized area of Dj.
The key steps using these ideas are summarized as the following lemmas

(see [CR, pp. 22-25] or [R] and [RS]):

LEMMA A. (1) If [3 > -1 and b > 1 + (1 +/3)/2, then the operator

f. f(z) -(Tf)(w)
I1 .wl b (1 Iz12) dA(z)

is bounded on L2(dl.zts(z)).
(2) /f b > 2, then the operator T is bounded on the space

{u" [u(z)Iz(1 [zl z) dA(z)Iio <

LEMMA B. Let {zj} be a d-lattice in D, then there exists a disjoint
decomposition {Dj} of D, i.e., (J=oDj D, such that ]Dj] (1- ]zj]2)2,
z Dj and

If(w) (f)(w)I _< Cd(Tf)(w).
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3. A characterization of D
In this section, we will prove Theorem 1 which generalizes a result in

[AFP], which says (fl > -1)

!1 wl4/2 d(z) d(w) If’(z)[2dA(z).

Notice that 1/(1- w)2+fl is the Bergman reproducing kernel of D with
respect to the measure d/(z). If we consider any "good" plane domain and
the corresponding Bergman kernel with respect to a more general nonnega-
tive measure dr(z), then a similar formula is still true (see [AFJP]).
We need some lemmas for proving Theorem 1.

LEMMA 1. For x, y > O, the Gamma and Beta function are defined as

r(x) fo tX-le-t dt, B(x, y) rx-l(1 r) y-I dr.

For fixed x and y, we have for any natural numbers j and k

(3.1)
(3.2)

F(j + x)/F(j + y) = (j + 1)
x-y

B(k x) = k -x"

S(j+ 1 +x,y)-B(j+k+ 1 +x,y)
= (j+ 1) -y- (k+j+ 1) -y.

Here "= is independent ofj and k.

Proof. (3.1) can be found in [T, section 1.87]. For (3.2), we have

B(j + 1 + x, y) B(j + k + 1 + x, y) fol(rj+x rJ+k+x)(1 r) y-1 dr

folri+x r n (1 r)
y
dr

k-1

E(n+]+x+l,r+l)
n-----O

k-1

= E (n +j + 1) -y-1
n=O

f:(t 4-j + 1) -y-1 dt

(j + )-- (k + j + ) -y

The proof is complete.
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LEMMA 2. For a <_ 1/2, r + 2a > -1, we have

fo t+2(1 + t)--/2((1 + t)l/2-a 1/2-a) dt<

Proof. Obvious. El

LEMMA 3. Iff(z) ET=oayZJ D,, then Ilfll 2 = ET=o(j + 1)2lajl 2

Proof. Obvious.

Before proving Theorem 1, notice that if tr ’, say, tr > , then by the
fact that (1 Izl), (1 Iwl) _< I1 wl, for z, w D, we have

I1 wI 3+2r+2a
(1- Izl2)(1- Iw12)

11 -.W[ 3+tr+z+2a

(1- Izl ) (1- iwl )
I1 wl 3+2z+2a

Hence, in Theorem 1, the case tr : " can be obtained from the case

Proof of Theorem 1.
<1/2.

We only need to consider the case of tr " and

For convenience, let/3 3/2 + r + a and

{1, ifk>_O;f(z) ak zk, x(k) 0, if k < 0
k=0

By setting z rei, W sei6, t 0 and sr se it, we can write

f. [. It(z) y(w)l
I1 5wl2

(1 Izl 2 (1 Iw12) dA(z) dZ(w)

1 f(rei) f(sei(+t))12
1 rseit[ 2/3

(1 r2)(1 s2) dO rdrdtsds

2 folfo fol lakl2lrk- skeiktl2 r(" D k=l l1 rseitl2/3 (1 r 2) 1 S2) rdrdtsds

2f f Irk- ffkl22 lakl JoJa 2/3 (1 r2)(1 1.[2) dA()rdr.
k=l 11 r’[
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Let gr() (rk k)/(1 r’). By Lemma 3, we only need to show

I(k) folf)lgr()12(1 r2)(1 -[12)dA()rdr k2", k >_ 1.

Notice that for r [0, 1), gr(Sr) is in the Bergman space A2,r. Hence the
reproducing formula for A2’ allows us to write

dA( rl)

Thus we have

2 dA()folgr()l( I1 )

E B(j+ i:o’+ 1)j=O

2

fDgr(+/)i(1 I? 12) dA(rl)

I(k) E B(j + fir+ 1) fo1=0

(1 r2)rdr.

fDgr(V):(1 It/12) dA( )

We now compute the integral above by observing that

gr(’O) ( rk 11 E r(/)r(n + 1) rn’rln’
n=0

hence

f:r(rl)J(1- 1/12)

r()-1( F(j -I- )F/(j-]-/+l)l’ r + 1)
r k+y

k) r(j k + fl)B(j + 1, tr + 1) r:_t: t
F(j k + 1) ]’
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and

So

fDgr(r/)(1 Ir/12)
2

d(r/) (1 r2)rdr

=F(fl)-2B(j+ 1,(r+ 1) 2 r(j + fl)2B(k + j + 1, tr + 1)
F(] + 1) 2

_2x(j- k)r(j + t)r(j- k + fl)B(j + 1,(r + 1)
r(j + 1)r(j- k + 1)

x(J k)F(j k + fl)2B(j k + 1,(r + 1)
F(j k + 1) 2 )"

I(k) r(fl) -2 lim _,B(j + 1,(r + 1) r(j + fl)2B(k +j)2+ 1,(r + 1)
m--+oo j=0 F(j + 1

_2x(J k)r(j + t)r(j k + fl)B(j + 1,(r + 1)

m

r(j + a)r(j- k + a)

x(J k)F(j k + fl)2B(j k + 1, r + 1)
I’(j k + 1) 2 )

B(] + 1, tr + 1)B(/+ k + 1,r + 1)F(/+ t)2

j=m-k+l

]--0

F(j + 1) 2

B(j + 1,(r + 1)B(k +j + 1, tr + 1)F(j + t) 2

r(j + 1) z

B(j + k + 1,(r + 1)2r(j + k +/)r(j +/)
r(/+ k + 1)r(j + 1)

For any j, by (3.1) of Lemma 1, we have

B(j + 1, tr + 1)B(j + k + 1, o" + 1)F(j +/)2
F(j + 1) 2

. j-l-r(k + j)-l-aj2/-2 _< j2.-1,
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hence for a < 1/2

m

m j=m-k+l F(j + 1) 2
B(j + 1, + 1)B(j + k + 1,r + 1)r(j +/3)2

=0;

If we let x =/3 1 and y 1/2 a, then by Lemma 1, we get

B(j + 1,(r + 1)B(k +j + 1, + 1)r(j +/3)2

r(j + 1) 2

B(j + k + 1, + 1)2r(j + k +/3)r(j + )
r(j + k + 1)r(j + 1)

B(k +j + ,, + 1)r(j +/)r( + 1)
r(j + 1)r(1/2 )

X(B(j+/3,1/2-a) -B(j+k+/3,1/2-a)).

= (j + 1)t-’(k + j + 1)--1((j + 1) a-1/2 (j + k " 1)a-1/2).
Combine these computations to get (using Lemma 2)

The proof of Theorem 1 is now complete.

Theorem 1 has a version on the upper half plane, U, which can’t be
obtained by using Cayley transform on Theorem 1 (except for the case tr z
and a 1/2). One may prove it by applying the Fourier transform on
horizontal lines and then using Plancherel’s Theorem (see [AFP, page 1024]).

THEOREM 1’. Suppose g is analytic on U, 0 < a < 1 and tr, r > -1. Then

IZ ’l
3++r+2ay’vr dxdy dudv -- g’(z) 12 1-2a
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4. Applications

In this section we prove Theorem 2 and 3. We first need the following
lemmas.
For 3/> -1 and u L2(dA), define the operator

fD U( Z)g( z)hu’r(g)(w)
(1 .w)2+r

d/zv(z)’ VgeP.

LEMMA 4. Suppose a < 1,
from to LZ(dA,), then SUpzo{lu(z)](1 ]z]2)} <

u,7
is bounded

Proof (cf. [W2, Theorem 1]). Let [a] be the greatest integer in a and set
n [a]. We consider the functions

fa(Z) (1- lal 2) 1/2+a+n Zn+

(1 --Z) n+l’

ea(Z ) (1- lal2)3/2-"(1- Izl 2)y-l+2a

(1 Z)2+y

Clearly for any a D, fa is in/), with lira II
IleallZ<dA) = 1. It is easy to check that

and ea is in L2(dA) with

This implies

sup {(1 lal
aD

u(n+l)( a) l) < CllAu, Ilfall.lleall(a).
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Recall

n

( u(n+l)(a)l)sup {lu(a)l( lal)} E lu(’(0)l + sup (1 lal2)n+2[
aD j=0

Hence the proof is complete.

LEMMA 5. Let a <_ 1/2 and e > O. If tz is an a-Carleson measure, then
for any w I),

(1- Iw12)fall w’i i;--2 dtz(z) <_ filmily,

Remark.
239]).

For a 0 and e 1, this condition is also sufficient (see [G, p.

Proof For fixed w D, a straightforward computation shows that

g(z) (1 Iwl2)/2(1 z)-/2-/2

is in D and Ilgll -< C independently of w. Hence

(1- Iw12)foil-.wl 1+-2 d/z(z) fDIg(z)l2 d(z) _< I1 II.llgll2 -< CIItz I1.

The proof is now complete.

For b > 1, consider the operator

f. f(z) (a i1)-(Tf)(w)
I1 2wl b dA(z).

LEMMA 6. Let a _< 1/2, /3 > -1,/3 + 2a > -1 and

b>max(/3+3 /3+3 }2 2 a

Suppose v(z) is a function in L2(d/.t). If the measure Iv(z)l 2 dlxt(z) is an
a-Carleson measure, then the measure T(v)(z)l 2 dtzl(z ) is also an a-Carleson
measure.

Remark. For the case of a 0 and/3 1 (which is part 2) of Lemma A),
Lemma 6 is proved in [RS]. The method we are going to use here is quite
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different from theirs (which is based on the fact that the 0-Carleson measure
can be characterized by a single box). Also it seems very hard (at least for us)
to prove this lemma by using the results in [A], [S], [J] and [KS], because the
corresponding conditions in there are hard to verify.

Proof ofLemma 6. Notice that Iw(z)l 2 dlt(z) is an a-Carleson measure
if and only if the multiplier Mw" D, L2(d/zt) is bounded. We only need to
prove that the multiplier Mr(o) is bounded from D to L2(d/z). Because T
is bounded on L2(d/zt), by Lemma A, we have TMo is bounded from D to

L2(d/xt), hence we only need to show the difference Mr(o) TM is bounded
from D to L2(d/xt).

In fact, /g D, we have

I(MT(o) rMo)( g)(w) 12 fov( z) g(w) g( z) 2

11 .wl b (1 Izl )
b-2

dA(z)

If a 1/2, then

fDV(Z) g(w)11----wl b
g(Z) (1 Iz12)b-2 dA(z) 12

2 Ig(w) g(z)[2
2b-4-fl

<- cIIwll<a>fI l1 WI2b (1 Izl 2) dA(z);

hence, by Theorem 1 (tr 2b 4 -/3, z =/3),

(1 [z[2)2b-4-t dA(z) dlzt3(w )

If a < 1/2, choose a number e > 0 such that those assumptions for Lemma
6 remain true if/3 is replaced by/3 e. Then

fDV( Z) g(w) g( z) 2)b-2 12I1 5wl b (1 Izl dZ(z)

< cfDi1 Iv(z)l=

Ig(w) g(z)l2
2b-4-flfoil ,wl 2b-l-e+2a

(1 Izl 2) dA(z),
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by Lemma 5,

11- .wI l+e-2a dl’8(z) < C(1- [wl 2)

hence by Theorem 1 (tr 2b 4 -/3, r =/3 e)

Ig(w) g(zl[2

_< filial d  llofofol w[2b_l_e+2a (1 [z[2)2b-4-/3

xdA(z)(1 Iw12)-filial
dA(w)

The proof is complete.

We prove Theorem 2 by showing Theorem 2’ stated below. We also need
Theorem 2’ for proving Theorem 3’ later.

THEOREM 2’. Let a <_ 1/2 and 3’ > -1/2/f a 1/2, y > max{0,- 2a}
if a < 1/2. Let u be analytic on D. Then the operator fu,v is bounded from D
to LE(dA,,) if and only if the measure [u(z)[2 dA is an a-Carleson measure.

Theorem 2 is then an easy consequence. In fact, let y 1- 2a and
u f’. By (2.1) and (2.2), we have

0O---(h(f’)(g))(w) O,

0
O, (h(fO( g))(w) f. f’( z)g( z)

(1 2w)3-2
dA,(z) fu,v(g)(w).

Hence h) is bounded if and only if fu,v is bounded from / to L2(dZa).

Proof of Theorem 2’. If u is such that u(z)l 2 dA, is an a-Carleson
measure and g /),, then u L2(dA). By Lemma A, (b 2 + 3’ and
/3 1 2a),

/u,r(g) L2(dA,)
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and

This implies that/., is bounded from / to L2(dA).
To proof the converse let u be analytic on D. We need to show

Notice that

VgD.

IlugllL(a, <--Ig(0)IllulIL(aA / Ilu( g g(0))

and for (z) z we have (see also [W2, Lemma 3])

hence we only need to show

IlugllLZ(aA.) <-- CIIgll,

Using the idea of the proof of Lemma 6 again, we study the difference

u(w)g(w) ,v(g)(w)
u(z)(g(w) )2g(z)) dtx,(z)u

(1-w +7

By the boundedness of u,, we only need to show that the L2(dA,) norm of
this difference is dominated by the D, norm of g. In the following, we will
use the notation B(u)to mean the quantity SUpza{lu(z)l(1 Iz12)}.

If a 1/2, then dA,(z) dA(z), by Cauchy’s inequality

fou(z)(g(w) g(z))
(1 ,w)2+y

< folu(z)12 dA(z)fD
Ig(w) g(z)l2

)2,
I1 wl4+2

(1 Izl 2 dA(z);

hence, by Theorem 1 (r 2y and - 0), we have

(1 Iz12)2 dA(z) dA(w)

< Cllull 2L(dA,)llgll2;
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If a < 1/2, then again by Cauchy’s inequality

<_ CB(u)2(1 -[w[ 2)

dA(z)

dA(z)

-, Ig(w) -g(z)l2

fD I1 wl2+v (1- Izl)-’ dA(z);

hence

This last inequality is obtained by Theorem 1 (tr y 1 and z -24). It
follows from Lemma 4 that B(u) is finite. Thus the proof is complete.

Instead of proving Theorem 3, we show the following one. Theorem 3
follows by term by term integration.

THEOREM 3’ (DECOMPOSITION THEOREM). Let a <_ 1/2 and b > 3/2 if
a 1/2, b > 2 if a < 1/2. There exists a do > O, so that for any d-lattice
{zi}in D, O < d < do we have:

(a) Iff is analytic in D and If(z)[2 dAb(z) is an a-Carleson measure, then

(1- izjl2) b-3/2+a
(4.1) f(z) E hi

i=o (1 -z)b
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with

(b) If (Afio satisfies

< clllf dAolIo,
j=O

j=O

then f, defined by (4.1), is in A2’1-2a and If(z)l 2 dA(z) is an a-Carleson
measure, with

Zj
j=0

Remark. The convergence of the series (4.1) is in A2,-2. It also con-
vcgcs poinisc.

Proof of Theorem 3’. Without loss of generality, we will assume

b>max{2,2-2a} if a<1/2.

In fact, for a < 0, it is easy to check directly that Ifl z dA, is an a-Carleson
measure if and only if SUpz{If(z)l(1 IzlZ)} < oo. Pick a’ < 0 so that
b > 2 2a’. Hence Ill z dA is an a-Carleson measure if and only if Ill z dA,,
is an a’-Carleson measure.
We show part (b) first. Clearly, by Theorem 2’ (y b 2), we only need

to show that the operator ,o-z is bounded from D, to LZ(dA).
The assumption on the sequence {h} implies that {hl is square

summable. Hence by Theorem A, the sum (4.1) converges in Az’x-z and
then f, defined by (4.1), is in Az’1-2.

For any g D, consider the formula

ff g(z) (1 Izl 2Lb_2(g)(w) (Z)
(1 5w) b )

b-2
dA(z)

fI) 1 g(z) (1- Izl 2

E g(
(1

b-2
dA(z)
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By Theorem A (b) (p 2,/3 1 2a) we have

< c E z,)-2.- < C zy
j=O

So (b) is proved.
Now we prove part (a). Let g D, and {z.} be a d-lattice in D. The

assumption on f implies fg Az’ -2a and the discrete version of this is that
the sequence

is square summable (see also [CR] or [R]). This means that the measure (here
we use the notation in Lemma B)

j=O

is an a-Carleson measure and

(4.2)

Let (see Lemma B)

(1- Izjl2)
b-2

h(f)(z) C E f(z)lOl b
i=o (1 -z)

then, by part (b) of Theorem 3’, IA(f)(z)l 2 dA,(z) is an a-Carleson mea-
sure. Regarding A as the operator on the space

{f A2’1-2’" If(z) 12(a Iz12)-2 dA(z) is an a-Carleson measure},
we have, by Lemma B,

I(I A)(f)(z)l < CdT(f)(z).

Let d be sufficient small. By Lemma 6 (/3 1 2a), we have the operator
norm estimate

II1 -All _< 1/2.
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Hence A-1 exists and

[[A-I[[ -< E II( I-A)nl[-< 2.
i--O

Now we can write

f(z) (AA-lf)(z)

C E (A-lf)(zj)[Vj
(1 -tzjt2)

b-2

j=o (1 -z)b

=C (A_lf)(zj)[Dj[(1_ [zj[2)-1/2- (1- [zjt2)
b 3/2

j=o (1 -z)
b

By the inequality (4.2) and the boundedness of A-1, we get

I(A_lf)(z,)lDl( 1 iz;l) 1/=-]6zy
j=O

cll IA -lf12 dA c [[A -1 [1 Ifl I1 ,
Thus the choice of hj
proof.

(A-lf)(zj)lDjl(1 [zjl2) -1/2-a completes the

5. Some questions

(1) Instead of D or U, consider .more generally any simply connected
domain in C (or in C"). It would be nice if we could get a result similar to
Theorem 1. The best range of those parameters in Theorem 1 is also
unknown. We believe that for nice domains Theorem 1 remains true if
a> 1/2.

(2) Is it reasonable to consider the sum (1.1) in the Theorem 3 as a series
converging in some weak* topology instead of the one in D?

(3) To answer question (2), maybe we should ask first that what is the
predual space of W (the predual of W0 BMO is H1).

(4) We noted in the introduction that the operators h)") are related to
matrices of the form
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We know much less about the more symmetric matrix

(k +

[A]

[Ax]

[AFP]

[AFJP]

[CR]

[G]
[J]

[KS]

[P]

JR]

[RS]

[RW]

IS]

[T]
[Wl]

[W2]

[W3]
[W4]
[Z]
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