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DIMENSION, VOLUME, AND SPECTRUM
OF A RIEMANNIAN MANIFOLD

JEFFREY M. LEE

1. Introduction

We consider the Laplace operator A defined on a Riemannian manifold
M. In local coordinates we have;

Ox

where gij is the metric tensor, gikgkj t, and g det(gij).
The spectrum of A on M is the set of eigenvalues for the eigenvalue

problem given by the equation

where in case M has boundary we require that b 0 on OM. In the latter
case the spectrum is called the Dirichlet spectrum. We will sometimes be
interested in the case where the manifold with boundary of interest is (the
closure of) a relatively compact connected domain D in a complete Rieman-
nian manifold X. Since M (or D) is assumed to be compact the spectrum is
given by a sequence of nonnegative numbers;

0 _<A _<A2_<A3_<

counted with multiplicity.

Note. As a matter of convention we will refer to the (Dirichlet) spectrum
of A on M simply as the spectrum of M. Also, all manifolds referred to in
this paper will be assumed to be connected and all domains will be assumed
to have smooth boundary.
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The spectrum of a manifold determines certain aspects of its geometry. For
instance, Weyl’s formula,

lim Ak Cn
k k 2/n Vol(M)2/n’

shows that the spectrum determines both the volume and the dimension, n,
of the manifold. One may ask how many eigenvalues it takes to determine
the dimension. This is one of the main topics of the present paper. For
determining the dimension of a manifold from a finite part of its spectrum we
will need some restriction on the class of manifolds under consideration. This
is demonstrated by the following simple counterexample.

Counterexample. Let M be any compact Riemannian manifold and let
{Ai(M)} be its spectrum. Also, let sl(e) denote the circle of radius e.
Suppose that we try to determine the dimension of M by using N eigenval-
ues where N does not depend on any geometric assumption on M. But this
must fail since M sl(e) has eigenvalues {Ai(M) + 47rn2/e 2} and so, for e
small enough, the first N eigenvalues of M and M sl(e) agree. However,
M and M SI(e) differ in dimension. Thus some a priori geometric assump-
tions must be made on the class of manifolds M if we are to get a theorem.
A related question, discussed in [D-L1], [D-L2], [L], and [T], is the

following. Given e, how many eigenvalues will suffice to provide an approxi-
mation of the volume of the manifold (or domain) accurate to within e? The
answer should depend on certain allowable a priori data to be specified.
There exists an asymptotic formula for the trace of the heat kernel which

gives the following expression involving the spectrum.

E E-Ajt’ (47rt)-n/2Vl(M)

as $ 0. Now, from this we once again see that the volume and dimension of
a manifold are determined by the spectrum but we are not any closer to
answering the questions that we have raised about using a finite number of
eigenvalues. The problem is partially that we have to get good geometric
control on the error in these asymptotic formulas. Much has been done to
achieve this in [D-L1] and [D-L2] and we will be relying heavily on variations
of the analysis found therein. Among the results to be proven here we have
the following theorems.

THEOREM 1. Let M be a connected compact Riemannian manifold without
boundary such that the sectional curvature of M is bounded from above by
b > 0 and from below by K > O. Let c > 0 be a lower bound on the injectivity
radius of M. Then there exists a number N such that the dimension of M is
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determined by the first N eigenvalues from the spectrum ,of M. Furthermore, N
depends only on , b, c and .,’(d) max{j: h. < d}, where d depends only on, and hi(M).

THEOREM 2. Let D be a connected convex Euclidean domain. Then the
dimension of D is determined by the first N Dirichlet eigenvalues where N
depends only on hi, and ’(hlfl) and where fl depends on i and h 2.

We will also, as a matter of course, obtain the following result which is the
closed manifold version of Theorem 4.3 of [D-L1].

THEOREM 3. Let M be a connected compact Riemannian manifold without
boundary and of dimension n. Let the Ricci curvature be bounded from below
by -a(n 1) _< 0 and the sectional curvature bounded from above by b > O.
Let c > 0 be a lower bound for the injectivity radius i(M) of M. Then given
e > 0 there are numbers and N(6) such that

N

(4"tr’t) n/2 E e-X’ Vol M < c53 < e
i=1

for N > N(6), and where 6, N(6) depend only on e, a bound on diam M,
dim M, a, b, and c. Also c5 depends only on diam M, dim M, a, b, and c.

Note. We will see below in Lemma 1 that in a certain sense diam M can
be bounded using a finite number of eigenvalues.

Remark. Theorems 1, 2, and 3 will follow from somewhat more general
statements to be proven in the sequel (Theorems 6, 7, and 8 below).

2. Volume and a finite part of the spectrum

In this section we give a few known results about obtaining arbitrarily
accurate approximations of a manifold’s volume from a finite number of its
eigenvalues. This will serve to make the discussion of Section 1 more
concrete. Also, these ideas will be of use to us later when we attack the
problem of determining the dimension of a manifold from a finite number of
eigenvalues. The first result applies to the class of convex Euclidean domains
of fixed dimension and is due to P. Li and S.T. Yau [T].

THEOREM 4 (Li and Yau). Let D be a convex domain in Rn. Given e > 0
there exists an No depending only on e, n, A and ’(/3A1) such that for k > No

Ak Cn

k 2In (VoI(D)) 2/n
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where/3 > 8,n--2n(n + 4) and ,d’(A1) max{j: Aj < flax}.
Notice that .g(A1/) is determined by a finite part of the spectrum. It is

worth pointing out that d’(A1/3) really occurs in the proof as part of an upper
bound for the out radius of the domain:

( 1.2) Rout -<

The above theorem can be looked at as saying that one can take crude
information about a manifold (say Rout) and use this to determine the
number of eigenvalues needed to give arbitrarily accurate information about
a geometric invariant of the manifold (in this case volume). For purposes of
this paper let us call the set of all Riemannian manifolds satisfying a given set
of assumptions (such as curvature bounds) a geometric class. In some sense, a
theorem like the one above tells us something about how much information is
obtainable from a finite part of the spectrum. The more inclusive.the class to
which the theorem applies the more information is thereby shown to be
contained in some finite part of the spectrum.
Although based on heat kernel asymptotics instead of Weyl’s asymptotic

formula, the following theorem is analogous to Theorem 4 and is a good
example of the type of theorem to be found in [D-L1] and [D-L2]. Before we
state the theorem we need a definition.

DEFINITION. A domain D in a Riemannian manifold is weakly convex if
whenever two points in OD are connected by a unique minimizing geodesic
segment then that segment is contained in the closure of D.

THEOREM 5. Let D be a smooth weakly convex domain in a complete
Riemanian manifold X of dimension n. Suppose further that D is contained in a
geodesic ball of radius R say B(p, R). Let e > 0 be given. Then for 13 > 0
sufficiently small and a positive integer N(6) one has

N(*)

(4"rg6) n/2 E e-i Vol D
i=1

< 4t1/2 < e.

Furthermore, 6, N(6) and c4 depend only upon n, R, an upper bound for the
sectional curvatures of X, a lower bound for the Ricci curvatures of X, and a
lower bound for the convexity radius of X. Actually, the convexity radius and
curvature bounds need only apply on say B(p, R + 1).

Now we will prove some inequalities similar to those used to prove
Theorem 5 above but for the case of a compact manifold without boundary.
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Then we will prove the closed manifold version of Theorem 5. For later use,
we will need to modify our inequalities so that the constants that arise
depend only on an upper bound for the dimension of the manifold rather
than the precise dimension. We also get a slightly modified version of
Theorem 5 above where we only need some (possibly crude) a priori bound
on dimension instead of the precise dimension. This will all be straightfor-
ward but these versions will be needed in the next section when we come to
determining the dimension from a finite part of the spectrum.

In our most general setting we will need to assume a bound on dimension.
This is analogous to the bound on the out-radius which sometimes must be
assumed in the theorems on approximating the volume mentioned above.
Just as there are cases where we can determine an out-radius bound either
by using a finite number of eigenvalues or by using curvature assumptions
there will be cases where we will similarly be able to omit even the bound on
dimension (thus arriving at Theorems 1 and 2).
Theorem 3 will follow from the following theorem together with the

diameter bound given by Lemma 1 below.

THEOREM 6. Let M be a compact Riemannian manifold without boundary
and with Ricci curvature bounded below by -a(dim M- 1) and sectional
curvatures bounded from above by b where a, b >_ O. Assume that dim M no
and that the injectivity radius ofM is bounded from below by c > O. Then given
e > 0 there exist numbers and N() such that for N > N(),

N

(4"W()dimM/2 E e-X Vol M
i--1

<c56 <e,

and for > dim M,

N

(4’tr’t)//2 E e-ai’
i=1

< 4"trCst 2 + c6(47’r6 ) < e,

where , N(6), c5 and c6 depend only on a, b, n0, c and a bound for the
diameter of M.

We also have the following.

THEOREM 6’. Let D be a smooth weakly convex domain contained in a
complete Riemannian manifold X. Let n dim X <_ no. Assume that D is
contained in a ball B(p, ro) such that on B(p, ro + 1), the Ricci curvature is
bounded below by -a(dim X- 1), the sectional curvature is bounded above
by b and the injectivity radii are bounded from below by c. Then given e > 0
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there exists a 6, and N(6) such that for N >_ N(6)

N

(47rt)dimD/2 E e-a’ Vol D
i=1

< C561/2 ’< E,

and for > dim X,

N

(47rt) 1/2 E e-a’n
i=1

< 47r’Cst 3/2 + C6(47rt) 1/2 < e,

where , N(6), and c5 depend only on a, b, n0, c and ro.

Remark. There is a subtle point that needs to be brought out regarding
the statements of Theorems 6 and 6’. In using these theorems to get
Theorem 3 (and the analog for weakly convex domains) we will just assume
dim M n n0. However, in applying these theorems in Section 4 below
the dimension n is an unknown to be determined by finite spectral means.
There we will only assume an upper bound on dimension, say no In this case
the form of the lower bound on Ricci curvature is somewhat inappropriate
since it explicitly involves the exact dimension n. For this reason we will
instead make the stronger assumption that the sectional curvature is bounded
from below by -a. The statements of Theorems 6 and 6’ are nonetheless
true and have this unusual form only because of the double use to which we
put them.

3. Inequalities

For the proofs of Theorem 6 and 6’ we will needsome inequalities which
we record as propositions. Let trace Et(t) and trace Eo(t) be the traces of
the heat kernels on M and D respectively. Here, we use the Dirichlet heat
kernel on D.

PROPOSITION 1. Let M be a compact Riemannian manifold with Ricci
curvature bounded below by -a(dim M- 1) and sectional curvature bounded
above by b. Also let the injectivity radius be bounded below by c > O. Then if
dim M <_ no we have

[trace EM(t ) (4rt)-n/2vol M[
<_ t-n/211el12x/Ce-l13c2/t q- 13(a q- b)t-n/2+1Vol M + dt Vol M

where all the depend only on no and where d depends only on n0, a, b, and c.
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PROPOSITION 2. Let D be a smooth relatively compact domain in a com-
plete Riemannian manifold X of dimension n dim X <_ no. Let the Ricci
curvature ofX be bounded below by -a(dim X- 1) and the sectional curva-
ture bounded above by b. Let h > 0 be an upper bound for the mean curvature

of 3D. Let c > 0 be a lower bound for the injectivity radius ofX. Then

Itrace ED(t) (47rt)-n/2vol Ol
< d-a e ds 1 + -n/ Vol OD

+ 4(a + b) -n/+ Vol D + dt Vol D,

where t1, t2’ t3 and d4 depend only on no and d depends only on a, b, c and
no. Also, if D is contained in a geodesic ball B(p, ro) of radius ro then the
curvature and injectivity radius bounds need only hold on B(p, ro + 1).

Proof of Proposition 1. Let E’ denote the heat kernel of a sphere of
dimension n dim X (< n0) and constant curvature b. Then by Lemma 3.1
of [D-L1] we have

Eg(t,x,x) < (4"n’t) -n/2 + fll(n)bt -n/2+l -t- fl2(n)bn/2+lt

where ill(n) and fl2(n) are constants de.pending only on n. Now we make our
first simple modification. Let /1 and /32 be defined by/i max,, no{[3i(n)}.
Also let C be given by max{b, 1}n/2+l. Then we have

E’(t, x, x) _< (4zrt)-n/2 d- [lbt -n/2+1 d- [2t.

Now since E(t, x, y) is really a function of dist(x, y) we can transplant E’
to M so that E(t, x, y) is defined in a neighborhood of the diagonal x y
in M M. We have

(8) EM(t, X, X) <_ Eg(t, x, x) + do(n)t,

where do(n) depends only on n, b, and c. This is proven in [D-Li2]. Now by
replacing do(n) by max,, no{d0(n)} in (8) and combining with (7) we have

E(t,x,x) <_ (4zrt) -’/2 + lbt-n/2+l + dt

where d depends only on b, c and n0. If we integrate this over M we get

(9) trace EM(t ) < (47rt)-"/2Vol M + [lbt -n/2+1Vol M + d Vol Mt.
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Now we need a lower bound on EM(t, x, x). Let x M and 0 < r < c. In
[C-Y] it is proven that

EM(t,x,x ) >_E_a,r(t,x,x ),

where E_a, is the transplant of the Dirichlet heat kernel on a ball of radius
r on the simply connected complete space of constant negative curvature -a.
This transplant is once again defined on an open set containing the diagonal
inMM.
We now need a lower bound on E_a,r(t x, x). Proposition 2.4 of [D-L1]

gives the result we need. The proof is a familiar application of Duhamel’s
principle. After application of this proposition we have

EM(t, X, X) > (47rt) -n/2 --/33(n) e134(n)/r e-O5(n)r2/tt-n/2 6(n) at-n/2+

where the i(n) depend on n. Once again we make a modification by letting

Then we get

maxn n0{fli(n) for 3, 4, and 6

/5 minn no{5(n) }.

/ttEM(t, X, X) >_ (4rt) n/2 3ere sr -n/2 l6at-n/2+l
where the/i depend only on n0. Integrate this over M to get

(10) trace EM( t ) > (47rt)-"/2 Vol M [6at-n/2+ Vol M

3t-n/2el4v/-r e -1Srz /t Vo1 M.

Our upper and lower bounds combine to give Proposition 1.
Proposition 2 is proved similarly but not quite as easily since we have a

boundary to consider. Fortunately, it is essentially proved in [D-L1], being an
obvious modification of the Theorem 3.5 found therein. We will simply refer
the reader to that paper. We now finish the proof of Theorems 6 and 6’.

Proof of Theorems 6 and 6’. The right hand sides of the inequalities of
Propositions 1 and 2 are of orders O(t 1-n/2) and O(t 1/2-n/2) respectively.
In [D-Li2] it is shown that h > csi2/ for all > m where c5 and m depend
only on the allowable geometric data a, b, c, and n0. Now let e > 0 be given.
By Proposition 1 above there is a constant ca depending only on n0, a, b, c,
and Vol M such that

1(4rt)n/2trace Et() Vol MI _< c4 < e/2.
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Now by standard volume comparison theory [B-C] we can use diam M
instead of Vol M in our list of things that c4 depends on since the latter,
Vol M, can be bounded in terms of n0, a, and diam M (see Lemmas 2 and 3
below).
We may assume < 1. Choose N()so that

=N()+ =N()+
ecSi2/n <_ c6t < el2

and apply the triangle inequality to get

N()

(47rt) n/2 E e-’i’-- Vol M
i=1

--< C6t + l(47r6)n/2trace EM(6) Vol M

The first part of Theorem 6 now follows. The second part follows from the
first part. Namely, use the triangle inequality on the first part and multiply by
(4’Wt)(/-dim M)/2 to get

i=N(6)

(4"rt"t) 1/2 E e-Xi’3
i=1

< 4,rt.Cst(at)(l-dimM)/2 + c6Vol M(4,tT.t)(l-dimM/2).

To get from here to the needed inequality we use the usual bound on Vol M
and also restrict 6 to be less than 1/47r so that

(4,rt’t)(l-dimM)/2 <_ (47rt) 1/2.

The proof of Theorem 6’ is analogous to that of Theorem 6 except that we
use proposition 2 instead of Proposition 1. We will leave out the details since
they do not differ significantly from the analysis leading up to Theorem 4.3 of
[D-L1].
Next we bound the diameter (and hence the volume) of M in terms of a

finite number of eigenvalues and the allowable data n0, and a. In the
following three lemmas we assume the same hypotheses as in Theorem 6.

LEMMA 1. Let M be compact without boundary. There exists a number d
depending only on no, and a such that

diam M < ’(dl) -I" 1

where ’(s) max{j" Ay < s}.

Proof of Lemma 1. Let r0 be the diameter of M. We may assume that
r0 > 1. Choose a geodesic segment y of length r0 connecting x to x2. There
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exists at least k [r0] nondegenerate, non-intersecting geodesic balls
B1, BE,..., Bk of radius 1/2 with centers on 3’. Here, [.] is the greatest
integer function. Thus by the Poincar6 minimum principle Ak(M) <
max A (Bi)"
Now by S.Y. Cheng’s eigenvalue comparison theory [C2] we have AI(Bi) _< d

where d depends only on dim M and a. We can clearly replace d above by
some d _> d depending only on no and a. Thus we have Ak(M) < dE so that
k < ,(dl). Now use the fact that r0 1 < [r0] k to get r0 < .’(d2) + 1.
Now we can use the above bound on r0 to bound the volume of M. Let

B_a(ro) be a geodesic ball of radius r0 in a simply connected manifold of
constant curvature -a. Then by standard volume comparison, [B-C], we have
the following fact which we record as a lemma.

LEMMA 2.

Vol M < Vol B_a( ro) </320(n) (f121(n) )r0

where/320(n) and/321(n) depend only on n dim M and a. Also if a 0 we
may replace the last term above by flz2(n)r.

By following our usual practice of replacing n dependence by no depen-
dence by setting i--’ maxn<no{[3i(n)} etc. we obtain the following lemma
from Lemmas 1 and 2.

LEMMA 3. Let r0 diam M then

and in case a 0

Wol M "< 20(21) rO

Vol M </322(max ro, 1} ),,o _< d.,

where in either case d. depends only on no, a and g(dl). Also, 20, 21, and

22 depend only on no.
Also, there is a number d depending on a, no c and b such that

Vol M > d.

4. Determining the dimension of a manifold
from a finite number of eigenvalues

In this section we apply the results of the previous section to show that, for
certain large classes of manifolds or domains, there is a fixed finite number of
eigenvalues that determine the dimension of a given manifold. We first prove
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a theorem that requires a crude a priori bound on the dimension of
manifolds in the class and then we will exhibit cases where the bound on
dimension can be eliminated from the hypotheses thereby proving Theorems
1 and 2.

Notation. Let ’ d’(n0, a, b, c, r0) denote the class of compact Rie-
mannian manifolds M whose dimension is less than or equal to no and
whose diameter is less than or equal to r0 and whose sectional curvature Kt
and injectivity radius i(M) satisfy the bounds -a < Kt < b and 0 < c <
i(M) where a, b > 0.

THEOREM 7. Let ’(n0, a, b, c, r0) be given. Then there exists a number N
such that for any M -$’(n o, a, b, c, ro), the dimension dim M is determined by
the first N eigenvalues of M. In fact as the proof will show N is given
constructively in terms of no, a, b, c and ro.

Also, an upper bound ro for the diameter of a manifold M can be determined
from a finite number of eigenvalues. Precisely, there exists a number d
depending only on no, and a such that

diam M < /(dl) -[- 1

where t’(s) max{j Aj < s}.

Notation. Let ’= 6’(n0, a, b, c, r0) denote the class of complete Rie-
mannian manifolds X of dimension dim X < no such that X contains a
geodesic ball of radius r0 + 1 on which the sectional curvature is bounded
below by -a and above by b and on which the injectivity radii are greater
than or equal to c > 0. For convenience we will refer to such a ball as
distinguished in X.

THEOREM 8. Given a class of manifolds 5Lr(no., a, b, c, ro) as above, there
exists a number N such that for all X r and D any weakly convex domain
contained in a ball B(p, ro) c X with B(p, ro + 1) distinguished in X, the
dimension dim D dim X is determined by the first N Dirichlet eigenvalues
olD.

Remark. Informally stated, Theorems 7 and 8 above simply say that the
dimension of a manifold or domain can be determined from its first N
eigenvalues, where N depends only on the bounds n0, a, b, c, and r0. Also,
notice that if in Theorem 8 the curvature and injectivity radius bounds given
by the numbers a, b, and c hold on all of a given complete Riemannian
manifold then every bounded "ball of radius r0 + 1 is distinguished in X.
Thus we may use any weakly convex domain D as long as we take r0 to be an
upper bound on the out-radius of D.
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Proof of Theorems 7 and 8. We have gathered enough facts so that the
proof goes quickly. First consider Theorem 7. The last statement of Theorem
7 is just Lemma 1. Define

k

SI(t) (4"trt) l/2 E e-hit
i=1

By Theorem 6 there exist and N such that for any M ’, if dim M
then [S/(t)-VolMl<e for all k>N and 0<t<8 and if l>dimM
then [S/k(t)[ < e for all k > N and 0 < < 8.
Now by the last inequality of Lemma 3 there is a number d such that

Vol M > d uniformly for all M . Thus if we let e d/lO then

dim M max{/" S/N() > d/5}.
This proves Theorem 7.

Now the proof of Theorem 8 is analogous except that we use Theorem 6’
instead of Theorem 6.

Proof of Theorems 1 and .2. Theorems 1 and 2 follow from Theorems 7
and 8 once we show that the stricter hypotheses of these theorems allow us to
give appropriate bounds on dimension thus allowing us to get rid of no from
our hypotheses. Also, for Theorem 2 we need an appropriate bound on the
out radius of the domain. This latter bound is the content of Lemma 5 of the
next section where we take a closer look at the Euclidean case. Also notice
that in applying Theorem 8 to get Theorem 2 we may take c oo, and
a =b=0.

For Theorem 1 we are assuming that sectional curvature is bounded from
below by K > 0. Notice that we may take a 0 in using Theorem 7. It
follows from Lichnerowicz’s theorem [Lic] that AI(M) > dim(M)K and hence
dim(M) _< AI(M)/t.
For Theorem 2 we use Theorem 8 with a b 0, c 0% and r0 an upper

bound for the out-radius of the given convex Euclidean domain D. To bound
the dimension we use the following inequality:

4A
(11) dim(D) <

A2

This inequality follows immediately from the eigenvalue gap estimate of
Payne, Polya, and Weinberger and its generalizations [P-P-W], [C1].

Notice that it is crucial that this last inequality not involve the volume or
diameter of M or our argument would become circular since we need the
bound on dimension to bound the volume (Lemma 3).
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5. A closer look at Euclidean domains

Let an_ denote the n 1 dimensional volume of Sn- c Rn and also let

2n(n + 5) ]
7/.2

for a given domain D c Rn

THEOREM 9. Let D be a convex domain in Rn. Then there exists a function
N(t) N(t, n, hI(D), rh) depending only on the indicated quantities such that

N(t)

(4"rrt) n/2 E e-hit Vol D
i=1

< C(n, h(D), rh)v

where

C(n, Ai( D), rh) ’rrn-1/20tn_len/2 CAI(D)

The point of Theorem 9 is the explicitness of the constant C(n, ’1, l).
Thus we may use this to get a better handle on the N appearing in Theorem
2. To do this we need a version of Theorem 9 in which the constant on the
right hand side does not depend on the dimension N. We will indicate how
this is done after proving Theorem 9.
We will need some simple lemmas. The following lemma is standard and

has an elementary proof which we leave out.

LEMMA 4. Let Oln_ nwn denote the (n- 1)-dimensional volume of
Sn- c. Rn where wn is the volume of the unit ball Bn Rn. Then ifD c Rn is
convex and ifR is the radius of a ball containing D. Then

Vol OD <_ an_ 1Rn-

Consider the counting function g(s) max{j: hi(D) < s}. Then we have:

LEMMA 5.
/et

Let D be as above with hi(D) its first Dirichlet eigenvalue, and

rh /’( AI( D) 2n(
n + 5) )7.2
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Then

Ro <

where Ro is the out-radius of D.

Proof We use the fact that "rr2/4R2 < AI(D)where Rin is the radius ofin
the largest ball contained in D. This fact is proved in [T] and a more general
version of it is found in [L-Y]. Thus there is a ball B of radius r
contained in D. Let x0 be its center. Since OD is compact we can find
y OD such that rE dist(x0, y)= supxon d(xo, x). It is not hard to see
that one can fit at least k [rE/2r + I balls of radius rl/2 into the convex
hull of B u {y} where [. is the greatest integer function. Let these balls be
denoted by bl, bE,... bk.
Now let tl,t2,... be a complete orthonormal sequence of Dirichlet

eigenfunctions corresponding to the Ak. Let fi be the first Dirichlet eigen-
function of b extended to zero on D bi. Then we can find a not all zero
such that f E/k= laifi ( H(D)) is orthogonal to bl,... bk_ 1. Thus by the
Poincar6 minimum principle

Ak(D) < < < sup
_

,l(bi)

Now if k > rh then by the definition of rh and r we have

2n(n + 5) AI(D ) 2n(n + 5) hl(bl)
4r ,n.2 < Ak(D) _< Al(bi) 2r

but Al(b 1) _< n(n + 4)/2. Thus we arrive at the contradiction n(n + 5)/2 _<
n(n + 4)/2. Hence

rh>k>
r2 +1

and

r2 R V/A 1(D)

The result now follows.
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LEMMA 6. Let D c Rn be convex as above. Then

(4rt)"/2 Vol D
i--1 -- tn-len/2 /AI(D)

where an_ Vol(Sn- 1).

Proof. The analysis in this proof uses familiar classical ideas and should
be compared to the analysis found in [D], [M], and also [A-N]. Let p(x, y, t)
denote the Dirichlet kernel of e -tA on D and k(x, y, t) the Euclidean heat
kernel on Rn.

k( x, y, t) (4"n’t) -n/2 exp,

A standard argument using the maximum principle gives

k(x,y,t) >p(x,y,t).

Now if we apply the maximum principle to k(x, y, t) -p(x, y, t) considered
as a function of x and t then

k(x, y,t) -p(x, y,t) < max (k(x, y, s) p(x, y, s))
(x,s)D[O,t]

max {k(x, y,s) -p(x, y,s)}
(x,s)OD[O,t]

< max k(x, y, s)
(x,s)OD[O,t]

< max (4,n-s)-n/2expl
s[0, t] _l(y)2)4s

where l(y) dist(y, 0D).
Now

(47rs)-n/2expi

attains a maximum at s =/(y)2/2n and is increasing for s _</(y)2/2n. Thus
for all <_ l(y)E/2n we have

0 < k(x, y,t) -p(x, y,t) < (47rt) -n/2 exp( _l(y)2 )4t
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Now if > l(y)2/2,n we have

0 < k(x, y,t) -p(x, y,t) < k(x, y,t) < (4rt) -"/2

< (47rt) n/2en/2e-l(y)2/at

thus for any > 0 we have

0 < k(x, y, t) p(x, y, t) < (47rt) -n/2en/2e-t(Y)2/4t

we set x y and integrate over D to obtain

0 _< Vol D(4zrt) -n/2
n

E exp(-Ai(D)t) < (4"trt)-n/2en/2 fDe-l(x)z/4t dV.i=1

Now if we let D denote the set {x D: dist(x, OD)< l} and ODt its
boundary we have

flmaxf _lfo dV
"0 "ODel

/4t dA el

where dA is the (n- 1)-dimensional surface element OD and lmax
sup{dist(x, OD): x D}. Now since D is convex we have

Vol(ODI) < VoI(0D)

thus

--l2/4t dV d/< Vol ODfeOD

-12/4t dl Vol ODVt

combining we get

n

0 < Vol(D) (4rt) n/2 _. exp(-hi(D)t) < en/2 x/ Vol OD
i---1

n en/2 7rrh
<__ Ot _1e /2Rd an_l V/A- 5)

where we used Lemma 4 and Lemma 5.

Proof of Theorem 9. Let {/i(n, rh, A1(D))} denote the sequence of
Dirichlet eigenvalues of the Euclidean ball of radius 7rrh/V/Al(D). Then by
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domain monotonicity of eigenvalues and Lemma 5 we have

., exp(-Ai(D)t) < E
i=N+I i=N+l

exp(- Ai(n, rh, AI(D))t)

for any N. In fact since the last sum is just the tail of the sum occurring in
trace of e -ta for A acting on the Euclidean ball of radius 7rrh//Ai(D) we
may choose

N(t) N(t,n, rh, A(D))

depending only on the indicated quantities such that

(4rt)/ E
i=N(t)+

exp(-Al(n,rh, Al(D))t ) <

Thus we have

N(t)

(4"rrt) n/2 eAi(D)t- Vol D
i=1

<_ (47rt) n/2 e -xi(D)t Vol D + (47rt) n/2
i=l

/2 m +1V-_<

i=N(t)+

e-Xi(D)t

and we are done.
As mentioned, the point of Theorem 9 is the explicitness of the constant

C(n, A 1, rh). We may use this to get a better handle on the N appearing in
Theorem 2. To do this we need a version of Theorem 9 in which the constant
on the right hand side does not depend on the dimension n. In view of
equation (11) the first thing to do is let no 4hl/(h2 hi) and then replace
rh (A12n(n + 5)/,ff"2) by rh (h12no(no + 5)/r2) so that

ro _<

where r0 is the out radius ,of D. Here we have used Lemma 5, the fact that
n < no, and the consequent fact that rh < r. Next define

d(A1, 2,/’//) (’l’n-lolen/2(l/l)n-I +1)
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where a maXnno{Otn_ 1} and no 4A1/(A2 /1 ), In fact making these
replacements all through the proof of Theorem 9 we see that the following is
true.

THEOREM 10. Let D be a convex domain in a Euclidean space. Then there
exists a function N(t) N(t, hI(D), h2(D), rh) depending only on the indicated
quantities such that

N(t)

(47Tt)dimD/2 E e-Ale-- Vol D
i=l

Concluding comments

We know from the counterexample of Section 1 that there is no finite
number N of eigenvalues that suffices to determine the dimension of a
Riemannian manifold uniformly for the class of all Riemannian manifolds.
Now, given a geometric class of manifolds described without explicit refer-
ence to dimension, when can the dimension be determined from a finite part
of the spectrum? In retrospect we see that we will obtain a theorem roughly
whenever the dimensions of the manifolds of the given geometric class can be
bounded appropriately. If our geometric class is defined in part by explicitly
requiring a uniform volume bound then we may proceed along the lines of
the proof of Theorem 7 (or 8) to get a result without needing anything like
Lemma 3. If, on the other hand, we do not include a volume bound in
defining our geometric class (the approach taken in this paper) then we will
need something like Lemma 3. In this case we are obliged to look for
dimension bounds that do not involve the volume. This is because Theorem 3
bounds volume in terms of a bound on dimension. The reason for not
allowing volume bounds in the hypothesis of a theorem giving a finite spectral
determination of dimension is that volume has units of (length)dim u which
seems somewhat inappropriate. Clearly, one can hope for many variations of
these results where the geometric classes under consideration are varied.
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