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ALMOST EVERYWHERE CONVERGENCE OF
CONVOLUTION POWERS IN LI(X)

KARIN REINHOLD-LARSSON

Introduction

This paper is concerned with the behavior of weighted averages induced by
a probability measure on the integers. Let (X,/3, rn) be a probability space
and z: X X an invertible measure preserving point transformation. A
probability measure/z on Z, the integers, gives rise to the weighted average

If(x) E tx(k)f(’rkx)
k

The powers of the operator/zf are defined by the convolution powers of the
measure

[d,nf( X ) E ]d’n( k ) f( ’l’kX )
k--

where, on the right hand side, txn(k) denotes the nth convolution power of/z
evaluated at k. Note that since

(fl nf(x)l" dm(x))
1/p

kZ

l/p

these operators are well defined a.e. and are positive contractions in all
LP(X), 1 < p < o. Bellow-Jones-Rosenblatt [2], [3], [5] studied these types of
averaging operators as well as more general types of weighted averages. They
proved these operators converge in norm whenever the support of/x is not
contained in a coset of a proper subgroup of Z. In addition they proved [3]
that if the measure is centered and has finite second moment then there is
convergence almost everywhere in LP(X) for all p > 1. Their method
is based on Fourier techniques that could not be extended to L1. V. I.
Oseledec [14] proved convergence almost everywhere in L for symmetric
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measures without any moment condition. His proof is based on Doob’s
Martingale Convergence Theorem. The main result of this paper shows a.e.
convergence in LI(x), via estimations of the probability distribution of
/.n(k), k Z.

This paper is divided into two parts. The first one deals with a.e. conver-
gence of nf in LI(X) for measures that are centered and satisfy some
moment condition, so that their support has an appropriate distribution. The
second one analyzes the a.e. convergence of Inf along subsequences for
measures/x which are not centered. For such measures, convergence of the
whole sequence does not hold but a moment condition is still required for a
subsequence result.
The results of this paper form part of the author’s thesis. She would like to

express her indebtedness to her advisor, Professor Joseph Rosenblatt, who
suggested the problem and whose support and guidance gave constant
encouragement.

1. Convergence for centered measures

1.1. Probability measures on Z
Initially, we will focus on the properties of the measure/x, beginning with

some definitions and well-known facts.

DEFINITION 1.1.2. Let /x be a probability measure on Z. We say that is
adapted if its support generates Z, and that /x is strictly aperiodic if its
support is not contained in a coset of a proper subgroup of Z. For a > 0, the
a-moment of/x is defined as E=_=lkl/x(k), and is denoted by m,(/x). The
expected value of is E=_=k/z(k), and is denoted by E(/x). The measure/
is called centered if it has expected value zero.

The following are useful characterizations of strictly aperiodic probabili-
ties.

PROPOSITION 1.1.2 (Foguel [8]). Let I be a probability measure on Z.
(i) If I is adapted, then tx is strictly aperiodic if and only if limn_,ooll/.d’+1

(ii) Ix is strictly aperiodic if and only if t2(,)l < 1 for all A C with
I,1 1, a = 1.

The strict aperiodicity of the measure is needed to prove convergence a.e.
for all functions on LX(X). However, for convergence in norm, one only
needs the measure to be adapted.



668 KARIN REINHOLD-LARSSON

PROPOSITION 1.1.3 (Bellow, Jones and Rosenblatt [3]).
Then

Let l < p < oo.

{f LP(X):txf f} + cl{f- Ixf:f e LP(X)}

is a dense subspace of LP(X). Also, if tx is adapted and - is ergodic,
cl{f- tzf:f LP(X)} is the subspace of mean zero functions in LP(X).

From these two propositions it follows the convergence in norm.

COROLLARY 1.1.4. If IX is strictly aperiodic, then for every f LI(x),
limn-oll/znf- Pzfl[1 0, where Pif LI(X) is the projection of f onto the
subspace of tz-invariant functions. In particular, if tx is strictly aperiodic and -is ergodic, !imn nf ffdm 111 0.

Also, from Proposition 1.1.3, pointwise convergence on a dense subspace
follows because

f Ixf:f L(X)} + {f LI(x):/xf f}

is a dense subspace of LI(x).

PROPOSITION 1.1.5. If tX is strictly aperiodic, then for f in a dense subspace
of LI(x), limn _,odxnf(x) exist for almost every x.

Applying the Banach Principle, and since there is a.e. convergence on a
dense subspace, it remains to prove that the operator sup#Nllznf(x)[ is of
weak type (1, 1); that is, it suffices to show that there is a constant C > 0 such
that

(1.a)
[ cllflllmx X: sup [[dbnf(x)l > 1 <

nN ! A

for all f LI(x). This weak (1, 1) maximal inequality is proved by comparing
the distribution of/z with that of the nth-convolution power of the Gaussian
distribution.

THEOREM 1.1.6. Let lz be a strictly aperiodic probability measure on the
integers with mE+a(p,) < oo for some 0 < <_ 1. Then,

( 1 .b) sup
kZ

Izn( k ) trx/2"rrn 2o’2n
C

< +8)/2n(1

where a denotes the expected value of tz, a E(lx).
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This limit theorem is a classical result in the theory of infinitely divisible
distributions. A complete exposition of limit theorems for probabilities in the
domain of attraction of infinite divisible distributions can be found in
Ibragimov-Linnik [11]. The proof of this theorem is omitted since its proof is
essentially in Ibragimov-Linnik [11], Theorem 4.2.1, page 121, Theorem 4.5.3,
page 138. Their argument can be extended to measures with a finite moment
bigger than 2. The strict aperiodicity of the measure Ix simplifies some of the
calculations.

Notes. (1) If the measure Ix had a moment higher than ,3, the rate of
decay of the difference between the convolution powers of Ix and the
convolution powers of the normal distribution would not be faster than 1/n.
This rate could be improved in case the third derivative of the characteristic
function of/z vanishes at 0. Symmetric measures with a finite third moment
have a vanishing third derivative but it is desirable to avoid, if possible,
imposing such a restrictive condition on Ix.

(2) For 6 0, the above theorem does not give an uniform estimate on
Ixn(k). However, it is interesting to see that its rate of decay is of order n-1/2.
Chung and Erd6s [7] have the following surprising result.

LEMMA 1.1.7. Let Ix be a strictly aperiodic probability measure on Z such
that {k:Ix(k) > 0} do not have all the same sign. If ml(Ix) < 0%

C
sup Ixn(k) <
kZ -where C does not depend on n.

However, technicalities force one to ask moments higher than 2.
With the limit theorem 1.1.6, one can prove the maximal estimate (1.a).

THEOREM 1.1.8. If Ix has finite support and E(Ix) 0 then sup,,NlIx"f(x)l
is a weak (1, 1) operator.

Proof Suppose supp(Ix) c_ [-N, N], for some positive integer N. Let
be a discrete version of the Gaussian distribution, i.e.

1
bn(k) trx/27rn

0

exp
2tr2n

for k [-nN, nN

otherwise.
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From Theorem 1.1.6, one has

CI/n(k) bn(k)I < n for all k nN, nN ].

(Theorem 1.1.6 was used with 6 1, since/ has finite support and certainly,
finite third moment.) In other words, denoting with

An 2n + 1 6j
j= -n

the measure corresponding to the usual averages,

CIlxn( k) dpn( k) < - nN 2nN + 1
AnN(k)E 6(j)(k) C n

j -nN

Therefore, since An satisfies a maximal inequality, so does I/x bnl.
The operator supn rldnfl is also weak (1, 1) because the bn’S are radially

decreasing. In fact, each of them can be rewritten as an almost convex
combination of usual averages:

nN nN

)n E aAk where a, < 2 and a, > 0 for 0 < k < nN.
k=O k =O

Hence, one can show that

sup bnf(x)l < 2 sup Anf( x)l.
nN nN

The details are left to the reader.
Writing /z= (/./,n- n)

__
n, it follows that sup=NI/x=fl is also a weak

(1, 1) operator. El

Note. The condition E(/x) 0 was used in that the bn’s and the An’s can
be centered at the origin. The maximal inequalities for An and b would not
hold otherwise.

Theorem 1.1.8 can be extended to measures which do not have finite
support. However, in such cases, a moment condition is required. This
condition arises from the estimation of the tail distribution of the powers of
/x, which is translated to estimating large deviation probabilities. There has
been a great deal of study of such problem. For our purpose, we use the
following theorem of Baum and Katz which gives the lowest moment condi-
tion for g.
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THEOREM 1.1.9 (Baum and Katz [1]). Let {Xi) be a family of i.i.d, random
variables with E(X1) 0. /f > 1, r > 1 and 1/2 < r/t <_ 1, the following
are equivalent"

(i) E(IX11 t) < oo (finite tth moment),
(ii) =lnr-Ep(lSn[ > nr/te) < for all e > O.

PROPOSITION 1.1.10. fiE(Ix) 0 and mE+(Ix) < oo for some >_ (v/
3)/2, then SUPn lnfl is a weak (1, 1) operator.

Proof Let a (1 + 6)/2 and split Ixn into two pieces, Ixn=vn + ton
where v Ixnlt-tn-l. tnl and to,, Ixn /n" The center piece, Vn, is handled
in the same way as Ixn was in Theorem 1.1.8, that is,

C[,n(k) thn(k)[ _<
[n,]

for all Ikl < [n"], where b is the discrete version of the Gaussian distribu-
tion, now with support in [-[n"], [n]]. Arguing as in Theorem 1.1.8,

sup I,nf(X)l -< sup I’nf(X) dpnf( X)l
nN nN nN

< C supAtnllfl(x ) / sup
nN nN

< C’ sup An IfI(x),
nN

proving that supnNl,nfl satisfies a weak (1, 1) inequality.
The tails, ton, are controlled by estimating

sup Itonf(X)[ <_ E Itonf(X)[,
nN n=O

which gives

1
x X" sup tonf(X) > ’ -< -Ilfll E IIton 1.

nN n=0

This is the point where the moment condition for/z is needed. Thinking of
Ixn as the distribution of the sum of n i.i.d, random variables, say {Xi}, each
with distribution Ix, the ll-norms of the tails are

IIt0nlll-- E Ixn(k) e(Igl / X2 /"" /gnl >
Ikl >In

P(lSn[ > [n]).
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Therefore, the problem is transformed to estimate large deviation probabili-
ties. In view of Baum and Katz’s theorem, take r 2 and r/t a (1 +
)/2. Therefore, 4/(1 + 3). Since ma+(ix) < oo, then < 2 + , there-
fore must satisfy 4/(1 + ) < 2 + . Solving this equation we have that
whenever 6 > (lvCiff 3)/2, Y’.__011tonlll < , and hence, SUp,Nltofl is
integrable. D

This concludes the proof of the following theorem:

THEOREM 1.1.11. Let ix be a strictly aperiodic probability measure on Z
with E(ix) 0 and mE+(ix) < for some 6 >_ (x/ff 3)/2. Then, for any

f e L(X),

lim ix"f(x) Pif(x) for a.e.x.

For measures with a finite moment bigger than two there is, nevertheless, a
subsequence result. Indeed, one can show that there is a sequence of
polynomial growth, under which there is convergence almost everywhere.
Notice that, for the usual averages, it suffices to prove convergence a.e. along
an exponential sequence. The next proposition shows convergence along a
considerably "thicker" sequence for the convolution operators, but neverthe-
less, this does not give convergence of the full sequence.

PROPOSITION 1.1.12. Let ix be a strictly aperiodic probability measure on Z
with mE+(ix)< for some 6 > 0 and E(ix)= O. Then, there exist two
positive integers k k(3) and N N(k), such that limn__,= ixn’f(x) exists a.e.

for all f LI(x) and limn_= ix’,f(x) exists a.e. for all f L logN-I L.

Proof Let to,, denote the tail of ixn as in tile previous proposition. It
suffices to prove the existence of an integer k k(6) such that

Since E(IS’,I 2) < nE(IXll2), then

[[tonk[[1 e(lSnk > (nk)(’+)/2) <

nk 1
< Kn0+ K-.

1 E(iSnkl2nk(l+) )

Therefore, if k > 1/6, then Z=__alltonkl]l < oo.
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For the second statement, observe that for fixed k, there exists N N(k),
such that any positive integer can be written as the sum of at most N powers
of k, i.e., n nl + n2 + +nr with r _< N, n, nl," n N. This is the
Waring-Hilbert Theorem; see Hua [10], chapters 18-19. By replacing f with

Ill one can assume f >_ 0. Then,

sup txnf(x) < sup sup sup ].lnllj,n2 ].j,nkNf(x).
nN nl>0 n2>_0 nN>O

But for any M, if f L logM L then SUPn e N Anf L logM- L where Anf
denotes the usual average as in Theorem 1.1.8 (see Krengel [12, page 54]).
Let v be the central part of/zn as in Proposition 1.1.10. Then sup. r Vnf is
dominated by SUPneN Anf and SUPneNtOnkf is integrable. Therefore, if
f L logr’- L, then

L1sup sup /.n2 Iznf -n20 nNO

and

f fsup in2...idbnNf(x)dx C f(x)logU-l(f(x)) dx.
nN>O

Consequently,

m x" sup sup sup IJ,nlljn2 IJ.,nkNf(x) > i
n1>0 n2>O nN>O

<_ cff(x)logN-l(f(x)) dx. []

Remark. With the same techniques, one can prove that if/z is a strictly
aperiodic probability measure on Z with m2+(/z) < o for some 8 > 0 and
E(/z) 0, then limn_,oo/z2"f(x) exists a.e. for all f LI(x).

1.2. Extensions to zd
The methods employed for measures on Z can be used to extend the

results to measures on locally compact subgroups of Rd.

DEFINITION 1.2.1. Let /z be a probability measure on an abelian, locally
compact group G with Haar measure h. We say that /z is adapted if its
support generates G, and. that /z is strictly aperiodic if its support is not
contained in a coset of a proper closed subgroup of G. Also, /z is called
spread out if there exists n such that /z and h are not mutually singular.
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Notice that if G is discrete, then Ix is always spread-out. For subgroups of
Rd, the expected value and the moments of a measure can be defined as
follows. Let Ilxll denote the Euclidean norm in Ra.

DEFINITION 1.2.2. If G is a subgroup of Rd and a > 0, the a-moment of
IX is defined as fGllglldix(g), and is denoted by m(ix). If gi is the ith
coordinate of g Rd, g (gl,"’, gd), define a fGgidix(g) to be the
partial expected values of Ix. Then a (al,..., ad) is the (vector-)expected
value of Ix. We say that Ix is centered if a 0.

PROPOSITION 1.2.3. Let tx be a strictly aperiodic measure on Zd with
a O. If d and Ix satisfy one of the following three cases then limn Ixnf(x)
exists a.e. for all f LI(x).

(1) d 1,2 and mz+(ix) < , for some [(2 + d)2 + 8d (d + 2)]/2
<6.

(2) d 3 and m3(ix) < .
(3) d > 3, Ix is symmetric and m3+(ix) < for some 6 in the range

[(2+d)2+8d (d+2)]/2< < 1.

The proof of this proposition follows the same line of argument as those
employed in Section 1.1.
For measures on Rd, the analogous proposition holds under the additional

hypothesis that Ix is spread out and there exists no N for which dix"0x
l(x)dx and LP(Rd) 7) L2(Rd).

1.3. On the maximal function
For measures Ix on Z which satisfy the hypothesis of Theorem 1.1.11, the

maximal function sup,Nix"lfl has the same properties as the maximal
function corresponding to the usual averages, sup,r A, Ifl. Bellow-Jones-
Rosenblatt [3] proved that whenever Ix is a strictly aperiodic centered
probability measure on Z with mE(Ix) < 0% the maximal function SUPn Nlznfl
is a strong type (p, p) operator for all p > 1. For p 1, Theorem 1.1.6 and
Proposition 1.1.10 yield the following results.

THEOREM 1.3.1. Let Ix be a strictly aperiodic, centered probability measure
on Z, with mE+,(ix) < o for some 6 > O; and let z be an ergodic measure
preserving invertible transformation. Then"

(1) sup, r =fIxn[f[ LI(x) L log L;
(2) iff L log L and 6 >( 3)/2 then sup,rlix"fl e LI(x).
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LEMMA 1.3.2. Let tx be a strictly aperiodic probability measure on Z with
E(Iz) 0 and mE+(/z) < oo for some >_ O. Then, for all a >_ min(0,(2 2

36)/(6 + 2)), sup,,rl/znf[/n is a weak (1, 1) operator.

It is worth noticing that, when 6 0, a can be made smaller than 1/2,
which is the factor that, after Theorem 1.1.6 and Lemma 1.1.7, one would
have expected to be the right normalization.

2. Convergence for non-centered measures

There are examples that show that when the measure /x does not have
expected value zero, the whole sequence inf(x) fails to converge even
though the support of the measure generates Z. The simplest example is /z

(i50 + 61) (see [5]). However, even in such cases, there are convergence
a.e. results along subsequences of powers, inkf(x). Bellow-Jones-Rosenblatt
[2], [5] studied results of this type on Lp spaces. In [2], the authors show that
if /x has finite support and is strictly aperiodic then limn_,=/x2 f(x) exist
almost everywhere for any f LP(X), 1 < p < . In this section, the analo-
gous result for p 1 is proven as well as an explicit criterion for lacunary
sequences {nk} under which there is convergence a.e.

Let /x be a probability measure on the integers. Denote by Cn a discrete
version of the Gaussian distribution centered at 0 and normalized with the
variance of/, that is

exp
2r2n

where o-= Cm2(/x ) Let a E(/x).

for k [-n,n] Z

otherwise

PROPOSITION 2.1. If tX is a strictly aperiodic probability measure on Z with
mE+(/z) < oo for some 6 > 0 and {nk}=0 is a sequence in Z + satisfying

(2.a) nk+ > ynk for some 3’ > 1,

then for any f LI(x), gnkf(x) converges a.e. if and only if tnkf(’a’nkx)
does.

Proof By calculations using Theorem 1.1.6 and the fact that m2+(/z) <
one can prove

C
II/n- Cn* i3a.nl]l <
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for some/3 > 0. Therefore, if a sequence satisfies (2.a), then

[[nk_ tnk , tSa.,[[ <
k>l

and consequently,

m{x X/sup I/xn’f(x) hn,,f(,ra.n,x)l > A} < C Ilfll____l
kN

A

In Bellow-Jones-Rosenblatt [5], the authors had already studied the behav-
ior of ,,f(x) along subsequences. Its convergence is related to the behavior
of a maximal operator of block averages. We follow their notation. Let f be
any subset of Z Z+ and let

(2.b) f (z, w) Z Z+/there exists (s, n) f

such that Iz s < a(w n)}

be the cone of aperture a with vertices in f. Denote the cross section of f,
by

f(n) {z Z/(z, n) f,}.

Consider now the maximal operator

n

Maf(x) sup 2n + 1 E f(’k+s(S)) sup Anf(’rkx)
(k, n) s= -n (k, n)l

There is a close relation between the weak type of the operator Maf(x) and
the growth of the cross sections f,,(n).

THEOREM 2.2 (Bellow-Jones-Rosenblatt [5]). The maximal operator Mar
is of weak type (1, 1) if and only if there exists an a > 0 for which the cross
sections of f grow at most linearly; in other words, there is a positive constant
C < oo such that li2(n)l _< Cn for all n >_ 1.

Then, for the maximal operator with respect the Gaussian distributions,
one has the following relation with the maximal operator on block averages.

THEOREM 2.3 (Bellow-Jones-Rosenblatt [5]). The operator

Nff(x) sup Pnf("rkx)
(k,n)
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is weak type (1, 1) if and only if the operator Mf is of weak type (1, 1), where

From Proposition 2.1 and the above two theorems, it follows the following
theorem.

THEOREM 2.4. Let lz be a strictly aperiodic probability measure on Z with
m2+() < for some > O. Let z be an ergodic measure preserving transfor-
mation and {(ank, V/-k)}, where {nk} is an increasing sequence with
nk >_ Tnk_l for some 3’ > 1. If f(n) grows linearly for all a, then
limk_oo lznkf(X) ffdm a.e. for all f LI(x).

Proof If the cross sections of f grow linearly, then by Theorem 2.2, Mf
is of weak type (1, 1). This implies, by Theorem 2.3, that suP(k,n) f nf(7"kx)
is of weak type (1, 1). And finally, by Proposition 2.1, one obtains that
SUPk Nlnkf is of weak type (1, 1). D

The next lemma characterizes the sequences with (2.a) for which the cross
sections of f, grow linearly.

LEMMA 2.5. If {nk}k > is a sequence with the growth condition (2.a), then
the cross sections of f {(ank, k )/k >_ 1} grow linearly if and only if the
function

*(h) ={nk’A <nk <A2}
is bounded.

Proof Let (nk)k be a sequence with (2.a). Without loss of generality,
one can assume a 1.

First, assume that the cross sections of 12 grow linearly. It will then follow
that is a bounded function. It suffices to consider cones with aperture
a _< y 1. Then, for any A N, the cones with aperture a and vertices in
12 {(nk, Vr)/k >_ 1} at points with nk >-- A, have disjoint cross sections at
level A. Indeed, consider A < he_ nk < A2" By condition (2.a), ng nk_
>- (T 1)nk-1. Two consecutive cones are disjoint at level A if
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But nk_ > A and a _< 3’ 1. Thus, the cross sections in consideration are
disjoint. Now one can estimate the size of the whole cross section of
The contribution of the cones with vertices corresponding to nk’S nk_
does not exceed 3A. And, by the above discussion, the remaining part is

A <nk<A

Hence, fI6(A)I < CA for some constant C, which gives

z (, c,;
A <nk<A

or equivalently,

A <nkA

where (h) #{k:h < nk <_ A2}. And then,

1

h <nkA

Let njo be the first element of the sequence {nk} with nk > A. Then

{nk’h < nk < h2} {njo, njo+l,’", njo+r},

where r (A) 1. By the hypothesis on the sequence {nk}

njo < -- njo+r, njo+ < -- njo+r, njo+r_ < " njo+r.

So the left hand side of (.) is smaller than

C+ -k=O -’ Cnj+r <_ C+ k=OE " <

because y > 1 and njo+r < A2.
The other direction is immediate. Indeed, if (A) _< M for all A, then, for

anya>0and A >0,

II6(A)[ < (contribution of cones with vertices < A) + 2MA

< (2 + 2M)A.
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COROLLARY 2.6. If IX is a strictly aperiodic probability measure on Z, then

lim /z
2 f(x) and lim tx22/;f(x)

n n

exist a.e. for all f LI(x) and all p >_ 0; but

n2
lim /22 f(x) and lim /x22’f(x)
n n

fail to exist on a set ofpositive measure, for some f LI(x)
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