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ALMOST EVERYWHERE CONVERGENCE OF
CONVOLUTION POWERS IN LY(X)

KARIN REINHOLD-LARSSON

Introduction

This paper is concerned with the behavior of weighted averages induced by
a probability measure on the integers. Let (X, B, m) be a probability space
and 7: X — X an invertible measure preserving point transformation. A
probability measure u on Z, the integers, gives rise to the weighted average

wf(x) = % w(k)f(r*x).

k=—o

The powers of the operator uf are defined by the convolution powers of the
measure u,

W) = T (k) f(r*x)

k= —

where, on the right hand side, u"(k) denotes the nth convolution power of u
evaluated at k. Note that since

(Jiwscorano)” = £ wto)(flse0l dneo)” = 1,

keZ

these operators are well defined a.e. and are positive contractions in all
L?(X),1 < p < «. Bellow-Jones-Rosenblatt [2], [3], [5] studied these types of
averaging operators as well as more general types of weighted averages. They
proved these operators converge in norm whenever the support of w is not
contained in a coset of a proper subgroup of Z. In addition they proved [3]
that if the measure is centered and has finite second moment then there is
convergence almost everywhere in LP(X) for all p > 1. Their method
is based on Fourier techniques that could not be extended to L'. V. I
Oseledec [14] proved convergence almost everywhere in L' for symmetric
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CONVERGENCE OF CONVOLUTION POWERS IN L'(X) 667

measures without any moment condition. His proof is based on Doob’s
Martingale Convergence Theorem. The main result of this paper shows a.e.
convergence in L'(X), via estimations of the probability distribution of
w'(k), k € Z.

This paper is divided into two parts. The first one deals with a.e. conver-
gence of u"f in L'(X) for measures that are centered and satisfy some
moment condition, so that their support has an appropriate distribution. The
second one analyzes the a.e. convergence of u”f along subsequences for
measures w which are not centered. For such measures, convergence of the
whole sequence does not hold but a moment condition is still required for a
subsequence result.

The results of this paper form part of the author’s thesis. She would like to
express her indebtedness to her advisor, Professor Joseph Rosenblatt, who
suggested the problem and whose support and guidance gave constant
encouragement.

1. Convergence for centered measures

1.1. Probability measures on Z
Initially, we will focus on the properties of the measure w, beginning with
some definitions and well-known facts.

DeriNiTiON 1.1.2. Let w be a probability measure on Z. We say that u is
adapted if its support generates Z, and that w is strictly aperiodic if its
support is not contained in a coset of a proper subgroup of Z. For a > 0, the
a-moment of u is defined as Xy _ _,|k|*u(k), and is denoted by m (u). The

expected value of p is X5_ _ ku(k), and is denoted by E(u). The measure u
is called centered if it has expected value zero.

The following are useful characterizations of strictly aperiodic probabili-
ties.

ProrositioN 1.1.2 (Foguel [8]). Let w be a probability measure on Z.

() If  is adapted, then y is strictly aperiodic if and only if lim,, _, ,[lu"*!
= wlingy = 0.

(i) w is strictly aperiodic if and only if |A(A)| <1 for all A € C with
Al =1, A1

The strict aperiodicity of the measure is needed to prove convergence a.e.
for all functions on L!(X). However, for convergence in norm, one only
needs the measure to be adapted.
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Prorosition 1.1.3 (Bellow, Jones and Rosenblatt [3]). Let 1 <p < .
Then

{(feL?(X):uf=f} +d{f - pf:if € L?(X)}

is a dense subspace of LP(X). Also, if w is adapted and T is ergodic,
c{f — uf:f € LP(X)} is the subspace of mean zero functions in L?(X).

From these two propositions it follows the convergence in norm.

CoroLLARY 1.1.4. If w is strictly aperiodic, then for every f € L\(X),
lim, _, \u*f — P flly = 0, where P,f € L'(X) is the projection of f onto the
subspace of w-invariant functions. In particular, if u is strictly aperiodic and 7
is ergodic, lim,, _, ,||uw*f — [fdm|l; = 0.

Also, from Proposition 1.1.3, pointwise convergence on a dense subspace
follows because

{f=nf:fel(X)} +{fel'(X)uf=r)
is a dense subspace of L'(X).

ProrosiTioN 1.1.5.  If w is strictly aperiodic, then for f in a dense subspace
of LNX), lim,, _, ,u"f(x) exist for almost every x.

Applying the Banach Principle, and since there is a.e. convergence on a
dense subspace, it remains to prove that the operator sup, < 5In"f(x)| is of
weak type (1, 1); that is, it suffices to show that there is a constant C > 0 such
that

00 el ) <cl

neN

for all f € LY(X). This weak (1, 1) maximal inequality is proved by comparing
the distribution of u” with that of the nth-convolution power of the Gaussian
distribution.

THEOREM 1.1.6. Let u be a strictly aperiodic probability measure on the
integers with m,_, J(u) < o for some 0 < & < 1. Then,

1 (k - an)z)
1.b (k) — - <
(10) — Sop |W06) = om e"p( 20%n

where a denotes the expected value of u, a = E(u).

C

A+8)72
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This limit theorem is a classical result in the theory of infinitely divisible
distributions. A complete exposition of limit theorems for probabilities in the
domain of attraction of infinite divisible distributions can be found in
Ibragimov-Linnik [11]. The proof of this theorem is omitted since its proof is
essentially in Ibragimov-Linnik [11], Theorem 4.2.1, page 121, Theorem 4.5.3,
page 138. Their argument can be extended to measures with a finite moment
bigger than 2. The strict aperiodicity of the measure w simplifies some of the
calculations.

Notes. (1) If the measure u had a moment higher than 3, the rate of
decay of the difference between the convolution powers of u and the
convolution powers of the normal distribution would not be faster than 1/n.
This rate could be improved in case the third derivative of the characteristic
function of u vanishes at 0. Symmetric measures with a finite third moment
have a vanishing third derivative but it is desirable to avoid, if possible,
imposing such a restrictive condition on u.

(2) For 6 = 0, the above theorem does not give an uniform estimate on
w'(k). However, it is interesting to see that its rate of decay is of order n~1/2,
Chung and Erdds [7] have the following surprising result.

Lemma 1.1.7. Let w be a strictly aperiodic probability measure on Z such
that {k:u(k) > 0} do not have all the same sign. If m,(u) < o,

C
sup u'(k) < —
sup w'(K) < 7

where C does not depend on n.

However, technicalities force one to ask moments higher than 2.
With the limit theorem 1.1.6, one can prove the maximal estimate (1.a).

THEOREM 1.1.8.  If u has finite support and E(u) = 0 then sup,, o 5| f(x)|
is a weak (1,1) operator.

Proof.  Suppose supp(p) € [—N, N1, for some positive integer N. Let ¢,
be a discrete version of the Gaussian distribution, i.e.

d.(k) = oV2mwn 202n
0 otherwise.

) for k € [-nN,nN]
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From Theorem 1.1.6, one has
C
|w*(k) — ¢,(k)| < - forall k € [-nN,nN].

(Theorem 1.1.6 was used with § = 1, since u has finite support and certainly,
finite third moment.) In other words, denoting with

1

A= 1 X 8
j=-n

the measure corresponding to the usual averages,

W) o) < S T apk) =Lk,

j=-nN

Therefore, since A4, satisfies a maximal inequality, so does |u" — @,.

The operator sup,, < x|, fl is also weak (1, 1) because the ¢,’s are radially
decreasing. In fact, each of them can be rewritten as an almost convex
combination of usual averages:

nN nN
.= 2, atA, where ) a? <2anda}>0for0 <k <nN.
k=0 k=0

Hence, one can show that

SUP|¢>n (x)] < 28uD|A f(x)].

The details are left to the reader.
Writing u” = (u” — ¢,) + @, it follows that sup, o xIu”f| is also a weak
(1,1) operator. O

Note. The condition E(u) = 0 was used in that the ¢,’s and the A4,’s can
be centered at the origin. The maximal inequalities for A4, and ¢, would not
hold otherwise.

Theorem 1.1.8 can be extended to measures which do not have finite
support. However, in such cases, a moment condition is required. This
condition arises from the estimation of the tail distribution of the powers of
1, which is translated to estimating large deviation probabilities. There has
been a great deal of study of such problem. For our purpose, we use the
following theorem of Baum and Katz which gives the lowest moment condi-
tion for w.
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THeoOREM 1.1.9 (Baum and Katz [1]). Let {X}} be a family of i.i.d. random
variables with E(X|) =0. If t > 1, r> 1 and 1/2 <r/t < 1, the following
are equivalent:

@ E(X,]") < o (finite tth moment),

Gi) X3_,n"2P(|S,| > n"/'e) < » for all e > 0.

ProposiTioN 1.1.10.  IfE(u) = 0 and m,, ;(u) < » for some & = (V17 —
3)/2, then sup, o xIu*f| is a weak (1,1) operator.

Proof. Let a =(1 + 8)/2 and split u* into two pieces, u" = v, + w,
where v, = p"|[—(ne)(nep and w, = u” — v,. The center piece, v, is handled
in the same way as u” was in Theorem 1.1.8, that is,

C
[vu(k) — ¢,(k)| < ]

for all |k| < [n®], where ¢, is the discrete version of the Gaussian distribu-
tion, now with support in [—[n*], [n*]]. Arguing as in Theorem 1.1.8,

S}Elglv,.f(x)l < sup |1, f(x) — ¢, f(x)| + S:glsbnf(xﬂ

neN

< C sup ApelfI(x) + sup |6, f(x)|
neN neN

< C'sup 4,|fl(x),

neN

proving that sup, . 5|7, f| satisfies a weak (1, 1) inequality.
The tails, w,,, are controlled by estimating

sup |w,f(x)| < X |, f(x)],
neN n=0

which gives

m{x € X:sup|o,f(x)|> A} < %Ilflll i low,ll;.
n=0

neN

This is the point where the moment condition for w is needed. Thinking of
u" as the distribution of the sum of » i.i.d. random variables, say {X,}, each
with distribution u, the /;-norms of the tails are

lo li = Y w'(k) =P(X,+X,+ - +X,| > [n*])
k| >[n]

= P(Isnl > [na]).
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Therefore, the problem is transformed to estimate large deviation probabili-
ties. In view of Baum and Katz’s theorem, take r =2 and r/t =a =1 +
8)/2. Therefore, t = 4/(1 + 8). Since m, ;(u) < », then ¢t < 2 + §, there-
fore & must satisfy 4/(1 + 8) < 2 + 8. Solving this equation we have that
whenever & = (V17 — 3)/2, £*_ollw,ll; < , and hence, sup,ylw,f| is
integrable. 0O

This concludes the proof of the following theorem:

THEOREM 1.1.11. Let w be a strictly aperiodic probability measure on Z
with E(uw) = 0 and m,, s(u) < o for some & > (Y17 — 3)/2. Then, for any
fe Li(X),

lim p*f(x) = P;f(x) fora.e. x.
n—o

For measures with a finite moment bigger than two there is, nevertheless, a
subsequence result. Indeed, one can show that there is a sequence of
polynomial growth, under which there is convergence almost everywhere.
Notice that, for the usual averages, it suffices to prove convergence a.e. along
an exponential sequence. The next proposition shows convergence along a
considerably “thicker” sequence for the convolution operators, but neverthe-
less, this does not give convergence of the full sequence.

ProposiTiON 1.1.12. Let u be a strictly aperiodic probability measure on Z
with m,,s(u) < o for some & >0 and E(u) = 0. Then, there exist two
positive integers k = k(8) and N = N(k), such that lim, _, , u f(x) exists a.e.
for all f € LNX) and lim,,_, , u"f(x) exists a.e. for all f € L1log"~! L.

Proof. Let w, denote the tail of u” as in the previous proposition. It
suffices to prove the existence of an integer k = k(8) such that

o
2 Nl < o

n=1

Since E(|S,|%) < nE(|X,|?), then

1
lwyelly = P(1IS,el > ()" *77?) < —rarnE(151%)
k
n 1
= Knk(1+6) = K;IEE‘

Therefore, if kK > 1/8, then T} _, llw,«|l1 < .
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For the second statement, observe that for fixed k, there exists N = N(k),
such that any positive integer can be written as the sum of at most N powers
of k,ie., n=n¥+nk+ -+ +n* with r <N,n,n;,---,n, € N. This is the
Waring-Hilbert Theorem; see Hua [10], chapters 18-19. By replacing f with
|fl one can assume f > 0. Then,

sup u"f(x) < sup sup --- sup wtip"t oo prF(x).
neN ny20 ny>0 ny=0

But for any M, if f € Llog" L then sup, .y 4,f € Llog”~! L where A,f
denotes the usual average as in Theorem 1.1.8 (see Krengel [12, page 54]).
Let v, be the central part of u” as in Proposition 1.1.10. Then sup,, o x ¥« f is
dominated by sup,.n A4,f and sup, .y w,«f is integrable. Therefore, if
fe€ LlogN~! L, then

Sup Y Sup ,.LnIZ( Y /.L"kleLl
n,=0 ny=0
and
[ sup - sup /.L”IZC.../.L”I;’f(x)dx < Cff(x)log”'l(f(x)) dx.
n,>20 ny=0
Consequently,

m{x: sup sup :-° sup ,u,”f;u"’f /.L"'f'f(x) >A}
ny =0 ny,=0 ny=0

< c/f(x)logN-l(f(x)) dx. O

Remark. With the same techniques, one can prove that if w is a strictly
aperiodic probability measure on Z with m,, ;(u) <  for some & > 0 and
E(w) = 0, then lim,, _, , u®'f(x) exists a.e. for all f € LY(X).

1.2. Extensions to Z¢
The methods employed for measures on Z can be used to extend the
results to measures on locally compact subgroups of R%

DeriniTiOoN 1.2.1. Let p be a probability measure on an abelian, locally
compact group G with Haar measure A;. We say that u is adapted if its
support generates G, and that u is strictly aperiodic if its support is not
contained in a coset of a proper closed subgroup of G. Also, w is called
spread out if there exists n such that u” and A, are not mutually singular.
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Notice that if G is discrete, then u is always spread-out. For subgroups of
RY, the expected value and the moments of a measure can be defined as
follows. Let ||x|| denote the Euclidean norm in R%

DEeriNiTION 1.2.2.  If G is a subgroup of R? and a > 0, the a-moment of
p is defined as [;llgll®du(g), and is denoted by m,(u). If g, is the ith
coordinate of g € R?, g =(g,, "+, g,), define a, = [;8,du(g) to be the
partial expected values of u. Then a = (a,,- -, a,) is the (vector-)expected
value of w. We say that u is centered if a = 0.

ProposITION 1.2.3. Let u be a strictly aperiodic measure on Z¢ with
a = 0. If d and p satisfy one of the following three cases then lim,, _,,, w"f(x)
exists a.e. for all f € L'(X).

(1) d=1,2 and m,, () < », for some [{ (2 + d)* + 84 — (d + 2)]/2

<é.
2 d=3and my(u) < .
() d > 3, p is symmetric and m, ;(u) < ® for some § in the range

[Ve+ay+8d - (@a+2)]2ss<1.

The proof of this proposition follows the same line of argument as those
employed in Section 1.1.

For measures on R?, the analogous proposition holds under the additional
hypothesis that u is spread out and there exists n, € N for which du”ox =
Ix)dx and I € L?(R%) N L2(R9).

1.3. On the maximal function

For measures u on Z which satisfy the hypothesis of Theorem 1.1.11, the
maximal function sup, .y u"|fl has the same properties as the maximal
function corresponding to the usual averages, sup, <y 4,|f|. Bellow-Jones-
Rosenblatt [3] proved that whenever u is a strictly aperiodic centered
probability measure on Z with m,(u) < o, the maximal function sup,, o 5|"fl
is a strong type (p, p) operator for all p > 1. For p = 1, Theorem 1.1.6 and
Proposition 1.1.10 yield the following results.

THEOREM 1.3.1. Let u be a strictly aperiodic, centered probability measure
on Z, with m,, s(u) < © for some & > 0; and let T be an ergodic measure
preserving invertible transformation. Then.:

1) sup,enm"lfl e LX) = fe LlogL;

() iffeLlogL and 6 > (V17 — 3)/2 then sup, nIp"fl € LN(X).
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LemMma 1.3.2. Let u be a strictly aperiodic probability measure on Z with
E(w) = 0 and m,, ;(u) < » for some & > 0. Then, for all « > min(0,(2 — §°
—38)/(6 + 28)), sup, c nI1*fl /n® is a weak (1,1) operator.

It is worth noticing that, when 8 = 0, a can be made smaller than 1/2,
which is the factor that, after Theorem 1.1.6 and Lemma 1.1.7, one would
have expected to be the right normalization.

2. Convergence for non-centered measures

There are examples that show that when the measure w does not have
expected value zero, the whole sequence w”f(x) fails to converge even
though the support of the measure generates Z. The simplest example is w
= (8, + &,) (see [5]). However, even in such cases, there are convergence
a.e. results along subsequences of powers, u"*f(x). Bellow-Jones-Rosenblatt
[2], [5] studied results of this type on L7 spaces. In [2], the authors show that
if u has finite support and is strictly aperiodic then lim,, _,,, u? f(x) exist
almost everywhere for any f € LP(X), 1 < p < . In this section, the analo-
gous result for p = 1 is proven as well as an explicit criterion for lacunary
sequences {n,} under which there is convergence a.e.

Let u be a probability measure on the integers. Denote by ¢, a discrete
version of the Gaussian distribution centered at 0 and normalized with the
variance of u, that is

1 k?
(k) =1 oV2mn exp( 20%n

0 otherwise

) forke[-n,n]NZ

where o = \/m,(n) . Let a = E(u).

ProrosiTioN 2.1.  If w is a strictly aperiodic probability measure on Z with
m,, (un) < o for some & > 0 and {n,J;_, is a sequence in Z" satisfying

(2.2) ny ., > yn, forsome y > 1,

then for any f € LNX), p"f(x) converges a.e. if and only if ¢, f(r°"x)
does.

Proof. By calculations using Theorem 1.1.6 and the fact that m,_ ;(u) <
%, One can prove

C
"“‘n - ¢n*8a.n”1 = "B
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for some B > 0. Therefore, if a sequence satisfies (2.a), then

Tl = ¢, 8,1l < o;
k>1

and consequently,
n an l1£1lx
mix € X/ sup |[,L f(x) — ¢, f(r kx)| >A<CH=. D
keN

In Bellow-Jones-Rosenblatt [5], the authors had already studied the behav-
ior of ¢, f(x) along subsequences. Its convergence is related to the behavior
of a maximal operator of block averages. We follow their notation. Let () be
any subset of Z X Z* and let
(2.b) Q,= {(é,w) € Z X Z™/ there exists (s,n) € Q

X such that |z — 5| < a(w — n)}

be the cone of aperture a with vertices in {). Denote the cross section of 2,
by

Q. (n)={z€Z/(z,n) € Q,}.
Consider now the maximal operator
1 n
Mof(x) = sup m—5 X f(r**°(s))= sup A,f(r*x)
(k,n)eQ s=-n (k,n)eQ

There is a close relation between the weak type of the operator M, f(x) and
the growth of the cross sections Q (n).

THEOREM 2.2 (Bellow-Jones-Rosenblatt [5]). The maximal operator M, f
is of weak type (1,1) if and only if there exists an a > 0 for which the cross
sections of ), grow at most linearly; in other words, there is a positive constant
C < o such that |Q(n)| < Cn foralln > 1.

Then, for the maximal operator with respect the Gaussian distributions,
one has the following relation with the maximal operator on block averages.

THEOREM 2.3 (Bellow-Jones-Rosenblatt [5]). The operator

Nof(x) = sup ¢,f(7"x)

(k,n)eQ



CONVERGENCE OF CONVOLUTION POWERS IN L!(X) 677
is weak type (1,1) if and only if the operator Mg f is of weak type (1, 1), where

a = {(k.[Vr]):(k,n) € Q).

From Proposition 2.1 and the above two theorems, it follows the following
theorem.

THEOREM 2.4. Let u be a strictly aperiodic probability measure on Z with
m, . 5(n) < o for some & > 0. Let T be an ergodic measure preserving transfor-
mation and Q = {(an k> ‘/a )}, where {n,} is an increasing sequence with
n, =yn,_, for some y>1. If Q(n) grows linearly for all «, then
lim, ., u"™f(x) = [fdm a.e. for all f € L{(X).

Proof. If the cross sections of Q) grow linearly, then by Theorem 2.2, Mg f
is of weak type (1, 1). This implies, by Theorem 2.3, that sup ;. < o ¢,f(7x)
is of weak type (1,1). And finally, by Proposition 2.1, one obtains that
sup, « i f is of weak type (1,1). O

The next lemma characterizes the sequences with (2.a) for which the cross
sections of ), grow linearly.

Lemma 2.5.  If {n); . is a sequence with the growth condition (2.a), then
the cross sections of Q = {(an,, M )/k = 1} grow linearly if and only if the
function

T(A) = #{neA <ny < 2

is bounded.

Proof. Let (n,),., be a sequence with (2.a). Without loss of generality,
one can assume a = 1.

First, assume that the cross sections of {} grow linearly. It will then follow
that ¥ is a bounded function. It suffices to consider cones with aperture
a <y — 1. Then, for any A € N, the cones with aperture a and vertices in
Q = {(n;,y/n; ) /k = 1} at points with n, > A, have disjoint cross sections at
level A. Indeed, consider A < n,_; < n, < A% By condition (2.a), n, — n,_,
> (y — Dn,_,;. Two consecutive cones are disjoint at level A if

Ny + %(/\ — Vre—r ) <mi - %(/\ - Vny)
< al — %(\/n—k + \/nk_l) <ng—Ng_y
ea, <(y—- D, + %(‘/n—k + ey ).
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But n,_; > A and @ < vy — 1. Thus, the cross sections in consideration are
disjoint. Now one can estimate the size of the whole cross section of Q_(A).
The contribution of the cones with vertices corresponding to n,’s, n,_; <A,
does not exceed 3A. And, by the above discussion, the remaining part is

2 Y (A= ).

A<n<A?

Hence, |Q_(A)| < CA for some constant C, which gives

) (A—M)sCA;

A<n,<A?
or equivalently,

A(A) - Y /e <Ca,

A<n,<a?

where ¥(A) = #{k:A < n, < A?}). And then,

(%) Y <C+r T yng

A<n; <A
Let n; be the first element of the sequence {n,} with n, > A. Then
{nk:A <ng < AZ} = {njo,njoﬂ,' *y n,~0+,},

where r = ¥(A) — 1. By the hypothesis on the sequence {n,},

1) 1\ 1
njo < y Rjowrs Mjgw1 < y Rjorrs™ " s Mjoyr—1 < 5 | io+r:
So the left hand side of (*) is smaller than
1 &1\ =1\
C+—Z(—) n ., <C+ Z(——) =C' <o
AWy ) VT k=0 \Vy

because y > 1 and n; ., < A%
The other direction is immediate. Indeed, if W(A) < M for all A, then, for
any « > 0 and A > 0,

|Q,(1)]| < (contribution of cones with vertices < A) + 2MA
<(2+2M)Ar. O
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CoROLLARY 2.6. If u is a strictly aperiodic probability measure on Z, then

lim p2"f(x) and lim p2”""f(x)
n—oo n-—o

exist a.e. for all f € LN(X) and all p > 0; but

fa

10.

12.

13.
14.

. 2n2 . 22‘/5
lim pu* f(x) and lim p*" f(x)
n—oo n—o
il to exist on a set of positive measure, for some f € L'(X)
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