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DEFORMATIONS AND DIFFEOMORPHISM TYPES OF
HOPF MANIFOLDS

KEIZO HASEGAWA

1. Introduction

A generalized Hopf manifold or simply a Hopf manifold of complex
dimension n is a compact complex manifold of which the universal covering
is C {0}, where n is a positive integer (n > 2).
The Hopf manifold, first introduced by H. Hopf, is well known as the first

example of a non-Kihler manifold. In his essays [3] presented to R. Courant,
H. Hopf referred to a complex manifold diffeomorphic to S S2n- 1, which
was originally called a Hopf manifold. The generalized definition above is
due to K. Kodaira [6].

Perhaps one of the first fundamental problems concerning the Hopf
manifold is to determine their diffeomorphism types. This was done for the
case of n 2 by M. Kato [4]. Later, in his paper [5], M. Kato studied
submanifolds of Hopf manifolds and obtained a result on diffeomorphism
types of Hopf manifolds (although the result is not fully stated as a theorem,
it may be inferred from the results in the paper).

In this paper we study deformations of Hopf manifolds and give a short
and direct proof of the theorem that a Hopf manifold of complex dimension
n is diffeomorphic to a fiber bundle over S with fiber S2n- l/H, defined by a
representation p" T/’I(S 1) --> NU(n)(H) such that p(1) is an element of finite
order in Nu(n)(n) where H is a finite unitary and fixed-pint-free group, and
NUN) is the nomalizer of H in U(n). This theorem determines explicitly the
diffeomorphism types of the Hopf manifolds.
We state here a conjecture that a compact complex manifold of which the

universal covering is C is diffeomorphic to a manifold which has a torus or a
non-toral nilmanifold as a finite covering. The first case is clearly a Kihler
manifold and the second case is a non-Kihler manifold (cf. [2]).
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2. Fundamental properties of the covering transformation groups
of Hopf manifolds

In this section, we will review some results of K. Kodaira [6] and M. Kato
[4] on the basic properties of Hopf manifolds in the generalized form.
An analytic automorphism g over Cn which fixes the origin is called a

contraction if the sequence {gn} converges uniformly to 0 on any compact
neighborhood of the origin as n approaches infinity, or equivalently, if for
any rl, r2 R+ there exists an m N such that

gn(O(rl) ) Int(B(r2))

holds for any n N (n > m), where R+ is the set of positive real numbers, N
is the set of positive integers, B(r)= {(Zl, Z2,...,zn) Cnl Iz12 / Iz212
/... / IZnl2_< r2}, and Int(B) is the interior of B. Note that we have
defined a contraction in a slightly stronger form than the original one in [6].
Now let M be a Hopf manifold and G its covering transformation group.

Then G is properly discontinuous and fixed-point-free. We regard M as the
quotient manifold W/G where W denotes Cn {0}. By Hartogs’ Lemma, we
can consider any element of G as an analytic automorphism over Cn which
fixes the origin.

THEOREM 2.1. Let G be the covering transformation group of a Hopf
manifold. Then G contains an infinite cyclic subgroup, and any cyclic subgroup
of G is generated by a contraction.

Step 1. There exists a g G such that g(B(1)) c Int(B(1)). Thus Z
g) is an infinite cyclic subgroup of G.

Proof For simplicity, we write B in place of B(1). Since G is properly
discontinuous, g(O(B)) N 0(B) for all but finitely many g G, where
O(B) is the boundary of B. Since G is obviously infinite, there exists a g G
such that g(O(B)) O(B) . As g fixes the origin, it follows that g(B) c
Int(B) or g-l(B) c Int(B).

Step 2. g obtained in step 1 is a contraction.

Proof Suppose that g is not a contraction. Then there are B B(r1)
and B2 B(r2) (rl, rE R+) such that g(B) . Int(B2) for infinitely many
n N. Hence there exists a subsequence {kn} of N such that g kn(B1) q
Int(B2) for all n N. Since g fixes the origin and B is connected, it follows
that gkn(B1) 0 0(B2) 4 for all n N. Therefore, we can take z, B
(z 4: ) such that gkn(zn) 0(B2) for each n N. We will show that
lim_,=z 0. Suppose that lim_.=z a(a 4 0). Then K {a} {zn} is a



DEFORMATIONS AND DIFFEOMORPHISM TYPES 645

compact subset of W and g k,(K) n O(B2) =/= { for all n N. This contra-
dicts the fact that z (g) is properly discontinuous, and thus limn __,oozn 0.
Now, since gn(B) c Int(B) for all n N, {gk,} (n N) is uniformly bounded
over B. And thus we can see by Cauchy’s estimate that {gn} is equi-continu-
ous at the origin. Therefore limn_oog"(Zn)= 0, which contradicts the fact
that G, 0(B2) for all n N.

Step 3. Let Z be any infinite cyclic subgroup of G. Then Z is generated
by a contraction.

Proof Since Z (g) is properly discontinuous, in the same manner as
in step 1, there exists a k N such that gg(B) c Int(B) or g-k(B) Int(B);
thus gk or g- is a contraction. Take g-1 as a generator of Z in the latter
case. We will show that g is a contraction. Suppose that g is not a
contraction. Then there exists B and B2 as in the proof of step 2 such that
g(B1) Int(Bz) for infinitely many n N. But then there exists r N
(0 < r < k) such that

gkn+r(B1 ) gkn(gr(nl) ) Int(B2)

for infinitely many n N. Since gr(B1) is a compact neighborhood of the
origin, this contradicts that g k is a contraction.

COROLLARY 2.2.
finite.

Let Z be an infinite cyclic subgroup of G. Then [G; Z] is

Proof We may assume by Theorem 1 that g, the generator of Z, is a
contraction, and thus for arbitrarily large r R+ there exists an m N such
that gn(B(r)) Int(B) for all n N (n > m). We can also see that

B- {0} U (gk(B) -gg+l(IntB))
k--O

since f3 =ogk (Int B) {0}. Hence, the compact subset B g(Int B) of W
contains a fundamental domain for Z. Therefore, h/= W/Z is compact, and
thus the induced covering map from M to M is finite. It follows that [G; Z]
is finite.

THEOREM 2.3. Let G be the covering transformation group of a Hopf
manifold. Then G can be expressed as a semi-direct product of an infinite cyclic
subgroup Z generated by a contraction and a finite normal subgroup H.

Proof Let u be a homomorphism from G to R/ defined by u(x)=
det d(x)(0)l where d(x)(0) is the Jacobian matrix of x at the origin. Since G
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contains a contraction g and clearly u(g) < 1, u is discrete. Hence, u(G) is
generated by an a R/ (a #: 0). Take a g G such that u(g) a, and let
Z (g) be an infinite cyclic subgroup generated by g. By theorem 1, we may
assume that g is a contraction. Clearly u: Z u(G) is an isomorphism. Let
H be Keru. Then H is a normal subgroup of G and ZH=(I).
Therefore, by the corollary to Theorem 1, H is finite. Since u(G) u(H), G
is the semi-direct product of Z and H.

COROLLARY 2.4. Let Z and H be the subgroups of G in Theorem 2. Then
there exists an m N such that g" belongs to the center of G. Thus (gin)
and N H are normal subgroup of G.

Proof. Let us consider the action of Z on H by conjugation. Since H is
finite, it is clear that there exists an rn N such that g-mhgm h for any
h H. Therefore, it follows that gm belongs to the center of G.

3. Deformations and diffeomorphism types of Hopf manifolds

Let x be an analytic automorphism over Cn which fixes the origin. Then x
can be expressed in the power series

where

(higher powers) (i 1, 2,.. n)x az + ai2z2 + +anZn +

The non-singular n n matrix (aj) is called the linear part of x, and is
denoted by L(x). Note that L(x) d(x)(O) is the Jacobian matrix of x at the
origin. Then the map L: G GL(n, C) is a homomorphism, but not neces-
sarily one-to-one. However, concerning the covering transformation groups of
Hopf manifolds, we have the following result.

LEMMA 3.1. Let G be the covering transformation group of a Hopf mani-

fold. Then the homomorphism L: G - L(G) from G onto L(G) c GL(n, C) is
a group isomorphism.

Proof. It is sufficient to prove that L is one-to-one. By Theorem 2, G is
the semi-direct product of an infinite cyclic subgroup Z which is generated by
a contraction g and a finite normal subgroup H. Now let x gkh(h H)
and L(x) L(gk)L(h) I. Then since det(L(g)) < 1 and det(L(h)) 1, k
must be 0 and thus L(h) I. But h is of finite order, it follows from Cartan’s
uniqueness theorem that h I, and thus x I. Therefore, L is one-to-one.
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LEMMA 3.2. L(G), being a group of analytic automorphisms over W, is
properly discontinuous and fixed-point-free.

Proof It is easily seen that L(Z) is properly discontinuous and fixed-
point-free. Since [L(G); L(Z)] is finite, it follows that L(G) is also properly
discontinuous. We will show that L(G) is fixed-point-free. If L(x) (x G) is
of infinite order, then there is a k N such that L(x)k4: I and L(x)k

belongs to L(Z). Since L(Z) is fixed-point-free, L(x) has no fixed point over
W. If L(x) (x G) is of finite order, then so is x by Lemma 1. According to
the generalized result of Cartan’s uniqueness theorem [1], there exists an
analytic coordinate transformation T on a neighborhood U of the origin such
that T-lxT L(x) on U. Suppose that L(x) has a fixed point p W. Since
L(x) is a linear map, we may assume that p U. But then T(p) is a fixed
point of x, which is a contradiction. This completes the proof of the lemma.

THEOREM 3.3. There exists a deformation which transforms M W/G to
W/L(G). And thus M is diffeomorphic to W/L(G).

Proof For x G and C (t 4: 0), let x z;-lxZt and G(t)=
{xtlx G} where Tt is an analytic automorphism over W of the following
form:

Tt" (z1, z2,..., Zn) ----> (tz1, tz2,..., tZn).

G(t) (t 4: 0) is obviously group isomorphic to G, and properly discontinuous
and fixed-point-free. And thus so is G(0) L(G) by the above lemmas. We
will show that

{MtlM W/G(t) (t C)}

forms a complex analytic family. Then it follows from a theorem of deforma-
tion theory (cf. [7]), M W/G is diffeomorphic to W/G(O) W/L(G).
Now we define for x G an analytic automorphism over W C as

follows:

2"(z,t) -"> (Xt(Z),t)

where z (Zl, z2,... Zn) G_ W and C. Let t {2Ix G}. Then ( is a
group of analytic automorphisms over W C, and G , H where ,
(), g is a contraction which generates Z, and {/ Ih H}.
We first prove that G is properly discontinuous and fixed-point-free. It is

clear from the above argument that G is fixed-point-free. By the definition of
a contraction we see that for a given compact set K of W and a given point- C, there exists an e (e > 0) such that gT’(K)N K O holds for
C(It- ,I < e) and for all but finitely many integers m. It follows that for
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a given compact set K of W and a given compact set I of C, gm(K I) (
(K I)= t for all but finitely many integers m. Hence , is properly
discontinuous. Since [(" ,] is finite, ( is also properly discontinuous.
Now let A W C/( and r: A--) C be the canonical map induced

from the projection Pr" W C C. Then A is a complex manifold, r is
holomorphic, and clearly the rank of the Jacobian of r is 1 at each point of
2tr. Since --l(t)= M for each t C, {Mtlt C} forms a complex analytic
family. This completes the proof of Theorem 3.3.

LEMMA 3.4. Suppose that A GL(n, C) is of the form

A =Al(al, nl) +A2(2,n2) + +A(a,n)

where Ai(ai, ni) is a n n lower triangular matrix with eigenvalue a i, n +
n2 + +nk n, a :/: O, and a are mutually distinct. Let B be any n n
matrix which commutes with A. Then B is of the same form as A"

B Bl(nl) + Bz(n2) + +B(n)

where Bi(ni) is a n n matrix.

Proof

where

Let V Cn (an n-dimensional vector space over C). Then

v= vi + v: + + v,,

V {v - V](A aiI):v 0 for some s N}.
Since A and B commute, V/ is B-invariant, B being a linear endomorphism
over V, for 1, 2,..., n. Hence it follows that B has the above form.

THEOREM 3.5. Suppose that G is the direct product of Z and H, then
M W/G is diffeomorphic to S S2n /U where U is a finite subgroup of
U(n, C) which is conjugate to L(H) in GL(n, C).

Proof We have proved that W/G is diffeomorphic to W/L(G). For
simplicity, we write G, Z, H in place of L(G), L(Z), L(H). Now since G is a
subgorup of GL(n, C), we may assume by Lemma 3 that g is of the Jordan
form and h H is of the same form as g. Let

gt tgn + gs + tg + (1 t)g

where gn is the nilpotent part of g and gs is the semi-simple part of g. Then
since g and h (h H) commute, gt (t C) and h also commute. Therefore,
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gt induces an analytic automorphism t over if’ where if" denotes W/H. Let
M ff//Z(t)where Z(t) (t). Then {Mtlt C} forms a complex analytic
family. Accordingly, M W/G is diffeomorphic to W/Go where GO Z0

H, Z0 (go), and go is of the form

go" (z1, Z2’’’’’ Zn) -’> (alZ1, alz2,..., akZn) (0 < Jail < 1).

Now, consider a diffeomorphism F from R S2n-1 to W defined as
follows:

F" (t, Zl, z2,..., Zn) --") (az1, az2, atkZn).

Since H is a finite subgorup of GL(n, C), taking a suitable linear coordinate
transformation, we can assume that H c U(n, C)while g is the same as
before. The corresponding automorphisms to g and h over R S2"- are of
the form

" ( t, Zl, Z2,.. Zn) "-’> ( q- 1, Zl, Z2,. Zn)

and

z" (t, Zl, Z2,...,Zn) "--> (t,h(Zl, Z2,...,z3)),

respectively. Therefore, M is diffeomorphic to S S2n-1/H. In our first
notation, M is diffeomorphic to S s2n-1/U where U is a unitary group
conjugate to L(H) in GL(n, C).

LEMMA 3.6. Let J(a, k) be a Jordan form of order k with eigenvalue a and
A (aij) be any m n matrix. Then, J(a,m)A AJ(a,n) if and only if
aij ai+l,+l, ain O for (l _< _< m 1),andaii=0forj(2_<n).

Proof Let Z denote the i-th row vector of A and A the j-th column
vector of A. We define the inner product (Ai, B)= Ain] and (Ai, B)
AitB. Let J(k)= J(O,k) for simplicity. It is clearly sufficient to show the
assertion for a 0. Now if J(m)A --AJ(n), then

aij (Ei, AEj) (ei, Zj(n)Ej-’) (Ei, j(m)AEj-l)

(J(m)tEi, AEj-l) (EJ-I,Ej-) ai_l,j_l,

and alj (J(m)tE1, AEj-l) 0 for j (2 <j < n). Similarly, ain
(EiA, En) (Ei+ 1J(m)A, En) (Ei+ 1AJ(n), En) (El+ IA, EnJ(n)t) 0
for (1 < < rn 1). The converse is obvious.
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THEOREM 3.7. Let M be a Hopf manifold and G its covering transforma-
tion group. Then M is diffeomorphic to a fiber bundle over S with fiber
sEn-1/U which has a certain explicit bundle structure (as described in the
proof), where U is a finite subgroup of U(n, C).

Proof We may assume as in the proof of Theorem 3.5 that G is a
subgroup of GL(n, C) which is the semi-direct product of an infinite cyclic
subgroup Z which is generated by a contraction g and a finite normal
subgroup H. According to Corollary 2.4, there exists a minimal positive
integer m such that =gm belongs to the center of G. Since and h H
commute, we may assume that is of the Jordan form and h has the same
form as . We will show that M W/G is diffeomorphic to W/Z H where
Z (g) (g is a diagonal matrix). Since and h have the same forms, it is
sufficient to consider the case that has only one eigenvalue a, that is,

J(a, k1) + J(a, k2) + +J(a, ks). We will show the assertion for s 2.
It is then easily proved for the general case. Now, for each x G and C,
let xt T-lxTt where Tt is an analytic automorphism over W defined as
follows:

Zt’(Z1, Z2," ,Zn)-")( tkl-lZ1, k-2z tk2-1ZkZk +1’’" Zk+k2

It follows from Lemma 4 that x is well defined. Thus

{MtlM W/G(t)},G(t) {xtlx G}

forms a complex analytic family. Therefore M is diffeomorphic to W/Zo Ho
where Z0 (go) and 0 g is a diagonal matrix. Then, taking a suitable
linear coordinate transformation, go is diagonalizable.
We have shown so far that M is diffeomorphic to W/G where G

Z H, Z is generated by a diagonal matrix g, and H is a finite subgroup of
GL(n, C), all of which elements are of the same form as gm. Therefore, g
and h H are of the following form:

g=ac

where a Al(al, n1) + A2(a2, n2) -b +Ak(ak, nk) A(ai, ni) is a diago-
nal matrix with eigenvalue a (0 < lail < 1, a are mutually distinct, and
n -t-n2 q-’’’ q-n

k n), and c is a diagonal matrix belonging to
N(H; GL(n, C)), all of whose entries are m-th roots of 1; and

h" non-singular n n matrix of the same form as a.

Since H is a finite subgroup of GL(n, C) and c N(H; GL(n, C)), we can
construct a semi-direct product (c). H which is also a finite subgroup of
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GL(n, C). Therefore, taking a suitable linear coordinate transformation, we
can assume that (c) H c U(n, C)while a is the same as before.
Now consider the diffeomorphism F in the proof of Theorem 4:

(F" ( t, z 1, z2, Zn) -- az1, at2z2, an

The corresponding automorphisms over R S2n-1 to g, gm and h H are
of the form

" (t, Zl, Z2,... Zn) --’> (t + 1, c( Zl, z2,... Zn)),
m. (t, z1, z2,...,Zn) (t + m, Zl, Z2,...,Zn),

" (t, Zl, Z2,...,Zn) " (t,h(Zl, Z2,...,Zn)),

respectively. Therefore, M is diffeomorphic to the fiber bundle

S1 Z/mZ s2n- 1/H,

where the action of Z/mZ on S is given by s k exp(27ri/m).s and the
action of Z/mZ on s2n-1/H is given by u" k 6(u), where s S 1,
u s2n-1/H, k Z/mZ, and is an automorphism over S2n-1/H of
order rn induced by c. This is our expected result.
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