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CONVERGENCE OF ERGODIC AVERAGES ON LATTICE
RANDOM WALKS

J. BOURGAIN

1. Introduction

This note is concerned with a question posed by H. Furstenberg and
communicated to the author by Y. Katznelson.2 For d > 1, consider the
standard random walk on the lattice Za, i.e., if n(j) Za in the jth position,
then n(j + 1) takes one of the values

n( j) + e1, n( j) +_ e2, n( j) +_ ed

with equal probability. Here ej stands for the jth unit vector. We consider
ergodic averages along the sequence {n(j)}. Thus take some probability space
(f, Ix) and d commuting, invertible measure preserving transformations
T1, T2,..., Ta of f. Given a measurable function f on , define

1 k

Akf - _, T(J’I)T(J’2) T(J,d)f (1.1)

where n(j)= (n(j, 1),...,n(j,d)). We are interested in the convergence
properties of the averages (1.1). In this respect, we will prove the following

THEOREM. Almost any random walk {n(j)} on Zd has the property that
given any system (ll, Ix, T1,..., Td) of commuting transformations and f
LP(r, Ix), p > 1, the averages Akfgiven by (1.1) converge almost surely, along
any sequence {ks} satisfying k + > k log log k. In particular, there is conver-
gence for the logarithmic averages. If moreover, one of the transformations is
ergodic, the limit is fafdIx

A comment on the restrictions made in the statement: The subsequence
extraction is needed, even for d 1, and a generic random walk {n(j)} is not
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universally summing. Also, the assumption f LI(Iz) does not suffice, no
matter how lacunary the subsequence {ks} is taken. The nature of the
subsequence condition relates to the law of the iterated logarithm and is thus
not surprising.

Observe that for d > 3, the sequence {n(j)} c Zd has zero density. The
method of proof of the theorem is along the lines of [Bo 1, 2]. Thus we
consider a reduction to the shift on Zd (after localizing the problem) and
establish then maximal and maximal variational inequalities by Fourier
Analysis techniques. This approach (inspired from related problems in real
variable analysis) is fairly general and flexible.
The purpose of the next section is twofold. First we recall the general

scheme of the argument. Details on this matter appear in [Bo 1,2] and
particularly [Bo 1], Section 9, for the multidimensional setting. Then we state
a general condition on the Fourier transforms of a sequence of convolution
kernels in order to satisfy an LP-maximal inequality. The result needed for
application here is essentially speaking the most simple one (simpler than [Bo
2]). The fact that the exponential sums associated to a genuine random walk
satisfy these conditions will be shown in the final section. The author is
grateful to Y. Katznelson for discussions on the subject. The reader may also
wish to consult [Bo 3] for related problems.

Consider the k th average

2. Preliminaries

1 k

Akf "" E r(j’l)... r(J’d)f (2.1)
j=l

Let A c Z+ be a set of positive integers. The first goal is to control the
maximal operator

f sup IZkfl (pointwise) (2.2)
kA

by an inequality of the form

for any p > 1. In studying almost everywhere convergence, we are then
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reduced to the case of bounded measurable functions, i.e., f L(/z). Analo-
gously to (2.3), we prove a maximal variational inequality of the form

sup IAkf-Aksflll <_O(t)’t’llflloo (2.4)
<s<t ks<k <ks+l

kA 2

provided k 1, k2,..., k increase rapidly enough. Here O(t) 0 for oo

and the statement is uniform.
Since both (2.3), (2.4) have a local character, the general transference

reasoning from [Bo 1, 2] permits to replace the commuting system (f,/z,
T1, Td) by the system (zd; $1,..., Sd) where Six (Xl,..., xi_ 1, x +
1, xi/ 1,..., Xd) is the ith coordinate shift. Inequality (2.3) for instance may
then be deduced from the statement

in the shift model.
One may alternatively replace the integer group Z by a large cyclic group

ZN Z/NZ in order to preserve finite measure. The reader is referred to
[Bo 1, 2] for more details on these matters.
The advantage of the shift model is that Akb is expressed by a convolution

on Zd, nl

[ k 11 E 8,,( (2.6)A dp * - j=

where 6z stands for the Dirac measure at z Zd. The Fourier transform of
the k th kernel

1 k

K - E 6,,0) (2.7)
j=l

is a function on the d-torus Ha, defined by

1 k

rk(O) " E e2ri(n(J)’a) (2.8)
j=l

As in [Bo 1, 2], it is our purpose to derive (2.4), (2.5) from properties of the
sequence of the Fourier multipliers Ik(a), since by the Fourier inversion
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formula

(2.9)

holds. In proving maximal and maximal variational inequalities from Fourier
transform considerations, the discrete character of the original problem will
play little role in fact.
We will use the following result.

PROPOSITION 1. Let {Lrlr 1, 2, be a sequence in x+ (Zd) verifying the
following conditions for some sequence Nr}, N + > 2Nr.

fzSr(X) d 1, (2.10)

ILr(, ) I-< (Nr[]Ol[[) -cl, (2.11)

11 ]r(O)[ (gr+ll[Ot[[) cl, (2.12)

where (2.11), (2.12) are valid for all a Td, and c > 0 is some constant.
Then the sequence ch =-d * L satisfies the maximal inequality (2.3) for
p > 1 and a uniform maximal variational inequality (2.4).

Proof of Proposition 1. Let - be a smooth bumpfunction on Re, f-= 1
and define the following function on Zd:

r( X) (2.13)

The convolution operators associated to the {} of course satisfy the
maximal and maximal variational inequalities (they act as conditional expec-
tations with respect to a partitioning of Zd in cubes of size Nr). Denote

lip the lp(zd)-norm.
We use the {5} sequence in the standard comparison argument based on

a square function estimate. Thus write

mraxllLr* 4’)1112-< I( gr- r)* 4’lz)
1/2

-<[l( EILr- 1/2

(2.14)

(2.15)

by Parseval’s identity. Now /r and have a similar shape, in the sense
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that I()l (Nllll)-l, I1- ()1 Nr/lllll. Hence, from (2.11),
(2.12)

I,.(a) ..@(c)I < min((Nrllall)-Cl,(Nr+lllOtll) cl) (2.16)

implying in particular a bound on ( I.,,. rl2)1/2. Thus

(2.15) < c11,,112 (2.17)

which from the preceding establishes the maximal and maximal variational
inequality for 12(Zd). It remains to prove the /P-maximal inequality if
l<p<2.
We recall that if

E t)r, (2.18)
r=0

supp c B(0, N-1) \ B(0, N11), (2.19)

is a Littlewood-Paley decomposition of b(cf[St]), then for 1 < p < %

(2.20)

(the discrete result may be easily derived from the corresponding theorem in
Rd). Write

dP*(Lr- "@’r) L r-s*(Lr "-’@’r) + . dPr+s*(Lr- ’-r), (2.21)
s=O s>O

sup [b *(Lrr r) < so(SUplPr-s*(Lrr>s r)l

/ suPl’r+,*(gr
rO

(2.22)

Define Mp as an (a priori) maximal function bound in the inequality

suplth * Zrl -< (2.23)
r p

Standard considerations permit to assume Mp finite (by restriction to large
interval) and it is our purpose to get a uniform bound on Mp from a priori
inequalities.
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Define similarly Ap, s(rep Bp, s), s >_ 0, the best constants in the inequalities

sup [dPr-s * ( Lr "r)l < Ap,slldPl[p,
rs p

sup [(r+s *(Lr- "-r)l -< Bp, sllbllp.
r>O p

(2.24)

(2.25)

Since Ilsuprl * rl lip Cllll, (2.22) implies

Mp < Cp + E (Ap, + Bp,s). (2.26)
s>O

Consider 1 < P < P, define

1 1-0 0
P Pl 2"

It follows from (2.16), (2.19) that

IIbr+/-*(Zr r) 112 2-ClSllr+/-[12 for s 0 (2.27)

from Parseval. Thus

Isup[4r-*(Zr- r)[ E (r-s* (Lr  )I1 )1/2
rs

) 1/2< 2 -c’s 114r_ll
rs

implying that

A2, < 2-Cl

and similarly

B2,s 2 -cs.

By interpolation, one may write

Ap < 2-ClSAl-" < 2-clsFtl-
--Pl, S’ Bp, -pl,

(2.28)

(2.29)

(2.30)

(2.31)



630 J. BOURGAIN

There is also the following estimate on (2.24):

r>s p
_lr_s. Zr] 2

r>s p

/ 14,_ * rl 2

r>s p

(2.32)

The second term in (2.32) is bounded by II(Ers(r_sl2)a/21lp (appealing to
an inequality of E. Stein; cf. [St]), hence by 114,11.

Estimate by (2.20) and duality the first term in (2.32) by

Ir * Zrl 2 (2.33)
r>s p’

where the sequence {Or} satisfies

(2.34)

Since L /l(z) is positive of weight 1, one has

Ir * Lr] 2 < Irl 2
* Lr (2.35)

and thus

(2.33) <
/2

E ([/r [2. Lr) (2.36)
r>

Again by duality and (2.34), clearly

(2.36) < CMp,/2), (2.37)

hence from the preceding,

Ap,s <-Cp(1 + [m(p,/2), ) (2.38)

The same inequality is valid for Bp,.
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Applying these last estimates replacing p by P and in conjunction with
(2.31), (2.26)one finds that

(1--0)/2) < C19,191[ M191/(2__191) 1/2 (2.39)

Since p > 1, P may be chosen to satisfy p pl/(2 P1). So (2.39) implies a
bound on Mp in (2.23). This proves the proposition.

In the next section, we will show that for a random walk {n(j)} the Fourier
transforms (2.8) fulfill almost surely estimates of the form

< cv/loglog k (v/-IIll) -1/2

l1  k(a) < cv/loglog k v/ -II ll

(2.40)

(2.41)

for k taken in an asymptotically dense sequence A1. Of course, one has
Kk,<2Kk fork/2<k’<k and also

IZkf Z,fl < 2llflloo.
From these properties, it clearly suffices to consider sequences {kr} contained
in A1, and satisfying the condition of the theorem

kr+ > kr log log kr. (2.42)

Define L Kk3 (similarly L Kk3r+l.3r+2) to which Proposition 1 may be
/log log k3r, taking (2.40), (2.41) into ac-applied with Cl ", Nr V/3r

count.
Given the commuting system T1,..., Ta on (f,/x) and f L2(/x), define

the spectral measure y yf on IIa by

.(nl, n2,...,nd) (Tl,...,Taf f) (2.43)

If one of the transformations is ergodic, then 0 Ha is not an atom of 39’, if
we assume ffdtz 0. There is the identity

(2.44)

From spectral theory. Here Ak (resp. /k) is given by (1.1) (resp. 2.8).
Because of (2.40), expressing the fact taht Rk "lives" on smaller and smaller
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neighborhoods of 0 for k oo, it follows from the preceding that

IlAkfil - 0 if ff o.

Thus, if one of the transformations T1,..., Ta is ergodic, Akf- ff in
measure. This justifies the second statement made in the theorem.

3. Completion of the Proof of the Theorem

It remains to check the estimates (2.13), (2.14) on /k for a generic (in
measure theoretic sense) random walk {n(j)}. The underlying measure space
is of course the product

I- {1,-1,2,-2,...,d,-d} (3.1)

with normalized product measure.
Consider the random walk up to time k. The main estimate is contained in

following

PROPOSITION 2. Let B > 1. Then for a set of complementary measure
< e-c2, the polynomial (2.8), thus

1 k

lk( ot) - _ e2ri<n(j)’a>

j=l

satisfies the inequalities

for all a li d.

I/k(a) < B(/-[[a[[) -1/2

I1 < Bv%-II II
(3.2)

(3.3)

Deducing from this last statement the validity of (2.40), (2.41) on an
asymptotically dense sequence is then immediate. In verifying the proposi-
tion, the dimension d will play no role. We assume the reader is familiar with
basic probability theory of independent random variables.

Proof of Proposition 2. We identify the product space Fl= 1{1, 1,..., d,
-d} with the product {1,- 1}k x 1-I=1{1,2,..., d} and let {ejlj 1, k}
be independent sign choices, {:jlj 1,..., k} independent selections in the
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set {1,2,..., d}. Rewrite k(a) as follows

d

cos 2"rria
1

C 2-trin(1), a) 2"trin(k- 1),R,k(a ) -{1 + + +e d

+ Dk(el,"*, ek’ tol’ (’Ok’ O)

where

1 e2rri(n(j_l),a e2rrieyay e2rrieax’) de dtoDk ’j--1

and

n(0) =0, n(j) =n(j- 1) +ejeej(to)

corresponds to (el,... ek; to1,’’’, tok )"
The first term in (3.4) equals

d

cos 2rria
1 e2rri(n(k),a s---(1 ) + Rk<") d

Hence, one gets the bound

1
+ IDkl
cos 2 "tr a

1
/ IDkl

Also there is the obvious estimate

1 k (C k

j=l 1 j---1

n(j) I)1111.
Since n(j)= E}=lej, ee.,(,,),

1/2

(3.4)

(3.5)

(3.6)

(3.7)
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has expected size V/f and by elementary probabilistic considerations, also
(fixing o)

1 Eln(J)l>Bv/- <e-cB (3.8)

From (3.7), statement (3.3) is clear. We now check (3.2), subdividing Ha into
regions

(3.9)

where e takes values > B2/x/. Fix e and consider a a-net 7 in V V
( < e) of size

]VI (_)a. (3.10)

If a V, a’ /satisfy Ila a’ll < , it follows that

1 k

(3.11)

and thus I/(a) -/(a’)l < B(I/-e)-1/2 for appropriate choice of 8, leading
to a test set /of size

I1 (v-)<3/=>a (3.12)

from (3.10).
Thus from (3.6) one gets

sup I(k(Ot) < B(v/-e)-I/2 -2( 1 )+ e + sup IDk(Ot) (3.13)
aV a

Observe that Dk(e to, a) appears for a given a as a martingale difference
sequence on the product space ({1,- 1} {1,..., d})k with differences uni-
formly bounded by Ilall/k. Hence for given moment q > 1,

flD,,l" d,o <_ cv/- I_.___ (cf. [Ga]). (3.14)
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Therefore, for h > O, by Tchbychev’s inequality,

AqP[ maxa D/(", oz)] > h] </max./I D,(. o,.,)] d do,

-< E flo(,,)l"aa

_< (&-)/ cv- (3.15)

by (3.12), (3.14).
Take h Be2/(eV/-)1/2. From (3.15),

BE 2

max Io,(’,)l < 1/2 (3.16)
a/" (E-)

outside an exceptional (e, to)-set of measure less than

Take q B2, q > 3(d + 1). The measure estimate becomes

_n 1
(3.17)e e-

where ex/-> B2. Summation of (3.17) over the different regions V again
_Bgives the e -measure estimate. Substitute (3.16) in (3.13). Hence

sup < cB(gv/) -1/2
(3.18)

for all e. Thus (3.2) holds, proving Proposition 2 and the theorem.
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