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HONG OH KIM AND ERN GUN KWON

1. Introduction

Throughout this paper, n is a fixed positive integer, p, q, s, nonnegative
integers and a, A are complex numbers related by A -4n2a(1 a).

1.1. Invariant Laplacian . B denotes the open unit ball of C with its
boundary OB and Aut(B) the group of all bijective holomorphic maps of B
onto itself. The invariant Laplacian z is defined by

n 02f(f)(z) 4(1 Izl z) E ($1k ZlY,)dZ1OSk (Z),
j,k=l

f C2(B),

where 6jk is the Kronecker’s symbol. It is invariant under Aut(B) in the
sense that

(fo q) (zf)o q, q Aut(B).

1.2. and H(p, q). denotes the space of all homogeneous poly-
nomials on C of degree s that satisfy Af 0 where

n 032
A 4’ Ozj

is the ordinary Laplacian. The term "homogeneous" refers here to real
scalars: f(tz) t Sf(z), t > O.
Being harmonic, each f is uniquely determined by its restriction on

0B. These restrictions are so-called spherical harmonics. We shall freely
identify s with its restrictions on OB.
H(p, q) denotes the vector space of all harmonic homogeneous polynomi-

als on C that have total degree p in the variables z1,..., zn and total
degree q in the variables 51,..., 5n. Some of the basic properties of H(p, q)
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which we need are:
(a) H(p, q) has no proper nontrivial unitarily invariant subspace. That is

H(p, q) is -minimal JR1, 12.2.8].
(b) is the sum of pairwise orthogonal spaces H(p, q)with p + q s

[R1, 12.2.2].
(c) The linear span of w T=0oY is dense in C(OB) [R1, 12.1.3].
(d) L2(OB) is the direct sum of H(p, q) with 0 < p, q < oo [R1, 12.2.3].
(e) For each (p, q), the projection 7rp, q L2(OB) H(p, q) is given by the

kernel Kp, q defined by

’p, qf(rl) foBgp, q(’O, )f() dtr(), f L(OB) [R1, 12.2.5].

Here tr denotes as usual the unique rotation-invariant probability measure
on 0B. For a fixed dB, Kp, q(., ) is a function in H(p, q).

1.3. Differential operator Lp: For a function f(z) y(Izl2)h(z) with
y C2([0, 1)) and h H(p, q), Af has the form

where

(Txf )(z) (L,y)(Izl2)h(z)

(Lpy)(t) 4(1 t){t(1 t)y"+ [p+q+n- (p+q+ 1)t]
X y’ pqy} (O < < l)

see [R2, Prop. 2.4]. The differential equation Lpq y Ay has a singular point
at t 0 and it is easy to check that it has a unique solution y Rp, q,a(t)
with y(0)= 1. Thus

LpaRp, a,a(t) ARp, a,a(t), (0 < t < 1),

Rpqx(O) 1.

In particular, Rp, a,o(IZl 2) F(p, q; p + q + n; Izl 2) where

F(a,b;c;t) ., (a)k(b)k k

k=0 ()k k!

is the Gauss hypergeometric series [F. p. 405].
usual.

(a)k r(a + k)/r(a) as

1.4..spaees. For a C, Xa denotes the space of all f C2(B) that
satisfy ,f Af. These eigenspaces Xx are infinite dimensional, they are
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closed in the topology of uniform convergence on compact subsets of B and
they are Moebius invariant: If f Xx and 0 Aut(B) then f 0 Xx. Xx
contains H(p, q, A) the space of all functions of the form

f(z) Rpq,(Izl2)h(z), h H(p, q).

If f is a set of lattice points (p, q) with p >_ 0 and q >_ 0, Y(, A) denotes
the closed linear span of the spaces H(p, q, A) with (p, q) 12. W. Rudin
[R2] characterized all ’-subspaces (closed Moebius invariant subspaces) of
Xx as follows:

(a) If A 4m(m + n) for some integer m >_ 0, then the ’-subspaces of

X are {0}, X and Y. Y(fi, A)where

{(p,q):O_<p <oo, O_<q_<m},
{(p,q):0_<p <m,0<q <

’1 [") ’2’

(b) For all other h C, {0} and Xx are the only g-subspaces of Xx.
For the case h 0, Y1 is the space of all holomorphic functions on B, Y2

the space of all conjugate-holomorphic functions, Y3 the space of all con-
stants and Y4 the space of all pluriharmonic functions.

1.5. Integral P"[/z]. For a complex Borel measure/z on 0B we define

foB zB,

where

P(z sr) (1 IZI2)
n

/11 (Z, ’)12n

is the Poisson-Szeg6 kernel for B and

P( z, ’) exp{ a log P( z, ’)

is the principal branch. It is known that P"[/] X [R1, 4.2.2]. We denote
by , the vector space of all P[/z]’s where/z is a complex Borel measure
on OB.

1.6. Results. We first determine the solution Rpqx(t) as a hypergeometric
series and get the spherical harmonic expansion of P(z, ) in Section 2. The
case a 1 was obtained in [F]. As an application, we obtain an LE-growth
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condition for a function in Xa to be in Y4 extending the corresponding result
in [R3, AR] for X0 in Section 4. In the process, we also prove a necessary
and sufficient condition for a function g X to be represented by P’[G]
for some G L2(0B)when a > in Section 3. Finally, we give a description
of 3 in terms of ’ when A 4m(m + n), m 0, 1, 2,..., in Section 5.

2. Spherical harmonic expansion of

2.1. LEMMA. Iff H(p, q) then

s!t!(n- 1)!
(s -p)!(n + s + q 1)!

S +q=t +p,p <s,q <t,
otherwise.

Proof. If f(r)= ’l’Z, then the equality follows from the multinomial
expansion of (z, ’)s and (r, z)t and by using the orthogonality relations of
[R1, 1.4.8, 1.4.9]. Since H(p, q) is generated by functions obtained by unitary
changes of variables of vr ffz, the lemma follows from the unitary invariance
of dr.

2.2. LEMMA.

where

Iff H(p, q) then

P[fl(z) R(lzlZ)f(z), (1)

R(t) (1 -t2)
na E (na)i+v(na)i+qF(n) t

j=o F(p+q+n +j) j! (2)

Proof. Apply term-by-term integration on the binomial expansion of
P’(z, ’) and use Lemma 2.1.

2.3. THEOREM. Iff H(p, q) then

P’[f](z) Ap, q,Rv, q,x(lzlZ)f( z),
where

z B, (3)

(na) (na)qF(n)
Av,’,’ F(n + p + q) (4)
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Proof By Lemma 2.2, R(lzl2)f(z) P[f](z) X. Therefore

[(R(Izl2)f(z)) AR(Izl2)f(z).

As noted in 1.3, R(t)satisfies the differential equation LpqR(t)= hR(t).
Therefore

Rp,a,x( t) R( t)/R(O)

Ap, q,

and R(O) (na)p(na)qF(n)/F(n +p + q)

2.4. COROLLARY.

(a)
Rp,a,x(t ) (1 t)nF(na+p na+q n+p+q t)

(1 t)n(1-)F(n(1 a) +p,n(1 a) + q;n +p + q;t)

(b) P[f]/(na)p(na)a P-[f]/(n na)p(n nOt)q, f e H(p, q), un-
less one of the denominators is zero.

In particular, P"[1 P -[1].

Proof (a) The first equality follows from

Rp,q,x( t) R( t)/Ap, q,a

na r(n + p + q) x-’= (na)+p(na)+F(n)
(1 t) (na)p(na)qF(n) o F(n +p + q +j)

(1 t)
na E (na + p)i(na + q)i t._

1=o (n +p +q)i

(1 t)n"F(na +p, na + q;n +p + q;t).

The second equality follows from the identity (9.5.3) of [L].
(b) For f H(p, q), we have, from Theorem 2.3,

Ap,q,l_ [f](z) Ap, q,l_,Ap,q,,Rp,q,x(lzl2)f(z)
=Ap, q,Pl-[f](z)

Therefore (b) follows from (4). Finally if we take p =q 0 and f 1
H(0, 0), we have e[1](z) Pl-"[1](z).
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2.5. THEOREM. For a C,

P(z, sr) E Gv,,(r)r,(rl,),
p,q=O

z rl B, OB, (5)

where Gp, a,(r)=Ap, a,Rp,,(r2)rp+. The series on the right of (5) con-
verges absolutely and uniformly for 1, 3B and 0 < r < p for each p < 1.

Proof For p, q > nlal, the following estimate of F(na + p, na + q; n +
p + q; r 2) follows easily from the formulas (9.5.3) and (9.3.4) in [L] for the
hypergeometric functions:

IF(na + p, na + q; n + p + q; r2)l
< F(nlal + p, nlal + q; n + p + q; r 2)
_< F(nlal + p + n, nlal + q; n + p + q; r 2)

(1 r2)-2nlalF(q nlal,n(1 lal) +p;n +p + q;r 2)
< (1 r2)-2nlalF(q nlal,n(1 lal) +p;n +p + q;r 1)

(1 r2) -2nlal F(n + p + q)F(2nlal)
F(n + nll + p)F(nll + q)" (6)

From (4), (6) and Corollary 2.4 (a), we have the following estimate for Gp, q,:

IGv, a,( r)l <
(na)v(na)aF(n)
r( n + p + q) RP’q’x( r2)

<
(nlal)(nlal)aF(n) 2 Ro.

r(n + p + q) (1 r )

lF(na + p, na + q;n + p + q; r2)l

_< (1 r2)R-2llF(nlal + p)F(nlal + q)F(n)
r(nlal)2r(n + + q)

x F(2nlal)
r(n + nlal + p)r(nlal + q)

(1 r 2)
r(nlal)2

_< (1 r2)R-2nllr(n)F(2nlal)F(nlal)2

r(n +p + nlal)

(7)
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Now, since Kp, q(,1, ) is uniformly dominated by (p + q + 1)2n times a
constant depending only on n, it follows from (7) that

E [ap, q,a(r)gp,q(,)[
p,q>nla[

< C(n,a)(1 r2)Re-2nl’l E r2( k + 1)2n
k>2nlal

for some positive constant C(n, a) depending only on n and a. Therefore the
series (5) converges absolutely and uniformly for sr, r/ OB and r < p < 1.
Now, fix r < 1. Let f ’. Then f Ep+q=sfp, q where fp, q 7rp, qf

H(p, q) [R1, 12.2.2]. Hence, by Theorem 2.3,

P’[f ](z) fBP(rrl,)f() dtr()_
BP(rrl,)fp, a() dtr()

p+q=s
_

Ap,q, aRp,q,,(r2)fp,q(rrl)
p+q=s

E Gp, q,(r)fv, q(q).
p+q=s

(8)

Since

fp, q() (Trp,qf )(’rl) foBKp, q(7, )f() dtr(),

(8) has the following form

P’[fl(rrl) f _, G,,(r)K,(n,)f(sr) dr(’)
Bp+q=s

Gp a,(r)Kp (rl,)f() dr() (9)
Bp 0

for f . Since the linear span of __0 is dense in C(3B), (9) is true
for any f C(3B). Therefore we have (5).

3. Integral representations of functions in X
For a function f continuous on B and 0 < r < 1, we let fr denote the

function defined on OB by

fr(Sr) =f(r’) (Sr S)
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and we define pqf by

((rpqf)(z) (Trpqf)() (z rsr).

For f L2(OB), we denote, as usual, faBlf(’)[ 2 d(’) by Ilfl122. For a > 1/2,
we have the following characterization of functions of the form g P[G]
for G LZ(OB).

3.1. PROPOSITION. Let a > -. Then g P"[G] for some G L2(OB) if
and only if g Xx and

sup f0 ( 1 r 2) n(a 1) 2g(r’)[ art(if) < o. (1)
0<r<l B

Proof Suppose g P"[G] and G L2(OB). It is known that g Xx. We
recall that if a > then

fBP(r, rl) dtr(,1) f (1 r2)
na

dtr(l) (1 r2) n(1-a)

ll rr/ll 2n

We denote the integral on the left by A(n, a, r) for convenience. We use
Jensen’s inequality to get

fa,lg (rg’)l 2 dtr(ff)

BA(n a r) 2 1
(r,rl)G(rl)dtr(rl) dtr()A(n,a,r)

< A(n a r)2 1 foBi 2 fBp,(A(n; , r) G(r/)[ art(r/) rsr, r/) dtr(sr)

2A(n, a, r)2[lG[[22 (1 r2)2n(l-)llG[[2.
Therefore (1) follows.
Suppose g Xx and (1) holds. It follows from [R2, Theorem 2.6] that

(’?rpcg)(z) Rp,q,,(lzl2)gp,(z) (z B)

for some gpq H(p, q). Since g is real-analytic in B, g lies in the closed
linear span of (rpqg [R2, Theorem 2.3]. Hence

g(z) lim E Rp, a,(lzl2)gpa(z) (2)
N-- p+qN
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in the topology of uniform convergence on compact subsets of B. In particu-
lar, (2) holds pointwise.
We will show that the following defines a function G in L2((gB):

e(’) E -1Ap,q, agpq( ) ( OB) (3)
P,q

From (1) and (2), we have

> C >_ fB(1 r2)2"("-1)1 2g(rsr)l do’(sr)

E (1 r2)2n(a-1)Rp, 2
1122q,x(r2) r2(P+q)llgp q

p,q=O
(4)

By Corollary 2.4,

(1- r2)n("-l)Rp 2 F(n( a p n q p q,r ),,q,A( r ) 1 ) + (1 a) + n + + 2

which increases to

r(n + p + q)F(2na n)np’q’t V(n. + p)r(.. + q)

as r , 1 since a > 3. Therefore if we take limit as r 1 in (4)we get

Enp,a,,llgp, qll < oo.

Since

Ap, q, "np, q,
F(n)F(2na-n)

r(na)2

is a constant depending only on n and a, (3) and (5) imply G L2(OB). If we
let

GN() E -1Zp, q, ctgpq( ) ( OB) (6)
p+q<N

and fix z B, it is easy to see, via Schwarz inequality and the fact that
GN G in L2(OB), that

lim P"[GN](Z ) P"[G](z). (7)
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Therefore by (7), (6) and Theorem 2.3, we have

P"[G](z) lim
N--->

E Rp, q,a(lzl2)gp, a(z) g(z).
p+q<N

This completes the proof.

4. The .’-subspace Y4

If f is real-analytic in B then f has a homogeneous expansion

f(z) E Pk(z, -)
k=O

where Pk is a homogeneous polynomial in z1,... z and 1,"’, n of total
degree k. Let /3 > 0 be real. We define the radial derivative _f of f of
order/3 by

.f(z) E (k + 1)Pk(Z, ).
k

We give a sufficient condition for a function f in Xa to be in Y4. When
a 1, this reduces to a result in [AR, R3], which gives a sufficient condition
for an ’-harmonic function to be pluriharmonic.

4.1. THEOREM. Let a > - and let f Xa. If

foBl.n(2a-1)(1 r2)n(a-1)f(r’)l 2 dr() o(log2 1)1 -r (1)

as r--+ 1, then f Y4. In fact, if a= 1 +m/n, or if h =4m(n + m),
m 0, 1,2,..., then f= P"[F] for some F Ealua2F,q L2(OB) where
Fp, a H(p, q) and fl 1, fl2 are as in 1.4; if a 1 + m/n, or if h # 4m(n +
m), m 0,1,2,..., thenf O.

Proof We first note that (1) implies that f satisfies the hypothesis of
Proposition 3.1. In fact, if we let u(z)= (1- [Zl2)n(a-1)f(Z) and h(z)=
."(2-1)u(z), then

u(z) r(n(2a 1))
log 7

n(2a 1)-

h(tz) dt.
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Therefore foBlU(r)l 2 dr(() is bounded if

(1 t) n(2a-- 1)--llh ( tr )[ dt }
2

is bounded. (2) is, by Minkowski inequality, at most

(2)

(f01(1- t)n(2a-1)-I dt( foBIh(tr)12 dtr() 1/2}
which is bounded by

1 t) n(2a-1)-1 log 1

2

dt <

uniformly on r by (1).
Now, by Proposition 3.1, there is an F L2(aB) such that f= P[F].

From 1.2.(d),

F(;) E Fp, q(;)
P,q

in L2(OB), where Fp, q H(p, q). Let

Fv= E Fp, a
p+q<_N

and let fN(Z ) P"[FN]. Then

fu( Z) _. Ap, a,,Rp, q,,(Izl2)Fpq( z)
p+q<N

(zB). (3)

On the other hand, since Fu F in L2(OB), the difference

.n(2a-1)u( r,rl ) ..n(2a-1)(1 r2) n(a-1)fN( r,rl )

f .rn(2a-1)[(1 r2)n(a-1)pa(r, sr)](F FN)( )
OB

tends to 0 in LZ(OB) once r is fixed. Hence, by the orthogonality of {Fp, q} and
by (3), we have
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Now, by Corollary 2.4,

_@’n(2a-X)[( 1 r2)n(a-1)ep,q,x(r2)rp+q
."(2’-l)[F(n(1 a) +p,n(X a) + q;n +p + q;r2)rp+a]_

(n na + p),(n na + q)k
(2k + p + q + 1)n(2a-X)r2k+p+q

k (n +p +q)k’k!
(5)

We note that if neither n na + p nor n na + q is a nonpositive integer
then

(n na + p)(n na + q)
(2k + p + q + 1) n(2a-1)

1
(n + p + q)k!

= -’
as k ; so that (5)> C log(l/1- r) for some positive constant C
C(n, a, p, q). The hypothesis (1) now implies by (4) and (5) that Fpq 0
unless either n na + p or n na + q is nonpositive integer. Therefore if
a4:1 +re m =0,1,2... then f=0 and if a= 1 +m/n, m
0, 1, 2,... then Fpq 0 unless either 0 < p < m or 0 < q < m; so f Y4.
This completes the proof.

4.2. Remark. The function f(z) Rp, a,x(Izl2)z belongs to Xa but

foBl.n(2a-1)(1 r2)n(a-1)f(r)12 dr= (lOg2 1-rl )
as r 1 for large p and q. Since such f is not in Y4, we can say that the
growth condition (1) is best possible.

5. ’-subspace Y3

Finally, we have the following characterization of Y3 for the case h
4m(m + n) or a -m/n, m 0, 1,2...

5.1. TI-IEOREM. If A 4m(m + n) or a -m/n, m 0,1,2... then

5.2. LEIA. ’ is a subspace ofXa which is invariant under Aut(B).

Proof
and

We have seen that ’ is a subspace of Xa in 1.5. For q Aut(B)

f(z) f0 P( z, r) d/x(r),
B

zB,
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where/z is a complex Borel measure on OB, we shall show that f ’,.
Let (a) 0 ith [a[ < 1. Then Ua where U is a unitary transforma-
tion of C" and

a- lal-2(z,a)a- V/1- lal2(z- lal-2(z,a)a)a(Z) 1 (z,a) (a O)

and a(z)= -z(a 0). By a familiar calculation as in [R1], we have, for
’0 a(u-l),

(fo,O)(z) (f oWcpa)(Z) fo Pa(UtPa(Z)’) dtz()
B

fBPa(qa(Z), U-I)
1 Iqga(Z)l 2 )naI1 ((a(Z), u-lg’)[

( 1- Iqa(Z)12 )fB I1 (a(Z), a(T/))I 2 dla’(gqga(rl))

Ii-<z,n>l a na( I1 (a, n>l 2

1 lal 2

f e ( z "rl ) ( I ( a rl

1-I-aii

We used the identities in Theorem 2.2.2 of [R1]. We note for r/ S,

1 lal I1 (a, n)l -< 1 + lal.

Therefore if a B is fixed then

is uniformly bounded on 0B. Now we define

(Ix)(E)=fE(ll--(a’q)[21[a[ 2
EcS,

then/z g is a complex Borel measure on OB. Thus f rp ’.
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Proof of Theorem 5.1. Since a -m/n, we have

-m

(1- Izl =)
m B(1 <z, ’>)m( 1 <,z>)m

(l-Izl2)
m

Bj, =0 J" k

X(--1)J+k<z,g>J<K,Z> dp,()
m

E
B(1 izl2 )

m

lal, It31--o
m

E C’(o, )za/3
(1- Izl 2)

where C(a, fl) and C’(a, fl) are constants depending on the multiindices a

and/3. This shows that ’ is a finite dimensional subspace of X which is
invariant under Aut(B). Therefore it is also closed. Hence ’, Y3 from
1.4.
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