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UNIFORMLY SWEEPING OUT DOES NOT IMPLY MIXING

TERRENCE ADAMS

1. Introduction

Let T be an invertible measure preserving transformation on a measure
space that is isomorphic to the unit interval with Lebesgue measure. It was
shown in [F1] that if T is mixing, then T is uniformly sweeping out (see 2
for definitions). A sequential counterexample to the converse was given in
[F2] where a transformation was constructed that is not mixing on a sequence
but is uniformly sweeping out on the sequence.

In [C], Chacon constructed another example of a rank one transformation
that is weakly mixing but not mixing that is different from Chacon’s transfor-
mation [F3, 86-89]. In [FK] the example in [C] was shown to be lightly
mixing, not partially mixing, and not lightly 2-mixing which implies not
sweeping out of order 2.
Our purpose is to show the transformation T in [C] is uniformly sweeping

out. Thus T is rank one, not partially mixing, uniformly sweeping out, but not
sweeping out of order 2. This is in contrast to Kalikow’s theorem which states
that rank one mixing implies 2-mixing [KA].
We also note that it is not difficult to construct a partially mixing transfor-

mation that is not uniformly sweeping out.
It was shown in [FT] that (2k 1)-mixing implies uniformly sweeping out

of order k, k > 1. Thus mixing of all orders implies uniformly sweeping out
of all orders. Concerning the converse, we do not know if uniform sweeping
out of all orders implies mixing.
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discussions.

2. Preliminaries

Let (X, ,/x) be a measure space isomorphic to the unit interval with
Lebesgue measure and let T be an invertible measure preserving map of X
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onto X. T is lightly mixing if for all sets A and B of positive measure we
have

(2.1) liminf/z(TnA (3 B) > 0.
n--

Lightly mixing was introduced in [BCQ] where it is called sequence mixing. It
is easy to show that T is lightly mixing if and only if for every set A of
positive measure and increasing sequence of integers (ki) we have
/z(U i 1TkiA) 1. In [F1] this property is referred to as sweeping out.
A transformation T is partially mixing if there exists/3 > 0 such that for

all measurable sets A and B we have

(2.2) liminf/x(TnA q B) >_ fll( A)l(B )

A transformation T is a-mixing, 0 < a _< 1, if (2.2) holds for/3 a but does
not hold for/3 > a. The first example of a lightly mixing transformation T
that is not partially mixing was constructed in [BCQ] where T is the infinite
direct product of a partially mixing transformation. In [KI1] King proved that
a countable Cartesian product of lightly mixing transformations is lightly
mixing. The question was asked in [KI1] whether a lightly mixing transforma-
tion that is not partially mixing could be constructed directly rather than
being obtained as an infinite product. In [FK] it was shown that the rank one
example [C] constructed directly by cutting and stacking is lightly mixing, not
partially mixing, and not lightly 2-mixing.
A transformation T is uniformly sweeping out if for each set A of positive

measure and e > 0 there exists a positive integer N N(A, e) such that
I(O’=lTkiA) > 1--e for all k < k2 < < ks Mixing implies uni-
formly sweeping out IF1] and we will show that the transformation in [C]
provides a counterexample to the converse. We also note King proved that a
countable Cartesian product of uniformly sweeping out transformations is
uniformly sweeping out [KI2].
A transformation T is lightly 2-mixing if for all sets A, B, and C of

positive measure we have

(2.3) lim inf l( Tm( TnA B) C) > O.

A transformation T is sweeping out of order 2 if for each pair of sets A and
B of positive measure and increasing sequences (ki) and (Ji)we have
/z(LI i%ITk(TJA N B)) 1. It is easy to show that sweeping out of order 2 is
equivalent to lightly 2-mixing. A transformation T is uniformly sweeping out

of order 2 if for each pair of sets A and B of positive measure and e > 0,
there exists N N(A, B, e) such that /z(U/N= I(Tk(TJA N B)) > 1 e for
all Ji < J2 < < JN and kl < k2 < kN" Clearly uniform sweeping out
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of order 2 implies sweeping out of order 2. Higher order uniform sweeping
out is defined in general in [FT].

3. Example

For reference we will repeat the construction of the rank one transforma-
tion T in [C] which is most conveniently defined in terms of the n-blocks Bn

for n 1, 2, 3, Let B (0) and let s denote a spacer. By induction, we
define Bn+ BnBnS. If hn is the length of B., then h.+ 2h. + 1. It

2 1 for n > 1. We let H. h + 1 2n for n > 1follows that h.
In terms of cutting and stacking, let C. denote the single column of height

h. corresponding to B.. Therefore C. + is obtained by cutting C. in half and
stacking_ the right half above the left half with an additional spacer level
denoted by S./1 placed on top. We can begin with C ([0, 1/2)) and let
Sn+ [1- 1/2n, 1- 1/2"+1) for all n >_ 1. Thus we obtain T
limn-o Tc,, defined on [0, 1). In Figure 3.1 we show Cn of height hn with top
level S,. The arrows show the action of T.

Let/z(C,) denote the measure of the union of the levels in C,; hence

].,(Cn) hn(1/2n) (2n- 1)/2n= 1- 1/2n= 1- liBn.

Sn+
Sn+2- Sn+l

I III Sn I

hn

FIG. 1

n,1
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Copy of Ck <
Copy of Ck <’
Copy of Ck (

FIG. 2

hn

Let In, denote the th level of C. starting at the top for 1 _< _< h. as in
Figure 3.1. The construction implies that Th"Sn is the union of the spacer
interval S.+h. and the h. intervals Th"Sn N In, for 1 _< _< h, which are
indicated by bold lines in Figure 3.1. The interval lengths decrease by a factor
of 1/2 and we have tz(Th"Sn 0 In, i) tz(Sn)/2 for 1 _< _< h.. We will refer
to the configuration of these intervals as in Figure 3.1 as a crescent.

Fix k and let n > k. The column Ck appears in C. as 2n-k disjoint groups
of hk consecutive levels of C. Each of these groups of hk consecutive levels
will be called a copy of Ck. Thus Ck appears in C. as 2n-k disjoint copies of
Ck, as indicated in Figure 3.2.
For example, consider k 2 and n 3, as in Figure 3.3. The two copies

of C2 in Ca are denoted by C2, for 1,2,. Let I be the top level in C2;
hence I consists of the top levels of the two copies of C2 in Ca. The right half
of the top level in C2,i is denoted by I for 1, 2.

Let I/* TH3!i CEi and I* 13/2__,I/* We will also refer to I/* as a
crescent which is indicated by bold lines in Figure 3.3. It is convenient to
work with these crescents rather than all of Tu3I c3 C2. Note that if L is one
of the bottom six levels in C3, then L c C2 and

/z(I* L) >/z(L)/16 (L)/2s.

The union of these six levels is C2 and/z(C2) 1 1/H2. Furthermore, if
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C2,1< I"

C2,2

I1

12
h3=7

FIG. 3

0<t <H3=8,then

tx( Tq* C3 L) >/x(L)/2//2

for six levels L in C3 whose union also has measure/.(C2) 1 1/H2.

In general, let n > k and let Ck, be the ith copy of Ck in C for
1 <_ <_ 2n-k. Let I be the top level in Ck and let I be the right half of the
top level in Ck, for 1 _< _< 2n-k. Let

I’ TH.I ( Ck, for 1 <_ 2n-k.

We refer to I* as a crescent, which is indicated by bold lines in Figure 3.4. If
L is a level in Ck, i, then Iz(TH,,Ii L) >/x(L)/2/k.

LEMMA 3.1. Let n > k and let G be a union of some of the top levels of the
copies of Ck in C,. Let G* O IcaI. If 0 <_ <_ Hn, then tz(TtG* L) >_
p(L)/2Hk for a class of levels L in Cn whose union has measure
(tz(G)/Ix(I))(1 1/Hk), where I is the top level in Ck.

I I
Ck,

hk

FIG. 4
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Proof A crescent I/* TI-I.Ii n Ck, as in Figure 3.4 starts in the left half
of C.. As increases it moves upward under T until it passes through the
top left of C. and then moves into the lower right half of C. For 0 <_ <_ Hn,

T’I’ intersects hk levels L of Cn in measure at least /z(L)/2/-/k. Let r be
the number of top levels in G. Therefore G* consists of r crescents. Hence if
0 < t < Hn; then i.t,(TtG* N L) > tz(L)/2 t-Ik for rhk levels L in C. Now

rhktz( L ) rtX(Ck)/2n-k rl.( L)
2n-k/z(L)

u(o)
(I) (1- 1/Hk).

LEMMA 3.2. Let n > k and let G* be as in Lemma 3.1. If 0 <_ t <_ Hn,

then TtG* and Cn TtG* are unions of levels in Cm for m >_ n + Hk.

Proof If L is a level in C such that iz(TtG* fq L) > 0, then T’G* L
is an interval whose length is a multiple of /(L)/2uk. This interval will
appear as a union of levels in Cm for m > n + Hk. Moreover, L TtG*
will consist of two intervals with lengths that are multiples of /z(L)/2uk.
These intervals will also appear as unions of levels in Cm for rn > n + Hk.
The inverse transformation T-1 acts on levels of a column C in a similar

way that T does. In this case we let I be the bottom level in Ck and let I be
the left half of the bottom level of a copy Ck, of Ck in C,. The correspond-
ing crescent I* (T-Z-InI) q Ck, is shown in Figure 3.5.
Lemmas 3.1 and 3.2 with T and top replaced by T-1 and bottom,

respectively, are proved in exactly the same way. We remark that it is not
difficult to show that T and T-1 are isomorphic.

Ck,

I I

F:G. 5
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4. Subset selection

In this section we will prove that given a sufficiently large set of integers,
we can select a certain subset with certain growth properties.

LEMMA 4.1. Let k be a positive integer and let P be a set of 22k positive
integers. There exists a subset S {s < s2 < < sk} c P such that either
(a) or (b) holds:

(a) sk s

_
2(Sk Si+ 1) for 1,2,..., k 1.

(b) si+ -s >_ 2(s -s1) for i= 1,2,..., k- 1.

Proof We will obtain disjoint subsets A2k and B2k Of P such that
AEk U B2k will have 2k / 1 numbers. Therefore, either AEk or BEk will have
at least k numbers.
Given an interval I [m, M], the left and right halves will be denoted by

L(I) m, 2 and R(I) ------,M

respectively.
Let a min P and b max P. Let A {a 1} and B {bl}. Let 11

[a 1, bl]; hence 11 N P P. Thus, 11 has 2ze numbers.
We now proceed by induction. Let < 2k. After the th step, we have

Ai= {a <a2 < <au, and Bi= {bo,< <b2 <bl},

where u / U + 1. Also, aui ( bvi and if I [au, by,], then I N P has at
least 22k-i+ numbers.

If L(Ii) P has at least 22k-i numbers, then define bvi/l max L(Ii)
P, ui+ "-u / 1, and ui+ u i. Otherwise, R(Ii) P has at least 22k-i
numbers and we define au,+l min R(Ii) P, ui/ u + 1, and vi/ vi.

In either case, Ii/ [aUi+l bvi+l] will have at least 22k-i numbers.
Proceeding inductively, we arrive at

A2k (a < a2< < auz, and B2k {by2k< <b2<bl},

where U2k / V2k 2k + 1. Consider ui+ U / 1 for < 2k; hence

aui / bvi au / au2k(1) aui+’l > 2 > 2

From (1) we obtain

(2) au2, au, > 2(au2 au,+l )
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Next consider vi+ Ui -1- 1 for < 2k; hence

bvi q- aui bv -+- bv2k(3) bvi+l <- 2 < 2

From (3)we obtain

(4) 2(bo,+- bo) _< bo,- bvz.
If A2k has at least k numbers, let S be the largest k numbers in A2k;

hence sk au:. It follows from (2) that S satisfies (a). Otherwise B2k has at
least k numbers. In this case let S be the smallest k numbers in B2k; hence
S bo:. It follows from (4) that S satisfies (b).

LEMMA 4.2. Let M and H be positive integers. Let P be a set of 22(M+ 1)H

positive integers. There exists S (s < s2 < < SM+ 1} such that either (a)
or (b) holds"

(a) SM+ Si 2H(SM+ Si+ 1) for 1, 2,..., M.
(b) si+ -s > 2H(si- S1) for i= 1,2,..., M.

Proof Apply Lemma 4.1 to get a subset of (M + 1)H numbers satisfying
either (a) or (b) of Lemma 4.1. Extract every H-th number to obtain a subset
of M + 1 numbers satisfying either (a) or (b) above.

LEMMA 4.3. Let > 0 and let H be a positive integer. Suppose r,
n 1, 2, 3,..., is a sequence of real numbers such that r 1 and

1
-) forn>lrn <- rn 2H

( rn_

Then

1- + forn 1,2,3,

Proof We have

(r1=1<1+6= 1- +6.

Assume

(1) rn_ < 1-- +6.
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Hence

(2)
1

_6)rn <-- rn 2H
( rn-

+ 6/21-1

Thus the lemma follows by induction.

5. Main result

Let T be the transformation constructed in Section 3.

THEOREM 5.1. The transformation T is uniformly sweeping out.

Proof Let A be a set of positive measure and e > 0. Choose k suffi-
ciently large so that 1/He < e/100 and there exists a level I in Ck such that
/z(A I) > (1 e/lOO)lz(I). We can assume I is the top level in C and
A A N I. Choose M so that

(1 1/2n) < e/100.

There exists n > k so large that there exists a union G of top levels of copies
of C in C such that

(2) /,(GAA) < (e/IOOM)Iz(A).

It follows that/z(G N I) > (1 e/50)tz(I). Choose N as

(3) N 22(M+ 1)Hn.

Let P be a set of positive integers with N numbers. By Lemma 4.2 with
H Hn, there exists a subset S with M + 1 numbers satisfying either (a) or
(b). First assume (b) is satisfied. Let s s2 s3 s1, s3 s4 Sl,... sM

SM+I $1" Note that s s3 s >_ 2Hn(s2 S1) >_ 2/- > Hn.
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We can write s’u Hn. + u where 0 < tu < Hn. for 2 < u < M. We have

s,+a > 2/-/"-’u 2I-I"(Hu + tu)
Hnu+i_i. + 2n"tu > Hnu+Hk.

Thus we have

(4) s,+l > Hnu+i_ik, 2 < u < M.

Let Gu* correspond to G* in Lemma 3.1 for n nu, u 2, 3,..., M. Let
R X, RE Gc, and

u-1 )c(5) R= Gt3 UTtiG’
i=2

for u 3, 4,..., M + 1. Intuitively, Ru

we have
is the remainder at stage u. From (5)

C

(6) R+ Ru 0 (TtuG*u

It follows from (4) and Lemma 3.2 that Ru
q Cnu is a union of levels in C,u.

Let ru iz(Ru). We will apply Lemma 4.3 to estimate ru.
Define 6 as

(7) =1 /(G)( 1 ) e e
1-  1(1-

We have r =/z(X) 1 and r2 1 -/z(G). Now

(8) r
1 1
2 (r 6) 1 (12 6)

1 1> 1
2H > 1 2Hk

> 1-/z(G) r2.

Let Du denote the union of levels L in Cnu such that iz(TtuG*u L)>
(L)/2H. By Lemma 3.1 we have tz(Du) 1 6. In particular, let L be a
level in C,, such that L c Ru. Therefore the measure of the union of levels
L Ru such that iz(Ttua*u (’1 L) >_ i(L)/2Hk is at least tz(Ru) . Thus

(9) (Ru
1Tt"(’;*) > (tz(Ru) )-- 2Hk
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From (6) and (9)we obtain

(10) (,(Ru)/x(Ru.l) < I-t( Ru) 2---.
Thus (8), (10), and Lemma 4.3 with H Hk imply

(11)

Hence, (11) implies

I( RM+ ,) < (1 1/2Hk)M +
g F.,

< T’ + < el2.

Therefore,

U TSG
i=1

< IX(RM+) < e/2.

pP i=1

U r ’G + M(GAA)
i=1

8 E< - +M. 100--

Next we assume there is a subset S satisfying (a) of Lemma 4.2. Let s 0,
s2 st+ SM-1, S3 SM+I SM-2,... ,SM SM+ S. Note that

S2 SM+I SM_ > 2H-( SM+ SM) > Hn
So, for2<u <Mwecanwritesu=Hnu+tu where0<tu

property (a)in Lemma 4.2 says we have the relation
< Hnu. Then

Su+ nnu+H, 2<u<M.

Now, we can use Lemmas 3.1 and 3.2 for T-1 to get a similar argument
showing

< e/2.
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Hence, we get

(12) U T-SA < e.
i=1

But, s + SM_i+I) SM_i+ SM+ 1. Therefore, (12) gives

U TPA <e.
pP

Thus T is uniformly sweeping out.
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