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I. Introduction

Let X be a Banach space, let (l’I, E,/x) be a measure space and let
1 < p < oo. L’(/z, X) will denote the Banach space of all (classes of) X-
valued /z-p-Bochner integrable with the usual norm. If X is scalar field, then
we will write LP(/) for L’(/z, X).

In this note, we consider some types of Radon Nikodym properties
associated with subsets of countable discrete abelian group (type I-A-RNP
and type II-A-RNP)which generalize the usual Radon Nikodym property and
the Analytic Radon Nikodym property. These properties were introduced by
Dowling [D1] and Edgar [E].

In [D1], it is shown that if A is a Riesz set then LI[0, 1] has type I-A-RNP.
It is then natural to ask if these two properties pass from X to L’(/z, X).
Dowling proved in [D1] that if A is a Riesz subset of Z, then LI(T, X) has
type II-A-RNP whenever X does. In this paper, we will show that the same
result holds regardless of the group G and the measure space (fl, E,/z). We
will give also some generalization for non Riesz sets.
We will discuss also when type I-A-RNP and type II-A-RNP pass from a

Banach space X to CA(G, X) if A is a Rosenthal set. Other related results
are obtained.

All unexplained terminologies can be found in [D] and [DU].

II. Preliminaries and definitions

Throughout this paper G will denote a compact metrizable abelian group,
’(G) is the o-algebra of the Borel subsets of G, and h the normalized Haar
measure on G. We will denote by F the dual group of G, i.e., the set of
continuous homomorphisms y: G C (F is a countable discrete abelian
group).

Let X be a Banach space and 1 < p < 0% we will denote by L’(G, X) the
usual Bochner function spaces for the measure space (G, ’(G), h), M(G, X)
the space of X-valued countably additive measure of bounded variation,
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C(G, X) the space of X-valued continuous functions and
M(G, S),ltzl _< C,X for some C > 0}.

(i) If f LI(G, X), we denote by f the Fourier transform of f which is
the map from F to X defined by f(y) fG/fdA.

(ii) If /x M(G, X), we denote by/2 the Fourier transform of/x which is
the map from F to X defined by

If A c F is a set of characters, let

L(G, X) {f LP(G, X), f(y) 0 for all A}
Ca(G,X) {f C(G,X),f(y) 0 for all A}
MA( G, X) Ix M(G, X), /2( 7) 0for all Y A}
M(G, X) {/z M(G, X), (y) 0 for all 3’ A}

DEFINITION 1. (i) A subset A of F is a Riesz set if and only if MA(G, C)
LA(G, C).

(ii) A subset A of F is a Rosenthal set if and only if Ca(G) L(G).

Recent information about Riesz sets can be found in [G].
The following properties were introduced by Edgar [E], and Dowling [D1].

DEFINITION 2. (i) A Banach space X is said to have type I-A-Radon
Nikodym Property (type-I-A-RNP) if and only if M(G, X) EA(G, X).

(ii) A Banach space X is said to have type II-A-Radon Nikodym Property
(type II-A-RNP) if and only if MA, ac(G, X) LIA(G, X) where

MA,ac(G,X)
{/ MA(G, X),/x is absolutely continuous with respect to A}.

Remarks. (a) It is obvious that type II-A-RNP implies type I-A-RNP.
(b) Since (G) is countably generated, one can see that these two

properties are separably determined.
(c) If G T then F Z. Then type I-Z-RNP is equivalent to type

II-Z-RNP which is also equivalent to the usual RNP. Similarly, type I-N-RNP
is equivalent to type II-N-RNP and is equivalent to the analytic Radon
Nikodym Property (see [E]).

(d) If A is a Riesz subset, then MA, ac(G X) MA(G, X).

We need the following previously known results.

THEOREM 1. [E] (Edgar). Let G be a compact abelian metrizable group and
let A c F. For a Banach space X the following conditions are equivalent.

(i) X has type I-A-RNP;
(ii) If

T" LI(G)/LA,(G) X
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is a bounded linear operator, where A’ y F: / A}, and

Q: LI(G) ---) La(G)/LI,(G)

is the natural quotient map, then TQ is a representable operator.

PROPOSITION 1. [D2] (Dowling). Let G be a compact abelian mettizable
group and let A be a Riesz subset of F. If LI(G, X) has type I-A-RNP then X
has type II-A-RNP.

DEFINITION 3. Let E and F be Banach spaces and suppose T: E - F is a
bounded linear operator. T is said to be an absolutely summing operator if
there is a constant C > 0 such that for any finite set (Xm) mn in E the
following inequality holds:

n ( n, IlZxmll C sup IX*(Xm)I; X
m=l m=l

* E*, IIx* 1}.
The least constant C for the inequality above to hold will be denoted by

[[Tlla. It is easy to check that the class of all absolutely summing operators
from E to F is a Banach space under the norm [[Tllas. This Banach space
will be denoted by III(E, F).

Equivalent formulations for the operator T: E F to be absolutely
summing can be found in [DU, p. 162]. If E happens to be C(K)where K is
a compact Hausdorff space, then T is absolutely summing if and only if its
representing measure G (see [DU], p. 152) is of bounded variation and in this
case TII G I(K) where GI(K) denotes the total variation of G. In this
paper we take advantage of this fact by identifying the two Banach spaces
HI(C(K) F) and M(K, F).
The following representation theorem due to Kalton [K] is the main

ingredient of our approach.

THEOREM 2. [K] (Kalton). Suppose that
(i) K is a compact metric space and h is a Radon measure on K;
(ii) 12 is a Polish space and tz is a Radon finite measure on 12;
(iii) X is a separable Banach space;
(iv) T: L (h) - L(tz, X) is a bounded linear operator.
Then there is a map to To,(f - III(C(K), X)) such that for every f

C(K), the map to To(f) is Borel measurable from f to X and:
a) If io, is the representing measure of T then ff [/z [(B) d/z(to) _<

IITIIA(B) for B (g).
) Iff LI(A), then for Iz a.e. one has f Ll(I/,ol).
3’) Tf( to) To,f Ix a.e. for every f LI(A).
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The following proposition gives a characterization of representable opera-
tors.

PROPOSITION 2. Under the assumptions of Theorem 2, the following two
statements are equivalent:

(i) The operator T is representable;
(ii) /z a.e. to,/x,o has Bochner integrable density with respect to A.

Proof. Without loss of generality we can assume that K [0, 1] and A the
Lebesgue measure.
Assume that T: LI(A) LI(/x,X) is a representable operator. There

exists L(A, LI(/z, X)) such that

Tf ff(t)(t) dA(t) for all f LI(A).

Notice that for any measurable subset A of I, the map I: LI( , X) X
given by IA(h)= fAh(to)dtz(to) is a bounded linear operator. Hence the
operator I. T is representable and its kernel is given by K:--, X (t:
f.(t)(to)dl(to)). By Lemma 16 of [DS], there is a map F: K I X
which is A (R)/x-integrable and F(t,.)= (t) for A a.e. t K. For any
measurable subset A of one has

I r( f) fAT(f)(to) dl( to)

t) fF(t, to) dl(to) dA(t)

and by Fubini’s Theorem, this equals

f.( f/(t)F(t, to)dA(t))d/z(to).
Hence

Tf( to) f/(t)F(t, to) dA(t) for/x a.e. to.

One can apply Fubini’s Theorem above since

ff(t)lfll’(t, o)11 d(o) dA(t) < IIllllfll
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Now let dvo,(.) F(., to)dA(.). We will show that v, =/z for a.e. to. For
that, note that

fJ(t) d( v,o -/x,o)(t ) 0 for/x a.e. to.

Taking the exceptional set over all fn’s in a countable dense subset of C(K),
we can fix 1 c , (1"11) 0 and for each n N and to 1,

fJn(t) d(v I)(t) =0.

Since (fn)n is dense in C(K) then it follows that ’o, =/z for every to

Conversely, assume that there is a subset 0 of 1 with/x(fl0) 0 and for
each to 10, ,o has a Bochner integrable density with respect to h i.e.
there exists a map q,o: K X Bochner integrable such that

for all f
We need some lemmas.

/x a.e.

LEMMA 1. For each measurable subset A of K, the map

f X

to f,o(t) dh(t) =/x,o(A)
JA

is norm measurable.

Proof Fix x* X*, and consider the map TX*: LI(A) Ll(/x) given
TX*f(to) x*(Tf(to)). Then the operator Tx* is bounded and if we denote by

X* X*(g,o) the representation given by Theorem 1 of [F], we have ,o (A)=
(/.,o(A), x*>, and, by (i) of the same theorem, to gx*(A) is -measurable.
Now an appeal to the Pettis measurability Theorem (see [DU])shows that
to --*/xo,(A) is norm measurable.

LEMMA 2.
able.

The map f LI(A, X) which takes to to qo,(’) is norm measur-

Proof By Lemma 1, the map to fA qo(t) dA(t) is measurable for each
measurable subset A of K.
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Let (hn)n be a sequence of functions defined as follows:

,
where (In, i) <i < 2n; n N denote the dyadic intervals of [0, 1].
The map hn is clearly measurable for every n N and for every to f,

we have

lim Ilhn(oO) q’o(’)Ill--0.
n-

Hence to q,,(.) is measurable.
To finish the proof of Proposition 1, notice that the map h" 1)

LI(A, X)(to $,o(’)) belongs to LI( , LI(A, X)). In fact by the definition of
qt, we have IIh(o))ll _< I/xol(K) and therefore fllh(o))ll d(o)) _< IlZll by a)
of Theorem 1.
Now by Lemma 6 of [DS], there exists a map H: K II X which is

A (R)/x-integrable and such that h(to) H(., to) for/z a.e. to lI.
Without loss of generality we can suppose that for every K, the

function H(t,.) LI(/x, X) and the map U: K - LI(/x, X) defined by
U(t) H(t,. ) is A-integrable (see [DS], Lemma 16, p. 196). We claim that
the map U represents T. To see that fix A a A measurable subset of K and
notice that T(g)(to) f d/zo =/x,0(A) for a.e. to. On the other hand

I,,(A) fAq(t) dh(t)

f n(t, ,,)

For the last equality see [DS, Theorem 17, p. 198].
This shows that T(Xz) fU(t) dA(t) for every A-measurable subset A.

Hence U represents T. 1

III. Main results

Type I-II in Bochner functions spaces

Let (1), ,/x) be a finite measure space and E be a K/Sthe function space
on (fl, ,/x) (see [LT], p. 28). If X is a Banach space, then we will denote by
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E(X) the Banach space of all (classes of) measurable functions f: f X
such that to IIf(o)ll belongs to E. In particular, if E LP(ix), then
E(X) LP( Iz, X). In the sequel, we suppose that E is a linear subspace of
LI(/.0 such that its unit ball is closed in LI(/z).

DEFIrITION 4 [LPP]. Let X and Y be two Banach spaces. We say that X
semi-embeds into Y if there is a continuous bounded operator T" X Y
such that T is one to one and the image of the closed unit ball of X is closed
in Y.

It is clear that if 1 < p < , then LP(/z) semi-embeds in LI(
The following two lemmas are needed in the proof of Theorem 3.

LEMMA 3. The space E(X) semi-embeds into LI(/., X).

Proofi Let (fn)n N be a sequence in the unit ball of E(X) that converges
to f LI(/x, X). Let hn and h be two functions defined as follows: hn(to)
Ilfn(0)ll and h(to)= IIf(o)ll. It is clear that hn converges to h in zl().
Since hn belongs to the unit ball of E which is closed in LI(/z), then h
belongs to the unit ball of E. Hence f belongs to the unit ball of E(X).

LEMMA 4. Let Y and Z be Banach spaces such that Y is separable and
semi-embeds into Z. If (, E, A) is a finite measure space, then the space
LI( A, ) semi-embeds into Lx( A, Z).

Proof Let J: Y Z be a semi-embedding. Assume that IIJII 1. We
need the following fact.

FACT. Let (Yn)n be a bounded sequence in Y such that (JYn)n converges to z
in Z. Then there exists y so that

(a) z Jy,
(b) Ilyll -< lim SUpn IlY II.

For this. fact, notice that since J is a semi-embedding and (Yn)n is bounded,
the existence of y Y that satisfies z Jy is trivial. Now to prove (b), let us
fix k N and let rk SUpn>kllYnl[. Since (Yn)n>l C By(O, rk) we have Ilyll
< rk so we get

Ily lim rk lim sup IlY
k- n-o n>k

lim sup Ily II.
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Now back to the proof of Lemma 4. Let J#: LI(A, Y) LI(A, Z) defined
by

J’(f)(to) J(f(to)).

We will show that J is a semi-embedding. Let (fn),, be a sequence in the
unit ball of LI(A, Y) so that J(f,,) converges to g in LI(A, Z). There exists a
subsequence (f) of (f) so that

lim J#(fn )(t) g(t) for a.e. I

that is equivalent to

lim J(f,k(t)),...,,, g(t) for a.e. a.
k-

On the other hand, since (llfnk(’)ll)k is bounded in LI(A), one can find,
using Komlbs result (see [D], p. 121), a further subsequence (fk)k and a
function F LI(A)so that

rn

lim --1 IIf(t)ll F(t)
rn--, rn

k--1

for a.e. .
Notice that F belongs to the unit ball of LI(A) and

and

(lm )lim J - Eft(t) g(t) for a.e. I

( m )1 .,f(t)-k=l k

is bounded for t f where h("l) 0. For -1, let us define f(t) to be
the unique element of Y such that g(t) J(f(t)). For fl, define
f(t) 0. By [CO, p. 276], the function f is h measurable. Use now the
previous fact to deduce that

I m

IIf(t)ll _< lim sup - f(t)
rn k--1

1 m

< lim sup - IIf(t)ll

=F(t)

and since F LI(A), we have IIf(’)ll LI(A) and therefore f LI(A, Y) and
g
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Remark 1. In [D1], Dowling observed that the Bourgain-Rosenthal [BR]
technique would imply that if a separable Banach space Y semi-embeds in a
Banach space X that has type I-A-RNP, then Y has the same property. This
fact is needed in the proof of Theorem 3.

Before stating Theorem 3, we claim that using Lemma 4, one can show the
same stability result of semi-embedding for type II-A-RNP. This is done in
the next proposition which is needed in the proof of Theorem 4.

PROPOSITION 3. If a separable Banach space Y semi-embeds in a Banach
space X that has type II-A-RNP, then Y has the same property.

Proof Let J be the semi-embedding from Y to X and let m
MA, ac(G Y) this implies that Jm MA, ac(G S). Since X has type II-A-RNP,
choose g L(G, X) such that Jm(A) fAgd, for every measurable subset
A of G. For every finite measurable partition 7r of G consider the function

fAgd)t

E
A’tr

and let

f= E m(A)
X(A)

It is well known that the net g= converges to g in mean. It is clear also that
IIflll-< Iml(G). Now let J be the semi-embedding from LI(G,Y) to
LI(G, X) as in Lemma 4. By the definition of J*, we have g=---J*(f,).
Apply now Lemma 4 to get a function f LI(G, Y) such that J(f(t)) g(t)
for a.e. G. Notice that if A is measurable subset of G, then

fAJfdA f.gdA J(m(A)).

Since J is one to one, this shows that fAfd)t re(A), t

THEOREM 3. Let A be a Riesz set of F and let (1, , Ix) be a finite measure
space. If E is a separable K6the function space that semi-embeds into LI(
then the following assertions are equivalent:

(i) X has type II-A-RNP.
(ii) E(X) has type II-A-RNP.

In particular, for 1 < p < , then LP( tx, X) has type II-A-RNP whenever X
does.
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That (ii) implies (i) is evident. For the proof the converse implication, we
can assume without loss of generalities, that X is separable, l’l is a compact
metric space.

Let -1 G f with the product measure h (R)/x. We first claim that
LI(Q,1, A (R)/z, X) has type I-A-RNP. To do that let us consider a bounded
linear operator T from LI(G) to LI(I,X) that factors through
LI(G)/LaA,(G) via the quotient map Q, where A’ {7 F,/ A}. To prove
our claim, it is enough to show that T is representable. To do that, consider
1 - M(G, X)(s- tzs) the representation of T given by Theorem 2. By
Proposition 2, it is enough to show that /zs has Bochner integrable density
with respect to h for h (R) a.e. s 121. For that let 3’ A fixed. Since
/ A’, T() 0. On the other hand

for s l-l, where llv is of measure zero in 1. Since F is countable, we can
deduce that s MA(G, X) except on a set of measure zero. This fact
together with the assumption that A is a Riesz set shows that there exists
12 0 c with (h (R)/z)(120) 0 such that for every s ’1 0, ]-s

MA, a(G, X) and since X has type II-A-RNP, /z has Bochner integrable
density with respect to h.
To complete the proof of the theorem notice that by Lemma 3, the space

E(X) semi-embeds into LI(/x, X) and by Lemma 4, LI(G, E(X)) semi-em-
beds into LI(G, LI(/z, X)) which can be identified with LI(I, X) and
therefore by Remark 1, LI(G, E(X)) has type I-A-RNP. Now Proposition 1
implies that E(X) has type II-A-RNP. rq

In [E], Edgar asked the following question: If A is a Riesz set are the type
I-A-RNP and type II-A-RNP equivalent properties?
As a corollary of the theorem, we get the following positive result:

COROLLARY 1. Let A be a Riesz set of F and let X be a Banach space. Then
LI(G, X) has type I-A-RNP if and only if it has type II-A-RNP.

Remark 2. In [D1], Dowling showed that if A is a Riesz subset of Z, then
X has type II-A-RNP if and only if LI(T, X) has the type I-A-RNP. Corollary
1 extends Dowling’s result to any compact abelian metrizable group G.

If one wants to consider non-Riesz subsets, the following (weaker) result
holds.

PROPOSITION 4. Let A c F (not necessarily a Riesz set) and let X be a
Banach space. IfE has type I-A-RNP and X has type II-A-RNP then E(X) has
type I-A-RNP.



426 N. RANDRIANANTOANINA AND E. SAAB

Proof. Same as before, we can assume that X is separable. Let T:
LI(G) E(X) be a linear operator that factors through LI(G)/LA,(G) via
the quotient map and J: E(X) --. LI(/z, X) the semi-embedding. We need to
show that S J T is representable.

Consider as in the proof of Theorem 3, f M(G, X)(to tzo) the
representation of S. With the same argument as in Theorem 3, we have
/z,o MA(G, X) for a.e. to 12. We are done if we can show that/z << h for
a.e. to f. For that let us fix x* X*, the map

LI(G) -’ LI(
f --, (sf(.), x*)

is represented by to zx*(A) (/z(A), x*)). It is also easy to see that Sx*

factors through LX(G)/LA,(G)and E as follows:

SX*

L(G) LI(

L(G)/Lk,(G) L, E

where j: E - LI(/) is the semi-embedding and L is a bounded linear operator.
Since E has type I-A-RNP, Sx* is representable. Now we have /z,o << h

for a.e. to by Proposition 1 of [F] and we conclude the proof using similar
argument as in Lemma 1 of [RS]. rq

Remark 3. Theorem 3 and Proposition 4 deal with when some type of
Radon-Nikodym property passes from a Banach space X to some function
spaces with values in X. This question has been investigated before. Turett
and Uhl [TU] showed that the RNP passes from X to LP(X) for 1 < p < oo.
Dowling [D4] showed that the analytic RNP passes from X to LP(X) for
1 < p < oo. It is dear that while Theorem 3 and Proposition 4 give a different
proof to these results, they are also more general and provide a new
approach to dealing with this kind of stability problem.

In [D3], Dowling showed directly that if A is subset of F and X is Banach
space having the RNP and if LA(G, X) is separable then LA(G, X) has the
RNP. The next theorem is in the same spirit. Before stating the theorem, let
us give a quick proof of Dowling’s result. To do that notice that LA(G, X)
semi-embeds in L2(G, X)which has RNP and hence any separable Banach
space that semi-embeds into it will inherit the RNP [BR].
For the next result, we need to introduce a new compact metrizable

abelian group.( which is not necessarily the same as G. We will denote by "its dual and A its normalized Haar measure.
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THEOREM 4. Let A be a Riesz-subset of F and X be a.separable Banach
space having type II-A-RNP (resp. type I-A-RNP). Consider A a subset of . If
L((, X) is separable then it has type II-A-RNP (resp. type I-A-RNP).

For the type I case, we do not need the assumption A being a Riesz set.

COROLLARY 4. Assume that
(1) k is a Rosenthal set of and
(2) X is a Banach space that has the Schur property.

This C,(, X) has type I-A-RNP if and only if X does. (Here A is not
necessarily a Riesz-set.)

In particular, if X has the Schur property and A is a Rosenthal set, then
Cx(t,X) has RNP (resp. ARNP) if and only ifX has RNP (resp. ARNP).

Proofof Theorem 4. Assume first that X has type II-A-RNP. By Theorem
3, LI((, X) has type II-A-RNP and since L((, X) is separable and semi-
embeds in LI((, X), the conclusion follows by Proposition 3.
For the type 1-case, we will use similar argument as in the proof of

Theorem 3.
Let T be an operator form LI(G) to L(,X) that factors through

LI(G)/LIA,(G) via the quotient map Q and J: Ex(G, X) LI(, X) the
natural inclusion which is a semi-embedding.

Consider the representation of J T given by Theorem 2.

Since J T factors through. LI(G)/LIA,(G), we have /z MA(G, X) for a.e.
to (. We claim that for A a.e. to, I1 _< IITIIA. To see this, consider (fn)n
be a countable dense subset of C(G). Since T takes its value in E((, X), we
have IIJ T(f)ll _< TII IIf . Hence one can find a measurable subset An

of G such that A(An) 0 and

for each to An. Now let A U n rAn, ’(A) 0 and for every to A,
n N, we have ffn dll-< IITII IIflla and since (fn)n is also dense in
LI(G), we have

ffd, < Tll Ilfllx for every f L (G),

in particular for every Borel subset of G, II (B)II II TII A(B) which shows
the claim.
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As a consequence,/xo, M2(G, X) for a.e. to (. If X has type I-A-RNP,
then /xo has Bochner density with respect to A for a.e. to and apply
Proposition 2 to conclude that J T is representable. Since J is a semi-em-

Ei(G,X) is separable, then one can conclude that T isbedding and
representable [BR]. rn

Type II-A-RNP for the space of vector valued measures

In this section, we will show that a similar stability results holds for the
space of vector valued measures when G is the circle group T.

THEOREM 5. Let X Y* be a dual space and (1), ,) a measure space.
Assume that A is a Riesz subset of Z then M(II, X) has type H-A-RNP
wheneverX does. In particular M(I), X) has the ARNP wheneverX does.

For the proof, we will view the space M(II, X) as a function space using
weak*-densities and liftings.

Proof Suppose that X has type II-A-RNP and {am}me AC M(I), X).
Let (Pr)0_<<a be the usual Poisson Kernel. We have Pr(m)= rIml. For

rn 1- I/n, define

fn(t) E rlnmlam eimt"
mA

It sufficesto consider the case where (fn)n N is bounded in LI(T, M(I), X)).
Note that Pr,/rn+ * fn + fn and Iler,/+a I1 1. Therefore

Ilfn gl(, Mm, X)) Ilfn/

and so we have

lim IIfn IILx(T, M(a, X)) sup IlL IIL1ff, Ma, X)) < .
noo nN

Suppose the sequence (fn)nN is bounded in LI(T,M(I), S)), one can
easily deduce that the sequence (am), A is bounded. Now define a measure
/x M(I") by

tz=
laml
2mmA

and let p be a lifting of L(/x) (see [IT]).
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By a similar argument as above, if we define P[fn(’)](to) by

E r’P(am)(to) eimt
mA

then

lim IIp[L(’)](to)llL’v,x) sup IIp[f(’)]llLv,x)
no nN

for every to .
Now using the same method as in [D1], we can show that

lim Ilfn f IIL’(T, M(a, X)) 0
n, k-,

taking advantage of the well-known fact that Ilmll f, llp(m)(o)ll dl(to).
So (fn)nr is convergent in LI(T, M(f, X)) which shows that M(f, X)

has type II-A-RNP (see Theorem 6 of [D1]). []

Remark. If the space X is not a dual space, then the conclusion of
Theorem 5 is no longer valid. In fact the space E constructed by Talagrand
in [T] is a Banach lattice that does not contain co and therefore has type
II-A-RNP for every Riesz subset of Z but M([0, 1], E) contains a copy of c0.

Let us finish by asking the following question.

Question. Does type I-A-RNP pass from X to LP( t.t, X) for a Riesz
subsets A of G where 1 _< p < ?

This question is equivalent to the still open problem of whether or not type
II-A-RNP and type I-A-RNP are equivalent for a Banach space X and a
Riesz subset A.

[BR]

[co]
[D]

[DU]

[D1]

.[D2]
[D3]

[D4]
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