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THE DENSITY THEOREM AND HAUSDORFF
INEQUALITY FOR PACKING MEASURE

IN GENERAL METRIC SPACES

COLLEEN D. CUTLER

1. Introduction

The standard definition of packing b-measure in Euclidean space (Defini-
tion 2.2 of this article--see also Taylor and Tricot [20], [21] and Edgar [8]) is
based on the diameters of balls. Balls in RN, obtained from the usual
Euclidean norm (or some equivalent metric), possess certain nice regularity
propertiesmthe diameter of a ball is twice its radius, and open and closed
balls of the same radius have the same diameter. In arbitrary metric spaces,
the possible absence of such regularity properties means that the usual
measure construction based on diameters can lead to packing measures with
undesirable features (see Example 2.3). We note that both Haase [14] and
Edgar [9], in extending diameter-based packing measure to a more general
metric setting, needed to make certain modifications and assumptions which
can be directly attributed to the irregular behaviour of ball diameters (see the
discussion following Definition 2.2 as well as Remark 3.17). In earlier work,
Haase [12], [13] briefly introduced the notion of radius-based packing mea-
sure (Definitions 3.1 and 3.2 below), noting that it produced the usual
packing measure in Euclidean space but possessed stronger invariance prop-
erties in the general setting. Nonetheless, this radius approach appears to
have been largely overlooked by most researchers (an exception is the recent
work of Olsen [18]). We will show that, under the radius definition, the
fundamental properties of Euclidean packing measure (Theorems 3.7, 3.11,
3.16, and Corollary 3.20) carry over to general metric spaces. We will also
exhibit some of the failings of diameter-based packing measure, but prove
that it does satisfy the usual inequality with Hausdorff measure (Theorem
2.6) under a very weak restriction on the underlying space.

In the following will always denote a metric space with metric d. A
continuous nondecreasing function b :[0, 1] [0, ) such that b(0) 0 and

Received August 2, 1993.
1991 Mathematics Subject Classification. Primary 28A80; Secondary 28A78.

(C) 1995 by the Board of Trustees of the University of Illinois
Manufactured in the United States of America

676



PACKING MEASURE 677

b(t) > 0 for all > 0 will be called a measure function; if b additionally
satisfies the regulating condition b(t/2) > Kch(t) for some 0 < K < 1 and all
0 < < 1, then b will be called a blanketed measure function (see [16]). If E
is any nonempty subset of , the diameter of E is defined, as usual:
diam(E) SUpx. y e d(x, y). A closed ball in is any set B which can be
described as B {y 1 d(y, x) < r} for some x and some r > 0. The
quantities x and r are called, respectively, a centre and radius of the ball B,
and this is indicated by writing B B(x,r). Similarly, an open ball B
{y 1 d(y, x) < r} will be denoted by B(x, r). In most "regular" spaces,
such as Euclidean space, a ball (open or closed) has one centre and one
radius, and typically r diam(B)/2; however, in general, neither the radius
nor centre of a ball need be unique. This is illustrated in Example 1.1 below.

Example 1.1. Let = ((x, y) ly < 0} t3 ((0, 2), (0, 3)}, i.e., is the union
of the closed lower half plane and the isolated points (0, 2), (0, 3), with the
subspace topology inherited from R2. Let B {(0,2), (0,3)}. Then B has
many representations as a closed ball in 2; for convenience, let a- (0, 2)
and b (0, 3). Then we can write B B(a, r) for any 1 < r < 2, as well as
B B(b, r) for any 1 < r < 3. Note that diam(B) 1.

We will need to take into account the possibility of various centre-radius
representations for a ball in 3. Finally, we note that if r is any radius of a
ball B, then we always have diam(B) < 2r. In general, however, no similar
reverse inequality holds.

2. Diameter-based packing measure

We begin by using the usual diameter method to define a packing measure
in the general metric setting. This definition has been used previously by
various authors (see, for example, [15], [8], [9], [6]) and represents the obvious
extension of Taylor and Tricot’s [20] original Euclidean packing measure. (In
[14], Haase considers families of diameter-based packing measures of a
slightly different nature.) Since ultimately we are going to discard this
definition, we use the notation "Q" to denote the resulting measure, reserv-
ing the notation "P" for the preferred radius-based construction developed
in the next section.

DEFINITION 2.1 (diameter packing b-premeasure). Let E _2 be
nonempty, and let 0 < 6 < 1. A &packing of E is a countable collection
{B} of disjoint closed balls of 2, centred at points of E, such that
diam(B) < 6 for every k. Given a measure function b, the diameterpacking
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(4), 6)-premeasure of E is defined to be

(2.1) Q(E) sup b(diam(Bk)) ]{Bk) k is a 6-packing of E
k=l

Letting 6 + 0 we obtain the diameterpacking ch-premeasure

(2.2) Q(E) lim Q(E).
60

We set Q(O)= Qo+(O) O.

It is well known (e.g., [20], [8]) that Q, while nonnegative and monotone,
is generally not countably subadditive, and so does not meet the usual
Carath6odory definition of an outer measure on the subsets of . We can,
however, build an outer measure from Q0 by applying the Method I
construction of Munroe, described in both [17] and [19]. This leads to the
following definition.

DEFINITION 2.2 (diameter packing
oh-measure of E

_
is defined to be

b-measure). The diameter packing

(2.3) Q4(E) inf{ _,Qo (E) E c_ J E,}.
k k

The infimum in (2.3) is taken over all countable coverings {Ek}k of E, and
corresponds to the Method I construction ([17], p. 47, or [19], p. 9)of an
outer measure from the nonnegative set function Q0+. Hence Q+ is an outer
measure on the subsets of .
Both Q and Q+ possess numerous desirable regularity properties as set

functions on RN (see Theorems 3.7, 3.11, and 3.16). It appears, however, that
to maintain all, or even most, of these properties for Q0 and Q+ in a more
general setting requires, at the very least, the existence of some sort of
smooth relationship between the diameters and radii of balls in the space.
This can be gleaned from an examination of the proofs typically employed in
the Euclidean setting; for example, to prove that packings by open balls
produce the same premeasure as packings by closed balls ((d) of Theorem
3.7), one uses the fact that every closed ball in RN contains an open ball of
the same diameter. Theorem 3.7 (d) is an important result, because open
packings give Theorem 3.7 (c)which in turn yields the regularity properties
(c) and (d) of Theorem 3.11, but closed packings are needed in order to apply
Lemma 2.5 which gives Theorem 2.6 as well as (h) of Theorem 3.11. Haase
[14] notes that his diameter-based constructions do not always yield Theorem
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3.7 (c). As another example, Cutler [6] required an assumption on the
relationship between ball diameter and ball radius (see (3.10)) in order to
obtain the pointwise representation of diameter packing dimension (Corollary
3.20) in spaces more general than RN. Of course it will be possible to modify
the proofs or statements of some of these results to rely less (or not at all) on
the existence of an underlying Euclidean-like geometry. However, Example
2.3 below shows that there is a limit to what can be accomplished in this
regard. In Example 2.3 we construct a metric space in which a fundamental
Euclidean property of diameter packing 4-measure is violated. In order to do
this, we first need to discuss the notion of Hausdorff oh-measure. Unlike the
case of packing measure, the theory of Hausdorff measures in general metric
spaces is a (relatively) old and well-explored topic; see, for example, the
treatise by Rogers [19]. For E ___, the outer measure H+(E) is defined by

(2.4) / )lim inf 2 4(diam(E))l{E}k is a &covering of EH+(E)
--,o =1

where a 6-covering of E is any countable collection {Ek}k of subsets of 2’
such that E

_
U Ek and diam(E) _< 6 for every k. If no such &covering

exists (which may occur in a nonseparable space), we obtain H4’(E)=
inf 0 .

In the Euclidean case, we always have Q6> H for every blanketed
measure function 4’. With the following example we show that this inequality
is not universally valid.

Example 2.3. Let be an uncountable set with the discrete metric
d(x, y) I whenever x 4= y. For 0 < 6 < 1, no &covering of exists, and so
H+() . Now, if 0 < 6 < 1 and {B} is any &packing of any E __C_ , we
see that diam(B) 0 for each k and hence Qo(E) 0. It follows from (2.3)
that Q4,()= 0. (We note that the possibility of just such an unfortunate
occurrence appears to be suggested by the exercise in Edgar [8], p. 182,
Ex. (6.5.8).)

In fact, the relationship between packing measure and Hausdorff measure
is not the only standard Euclidean property violated in Example 2.3--the
usual relationship between packing premeasure and upper capacity ((g) of
Theorem 3.7) fails to hold, as does the relationship between packing dimen-
sion and upper capacity ((g) of Theorem 3.11). However, we prefer to leave a
full discussion of these additional points until Remarks 3.8 and 3.12. See also
Remarks 3.17 and 3.18.
We now show that Example 2.3 is exceptional in that the desired inequality

with Hausdorff measure does hold for diameter-based packing measure



680 COLLEEN CUTLER

provided we limit the number of isolated points in the space. We first require
the following definition and lemma.

DEFINITION 2.4 (closed Vitali covering). Let E _. A collection 7/ of
closed subsets of is called a closed Vitali covering of E if, for each x E
and each e > 0, there exists V 7/such that x V and 0 < diam(V) < e.

LEMMA 2.5. Let ch be a blanketed measure function, E _.U, and 7/ a
closed Vitali covering of E. Then there exists a sequence V1, V2,... of disjoint
members of such that one of the following is true:

(i) = th(diam(Vk)) , or
(ii) H4,(E \ Vk) O.

Proof A proof of this lemma, for the case= RN and b(t) ", is given
in Falconer [10], Theorem 1.10. A similar proof works, however, under the
more general hypotheses we have given here. The reader should note that
the assumption of a blanketed measure function (which is of course automat-
ically satisfied in the case b(t) ") is crucial to the proof.

THEOREM 2.6. Suppose has at most countably many isolated points. Then
Q4, > H4" for every blanketed measure function

Proof Let 0 denote the set of isolated points of . Since 0 is
countable, it follows by a well-known property of Hausdorff measure that
H4,(0) 0, and so H4,(E) H4,(E \o) for every E ___. Therefore, with-
out loss of generality, we can assume that E has no isolated points. Now it
suffices to prove that Qo6(E) >. H4,(E) for all such E since, by the countable
subadditivity of H4,, we then get EQo(E) >_ EH4,(E) > H4,(E) when-
ever I.J E E. Since E has no isolated points, the collection
{B(x, r)lx E, 0 < r < 3/2} forms a closed Vitali covering of E for each
6 > 0. Applying Lemma 2.5, there exists a sequence B), B(2),... of disjoint
closed balls from such that either (i) Eb(diam(B()))= or
(ii) H4,(E \ I.J B()) 0. If (i) holds for some sequence 6n $ 0 then clearly
Qo(E) limn__, On(E)= , yielding Qo(E)= > H4,(E). Therefore as-
sume that, for each positive integer n, there exists a sequence B, B(2),...
of disjoint balls from 7/1/ such that (ii) holds. Then, since H4,(E)=

4, (n)H (E n f’l, 13k Bk ), it follows that

H4,(E) <_ liminf Eb(diam(B(n’) < lim Q/,(E)- Qo(E).

This completes the proof.

We remark that we do not know if Theorem 2.6 remains true if open balls,
rather than closed balls, are used in the definition of 6-packing.
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A close inspection of Example 2.3 suggests that the diameter definition of
packing measure does not, in the general setting, always correctly recognize
the distance between points in a space. This problem can be rectified by
following Haase [12] and making our definitions in terms of ball radii, rather
than ball diameters. It is a (perhaps surprising) consequence of this small
change in definition that essentially all nice properties of Euclidean packing
measure can be recovered in the general metric setting. This behaviour
suggests to us that the radius-based definition (developed below) is in fact the
"right" one to use.

3. Radius-based packing measure

In this section, our definition of a 6-packing will be similar to that of 2,
except that to each ball in a packing we attach a (permissible) representation
in terms of a centre and radius. We then define the 6 bound on the packing
in terms of the radii. As noted in 1, neither the radius nor centre of a ball
need be unique in general--hence, the particular representations assigned to
the balls in a packing become part of the definition of the packing. The same
packing (regarded simply as a collection of sets) may appear many times with
many distinct centre-radius representations. A representation is considered
almost optimal if it utilizes close to the maximum possible radii (subject to the
ball centres being in E and to the 6 bound on the packing). These remarks
will become clearer after an examination of Definitions 3.1 and 3.2 below.
See also Remark 3.3.

DEFINITION 3.1 (radius packing h-premeasure). Let E
_

be nonempty,
and let 0 < 6 < 1. A &packing of E will be any countable collection of
disjoint closed balls {B(xk, rk)} with centres x E and radii satisfying
0 < r < 6/2 for each k. (The centres x and radii rk are considered part of
the definition of the packing.) Given a measure function oh, the radius
packing (oh, 6)-premeasure of E is then defined to be

(3.1) / )P(E) sup 2 4(2r) {B(x, r)} is a &packing of E
k=l

Thus the supremum in (3.1) takes into consideration all permissible centre-
radius representations of a 6-packing of E (regarded as a collection of sets),
and the measure function h is applied to the radii, rather than the diame-
ters, of the balls. Letting 6 0, we then obtain the radius packing ch-premea-
sul,’e

(3.2) Po(E) lim P(E).
6-0

We then set P(0) P0(0) 0.
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As in the case of Q0, it is easy to see that P0 is nonnegative and
monotone. Moreover, P0 will also generally fail to be countably subadditive,
which can be seen by noting that P0 Q0 when 2= RN. (In fact, equality
between P0 and Q0 holds in any space where the radius of a ball B is
always given uniquely by r diam(B)/2.) Hence, to produce an outer
measure, we again apply the Method I construction:

DEFINITION 3.2 (radius packing 4-measure).
sure of E

_
is defined to be

The radius packing ch-mea-

(3.3) P+(E) inf( Po+(E) E c_ .J E}.
k k

It follows that P is an outer measure on the subsets of .
Remark 3.3. The necessity of considering various possible centre-radius

representations of a packing in Definition 3.1 can be eliminated by instead
defining a maximal radius function over the balls in a packing. That is, we can
simply let a packing of E be any countable collection of disjoint closed balls
{Bk} which can be centred at points of E, and define rf(B) sup{0 < r <
6/21B B(x, r) for some x E}. Then, due to the continuity and mono-
tonicity of th, (3.1)can be replaced by

(3.4) P(E) sup _, cb (2r[ ( Bk)) l{B}, is a packing of E
k=l

However, we have found (3.1) simpler to use in most calculations. Note that a
particular representation {B(x, r)} of a packing {B} of E will be almost
optimal if r is very close to re(B) for each k. In most cases, it should be
possible to actually take r re(B).

Before proceeding to a discussion of the general properties of P0 and P+,
we show that this radius-based approach eliminates the problem encountered
in Example 2.3.

Example 3.4. Let be an uncountable set endowed with the discrete
topology, and let d be any metric which generates this topology. (A metric
produces the discrete topology if and only if each point of is isolated under
the metric.) Let h be a measure function. We will prove that P+()= w.
Let {E} be any countable partition of 2. Then at least one member of this
partition, say El, is uncountable. It follows that, for some 60 > 0, there exists
a sequence {x} of distinct points of E such that B(x, 60) {x} for each
k. (Otherwise the uncountability of E1 is contradicted.) Hence, for every
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0 < 6 < g0, the collection {B(x, g/2)} constitutes a g-packing of E1, yield-
ing P(E1) > Eb(g) w and hence Po(EI) o. From (3.3)we conclude
that P+() .
We now develop the properties of the premeasure P0. Some of these

properties have been noted previously in Haase [12]. Of special interest will
be the situation where the measure function b takes the form b(t) t" for
some a > 0. In this case we use the notation P0, and refer to P(E) as the
packing a-premeasure of E. Similarly, we use the notation P(E) for the
packing a-measure of E, and Ha(E) for the Hausdorff a-measure of E. We
will also need the following definition and lemma.

DEFINITION 3.5 (upper capacity). Let E _, and let Ns(E) be the
minimum number of closed balls of diameter g (or less) required to cover E.
The upper capacity of E is then defined to be

(3.5) A + (E) lim sup
log Ns (E)

--,o log 1/g

A+(E) is also frequently called the upper box dimension or metric entropy
of E.

Note that Ns(E) will be finite for every g > 0 if and only if E is totally
bounded in the metric d; for this reason, the definition of upper capacity is
often restricted to totally bounded sets. However, we will find it useful to
assign a capacity (necessarily infinite) even to sets which are not totally
bounded.
While Definition 3.5 above provides the standard definition of upper

capacity, we will need the following equivalent form:

LEMMA 3.6. Let E c_, and let Ms(E) be the maximum number of disjoint
closed balls of radius g which can be centred at points of E. Then

log Ms (E)(3.6) A+(E) limsup logl/g6-0

Proof This follows from the easy inequalities N4(E) < M(E) < N(E).

THEOREM 3.7. Let 4) be any measure function. The packing ch-premeasure
P has the following properties:

(a) Po+ > Q+o in general, and Po+ Q+o whenever = RN or any other
metric space where the radius of a ball is given uniquely by r
diam(B)/2.
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(b) Po4" is nonnegative and monotone; i.e., A c_ C 0 < Po(A) < Po4"(C).
(c) Poq’(E) Po(ff) for every E c_, where if, denotes the closure orE.
(d) Closed and open packings produce the same premeasure; i.e., if "closed

balls" are replaced by "open balls" in Definition 3.1, the same premeasure
Po4" results.

(e) Po is finitely subadditive, i.e., Po(A O C) < Pg(A) + Po(C), and
is finitely additive over positively separated sets, i.e., d(A, C)> 0
Pg(A C) Pg(A) + Po(C).

(f) If Pg(E) < oo, then Pf(E) 0 for every > or. It follows that either
there exists a critical point A* (E) such that P(E) oo for a < A* (E)
and P(E) 0 for a > A* (E), or that P(E) for all a > O. In
the latter case, we set A* (E) oo. Then, in general,

A*(E) inf(c > 0 1Po(E) 0}.

(g) A* (E) A+(E) for every E c_. It follows that E has finite upper
capacity if and only ifE has finite packing ce-premeasure for some a > O.

Proof Part (a) is immediate, and the proofs of (b)-(e) are straightforward
arguments similar to those used in Lemma 3.1 of [20]. However, we point out
that the proofs of (c) and (d) are made possible in the general setting by the
fact that the measure function 4 is being applied to the radii, rather than the
diameters, of the balls. We now prove (D. Suppose P(E) < c. Then there
exists 60 > 0 and M < oo such that Po(E) < M. Let /3 > a and 0 < 6 < 60.
If {B(x,r)} is a 6-packing of E, then E(2r) t < 6t-E(2rk) <
6t-M --+ 0 as 6 0. Thus Po(E) 0 as claimed, and (D follows.
We now prove (g). The inequality A* (E) > A +(E) is easiest. Let a <

A+(E). From Lemma 3.6, it follows that limsupa_oMa(E)6
and hence P(E)>M(E)6 as 6--+0. Thus P(E)=oo, and so
A* (E) > a. This gives A* (E) > A+(E). The opposite inequality requires
more work; we follow the proof of Tricot [22] given for the Euclidean case. If
A*(E) 0 there is nothing to prove, so let 0 < a < A*(E). Since P(E)
it follows that for each 6 > 0 there exists a 6-packing a of E such that
E(2r) > 1. For each small 6 > 0 and each positive integer n, let k(n) be
the number of balls in a with radii satisfying 2 -(n+l) < 2r < 2 -n. Then,
given 0 </3 < a, it follows that, for each small 6 > 0, there exists an integer
na such that

ka(na) > 2t(1 2-(-t )).

Note that na--+ oo as 6 0. Now for each na there exist ka(na) disjoint
closed balls, centred at points of E, with equal radii r satisfying 2r 2-(+ 1)
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i.e., r 2-(n+2). Hence, from Lemma 3.6,

A + (E) > limsup log Mz-(,+2/log2(n+2)

> lim log(2"(1 2-( -t )) )/log 2("+2) /3.

It follows that A +(E) > A* (E), and (g) is proved.

Remark 3.8. Let be the uncountable space of Example 2.3. Obviously
Na() o for each 0 < 6 < 1, giving A+()= o. However, as noted in
Example 2.3, Q0() 0 for all measure functions b, which shows that the Q
critical point A(E) inf{c > O IQg(E) 0} 0. Thus (g) of Theorem 3.7
is entirely false when P0 is replaced by Qg.
We also wish to establish, in the case of P(E), the existence of a critical

point as described in (f) of Theorem 3.7:

LEMMA 3.9. If P(E) < 0% then Pt(E) 0 for every

Proof If P(E) < , then, by (3.3), there must exist a covering {E) of
E such that P(E) < for each k. If /3 > a, it follows from Theorem 3.7
(f) that P(E) 0 for each k. Applying (3.3) again, we conclude Pt(E) 0.

DEFINITION 3.10 (packing dimension and Hausdorff dimension). Let
E . We define the packing dimension of E (denoted Dim(E)) to be the
critical point

(3.7) Dim(E) inf( a > 0]P"(E) 0}.

It is well known (e.g., [17]) that Lemma 3.9 holds with Hausdorff measure in
place of packing measure, and hence the Hausdorff dimension ofE (denoted
dim(E)) is defined by

(3.8) dim(E) inf{a > 0IH(E) 0}.

We note that dim(E) w and/or Dim(E) is possible in some spaces.

It is easily seen that a similar critical point DimQ(E) exists for Q(E)
(which we call the diameter packing dimension of E.) However, in keeping
with our belief that P6 is the "correct" definition of packing measure, we
regard (3.7) as the "correct" definition of packing dimension.

THEOREM 3.11. Let d be any measure function. Then the outer measure p4
has the following properties (in addition to countable subadditivity):

(a) p4 > Q4 in general, and p4 Q4 whenever= Rf or any other metric
space where the radius of a ball is given uniquely by r diam(B)/2.
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(b) p6 is a metric outer measure (i.e., p6 is finitely additive over positively
separated sets) and all Borel sets of are P 6-measurable.

(c) p6 is Borel regular; i.e., corresponding to each E c_- is a Borel set
B
_
E such that PT(B)= PT(E). (B is called a hotel cover of E.)

Consequently, Pe)(En)$ PT(LJn E) for every increasing sequence of sets

(d) p4) is inner regular; i.e., irE is P4)-measurable with P4)(E) < , then, for
every e > O, there exists a closed set F

_
E such that Pq)(F) > Pq)(E) .

(e) IrE is countable then Pq)(E) O.
(f) PT(E) inf{supk PoT(Ek) Ek $ E} for every E _.
(g) Dim(E) inf{supk A+(E) E $ E} for every E _.
(h) If ch is a blanketed measure function, the inequality pT> H6 holds.

Consequently, Dim(E) > dim(E) for every E c_.
Proof Part (a) is immediate. Consider (b). The finite additivity of p6

over positively separated sets is an easy consequence of (3.3) and (b), (e) of
Theorem 3.7. This makes P6 a metric outer measure, from which the rest of
(b) follows (see [17], p. 59). Consider (c). From Theorem 3.7 (c), we see that
we can replace "all countable coverings of E" in (3.3)with "all countable
coverings of E by closed sets." From this and Theorem 12.3, p. 53, of [17], it
follows that there exists an set B (which is of course Borel) such that
B
_
E and PT(B) PT(E). Since the Borel sets are PT-measurable (from

(b)), we see that P+ satisfies Munroe’s ([17], p. 50) definition of a regular
outer measure. The rest of (c) then follows [17, p. 51].
For (d) we follow the argument in Lemma 5.1 of [20]. Suppose E is

P+-measurable and P+(E) < w. Then, by (c) above, there exists Borel
B

_
E with PT(B \ E) 0, and also Borel B2

___
B \ E with P4’(B2) 0.

It follows that B \ B2

___
E and P4)(B \ B2) Pe)(E). Now the set function

/x(.) defined over the Borel sets of by /z(B)= P+(B n (B \B2)) is a
finite Borel measure and therefore inner regular (see Theorem 1.1 of [4]);
i.e., for each Borel B and each e > 0, there exists a closed set F B such
that /x(F) > /x(B) e. Taking B B \ B2, (d) is proved.

Property (e) follows in the usual manner. Now let P*(E) denote the
righthand side of the equation in (D, and suppose E $ E. Since PT(E) <
PoT(E,), it follows from the last part of (c) that P4’(E) lim PT(E) <
sup PoT(E,). This shows that P4"(E) < P*(E). To get the reverse inequality,
let {Ek} be any cover of E. Without loss of generality (using (3.3) and
Theorem 3.7 (b))we can assume E

_
E for each k. Define E U= Ej.

Then E’ $ E and, for each k, Po(E’) <

_
P(E) by finite subadditivity

of P0. Hence sup P0(E’) < F,=P(E, which shows that P*(E)<
p6(E). Thus (f) is proved.
Now (g)is a consequence of (f)plus Theorem 3.7 (g). Since A+(E) A*(E),

it is enough to prove that Dim(E) D(E), where D(E)
inf{supk A*(E) E $ E}. We first show Dim(E) < D(E). If D(E) o there
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is nothing to prove, so assume that D(E) is finite and let a > D(E) be
arbitrary. Then there exists Ek $ E such that SUPk A*(Ek) < a. From Theo-
rem 3.7 (f) it follows that SUPk P(Ek) 0 and hence, from (f) above,
P(E) 0. This gives Dim(E) < c and proves the desired inequality. The
proof of the reverse inequality D(E)< Dim(E) is similar. Assume that
Dim(E) is finite and let a > Dim(E) be arbitrary. Then P(E)= 0 and
there exists Ek $ E such that SUpK P(Ek) < 1. Thus supk A*(Ek) <_ a, giv-
ing D(E) < Dim(E). This completes (g).
Now consider (h). If E ___f contains at most countably many isolated

points of f, then from Theorem 2.6 plus (a)of this theorem we conclude that
P4(E) > Q(E)> H4(E). On the other hand, if E contains uncountably
many isolated points of , the argument of Example 3.4 gives P4"(E) >
H+(E). As a corollary we get P(E)> Ha(E) for every a > 0 and the
inequality Dim(E) > dim(E) follows. This completes the proof of Theorem
3.11.

Remark 3.12. We note that (g) of Theorem 3.11 is false for diameter
packing measure in the case of the discrete uncountable space f of Example
2.3. Clearly the diameter packing dimension off is 0, while sup A+(E) w

for every sequence of sets E $. (If E $, then there must exist k0 such
that E is uncountable for all k > k0.)

We now proceed to show that a version of the main density theorem of
Taylor and Tricot (Theorem 5.4 of [20] applied to balls) holds true in general
metric spaces. We begin with the following definition.

DEFINITION 3.13 (lower &density). Let /x be a finite Borel measure on f
such that /x(f) > 0. Let 4 be a measure function. Then the lower &density
of/x is the function d+’f R defined by

(3.9) d,/,(x) lim inf/x( B(x, 6 ))
a-,o b(26)

Due to the continuity of 4, the same function d+ results if closed balls are
replaced by open balls in (3.9). However, we will find closed balls more
convenient to use.

The main density theorem (Theorem 3.16) links the quantities /x(E) and
P+(E) via the lower &density. This connection is made through the use of
certain Vitali-like coverings. We have the following definition:

DEFINITION 3.14 (centred ball covering). Let E f. A collection of
closed balls of f is called a centred ball covering of E if, for every x E and
every e > 0, there exists B c such that B B(x, r)where 0 < r < E.
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Note that a centred ball covering of E is also a closed Vitali covering of E
if and only if E has no isolated points. We say that a finite Borel measure x
on possesses the centred ball coveringproperty if, for every Borel set E and
every centred ball covering of E, there exists a disjoint sequence B1, B2,...
from such that x(E \ U B) 0. The strong form of Theorem 3.16 (as
well as the simplest proof) is obtained when x has the centred ball covering
property.
We say that itself has the centred ball covering property if every finite

Borel measure on has the property. It is well known (e.g., [1], [7]) that RN

possesses the centred ball covering property, as do all finite-dimensional
Banach spaces and sufficiently smooth compact Riemannian manifolds (see
pp. 145-150 of [11]). Federer [11] also points out that existence of the
centred ball covering property on is a consequence of a property he calls
directionally limited, which is closely linked to the notion of finite dimension-
ality. Thus, to obtain Theorem 3.16 in the general case (where the centred
ball covering property need not hold) we need to resort to other methods.
Our approach is similar to that taken for the Euclidean case in the original
paper of Taylor and Tricot [20]; we extend their method to the general metric
setting by developing the following lemma (which is a variation on a compo-
nent of the original Besicovitch covering lemma in RUusee Theorem 3.2.1 of
[7]). We point out that the verity of this lemma in arbitrary metric spaces is
due in part to our use of the radius definition of packing measure.

LEMMA 3.15. Let E c_ and suppose is a centred ball covering of E. If
there exists a measurefunction ch such that P(E) < 0% then, for every 0 < c <
1/2, there exists a sequence of balls {B(x, r,)} (centred atpoints x E) from

such that
(i) E

_
U B(x,r), and

(ii) the smaller balls B(x,, r,)} are disjoint.

Proof Since Po(E) < 0% there exists 60 > 0 such that P(E) < o. Let
0 < cr < 1/2 be given, and choose /3 so that c(1 c)-1 </3 < 1. Define
d sup{0 < r < 60 B(x, r) , x E}. Then we can find B(xl, r1) fY
such that x E and /3d < r < d1. For convenience, set B B(x1, rl). If
E c__ B1 we can stop. If E B1, define

d2=sup{0<r< 6o[B(x,r) f,xE\B}.

Obviously d2 _< d1. Choose B(x2, r2) c such that x2 E \ 91 and /d2 <
r2 _< d2; set B2 B(x2, r2). If E

_
B t B2 we can stop. Otherwise, continue

this process, defining

d sup{0 < r < 60 B(x, r) , x E \ (B (J B2)}
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and obtaining B3, etc. This process either terminates at some finite n (if
E _c LI,=I Bk)or generates an infinite sequence of balls B1, B2 We first
prove (ii). For each k, let B denote the smaller ball B(xk, r). Consider
any two of these balls B and B*, and suppose < j. We know, from the
above construction, that d(xj, xi) > ri. Let y be any element of B; then
d(xj, y) < crrg. We will show that y B. First note that r >/3 d >/3 dj >
/3rg; i.e., rj </3-1 ri. Now, applying the triangle inequality, we get

d(y, xi) > d(xj, xi) d(xj, y) > r crj > r oe-lri > oeri.

Thus y B, which shows that the two balls are disjoint, proving (ii). Now
consider (i). If the construction process terminates; i.e., E U],=I Bk for
some n, then we are done. So assume that we have generated an infinite
sequence B1, B2,... of balls. Note that, by (ii), the smaller balls B, B,...
form a 60-packing of E. It follows that b(2cr) < P(E) < oo so we must
have b(2crrk) --+ 0, and hence r 0 as k --+ oo. Since r > /3 dk, we con-
clude that also d 0. Now suppose x E. By Definition 3.14, there exists
some 0 < r < 60 such that B(x, r) g. Since d 0, there must exist n
such that d < r, which (by the definition of dn) implies that x U,5 Bk.
This proves (i).

THEOREM 3.16. Let be a metric space and let 4) be any measure function.
Let Ix be a finite positive Borel measure on with lower density d4. For each
Borel subset E G, let inf d4,(E) infxe d4(x) and sup d4,(E)
sup e d4(x). Then the following hold:

(a) For each Borel set E, we have

Ix(E) >_ p4,(E) inf d4,(E)

where we take the righthand side to be 0 if either inf dq,(E) 0 or Pq’(E) O.
(b) If additionally dp is blanketed, i.e., there exists 0 < K < 1 such that 4)

satisfies b(t/2) > Krb(t) for all 0 < < 1, then

Ix(E) <_ K-1p+(E) sup d4(E )

for each Borel set E, where we take the righthand side to be oo if either
sup d4,(E)
We have the following stronger form of (b) if Ix possesses the centred ball
covering property:

(b’) If Ix has the centred ball coveringproperty, then the restriction that rh be
blanketed can be removedfrom (b), and we obtain the stronger result

Ix(E) _< p4,(E) sup d4,(E)
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for each Borel set E. As in (b), the righthand side is taken to be o if
sup dq(E) o or Pq(E) o.

Proof We begin by showing that Pq(E) < w whenever inf dq(E) > O.
Let y be any value satisfying 0 < y < inf dq(E) (y can be taken arbitrarily
large if infd4(E)= w). We will show that Pq(E) < y-)x(). Now
inf dq(E) > y implies that E can be obtained as the limit E $ E, where

E= {xEI I(B(x,r)) > ych(2r) forallO <r < l/k}.

Thus any closed &packing of E with 0 < 6 < 2/k must satisfy

E+(2r) _< /-1 lj6(B(X, Fk) )
_

where E(6) {x 1 d(x, E) < 6}. Letting 6 0, we get

Since E ’ E, it follows from Theorem 3.11 (D that Pq(E) < sup P(E) <
]/-1/.6(). Thus P4"(E) < .
Now consider (a). If inf d(E) 0 there is (by definition) nothing to prove,

and so we can assume that inf de,(E) > 0. By the argument given above, this
implies P(E) < w. Hence, by the inner regularity of both P+ and , we can
find an increasing sequence of closed sets F

_
E such that P+(F,) $ P4(E)

and /x(F)’ /(E). Since inf d(E) <_ lim_, inf d(F,), it follows that it is
sufficient to prove (a) for closed sets E with inf de,(E) > 0. As before, we let
0 < ), < inf de,(E) be arbitrary and write E ’ E, where the E are the same
as defined earlier. In the identical manner, we again obtain Po(E)<_
,-lp(), but since E is closed and E_ E, we have

___
E and so

po(G) <_ W-(E). This gives P+(E) <_ sup Po+(E) <_ y-ll(E). Since 0 <
T < inf d+(E) was arbitrary, we conclude that /z(E) >_ P0(E)inf d(E) as
claimed.
Now consider (b). If sup d(E) w there is nothing to prove, so assume

sup d+(E) < . We will show that /z(E) < yK-1p(E) for every real y >
sup de,(E). It is enough to prove, for every A G E, that (A) < TK-1Po(A),
since then

x(e) < inf(_/x(A)
k

UAk =E}
k

_< TK- inf{ EPo4’(A)k
E} TK-P4(E)
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as required. So let A_ E. If P(A)= w there is nothing to prove, so
assume P(A) < . Now sup d4(A) < sup d4(E) < y and hence, for each
x A, there exists a sequence r rn(x) $ 0 such that Ix(B(x, r,)) < 74(2r).
Thus, for each 0 < 6 < 1, the collection

= {B(x,r) lxA, ix(B(x,r)) < yh(2r),0 <r < 6/2}

is a centred ball covering of A. Let e > 0 be small and choose 0 < c < 1/2
sufficiently close to 1/2 so that, by the uniform continuity of 4 and the
blanketed condition, we get 4(2t) < (K-1 + e)4(2ct) for all 0 < < 1/2.
Since Po(A) < w, we can apply Lemma 3.15 to obtain a sequence of balls
{B(xk, rk)} from ga such that A c_ Uk B(x,r) and the smaller balls
{B(x,crk)}k are disjoint. This gives

Ix(A) <_ ’_,Ix(B(xk,r))< y,h(2rk)
k k

< T(K- + e)]h(2r) < y(K- + e)P(A).
k

Since e > 0 was arbitrary, we conclude that Ix(A)< TK-P(A). Letting
6 - 0 completes the proof of (b).
To see (b’), note that the existence of the centred ball covering property

means that we can directly choose a sequence of disjoint balls {B(x, r)}k
from such that Ix(A \ U B(x, r)) 0. This immediately gives

<_ <_ yEh(2r) < TP(A)
k k

and the result follows.

Remark 3.17. It is worth noting that the above proofs of (b) and (b’) do
not go through for diameter packing measure Q*. There are basically two
mechanisms for producing similar density theorems in the case of diameter-
based packings. One is to place a uniform restriction on the relationship
between ball diameter and ball radius; for example,

there exist c > 0 and r0 > 0 such that diam(B(x, r)) > cr
for allxandall0<r<r0

in which case a version of Theorem 3.16 can be obtained (the constant c will
also generally enter into the bounds). The second method involves redefining
the lower 4-density by replacing the quantity 4(26) in the denominator of
(3.9) by 4(diam(B(x, 6))). Edgar [9] has recently used this approach to obtain
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a powerful density theorem for diameter-based packing measure under the
assumption that /x possesses the centred ball covering property. Haase [14]
has also used this method to obtain a weaker density theorem (under similar
restrictions) for a different class of diameter packing measure. We note that
actual computation of the modified 4-density requires knowledge of the local
geometry at each point x of the space, a fact which may have important
ramifications in practice.

Remark 3.18. Haase [13] has proved a density theorem similar to Theo-
rem 3.16 for radius-based packing measure in the restricted case of separable
ultrametric spaces.

Remark 3.19. We also point out that if a result somewhat analogous to
Lemma 2.5 can be shown to exist for packing measure, then (b) of Theorem
3.16 can be strengthened to /x(E)< P4(E)supd4(E) for all blanketed
measure functions. That is, if it can be proved that P+IE satisfies the
centred ball covering property whenever E is a set of finite packing 4-pre-
measure, we can then eliminate the factor K-1 from (b) for blanketed
measure functions. Such a result seems too ambitious, however, since it
would imply that every finite Borel measure /x possesses the centred ball
covering property when restricted to a set of finite packing 4-premeasure.
We refer the reader to Haase [14] for discussion of a weaker (insufficient for
our purposes) centred ball covering property satisfied by certain diameter-
based packing measures.
We now consider the pointwise representation of packing dimension with

respect to a Borel probability distribution /z on . In [6], Cutler showed
(under the assumption of the centred ball covering property and the relation-
ship (3.10)) that the upper pointwise dimension map

log p( B( x, 6 ))(3.11) a+ (x) lim sup log 6
60

satisfied the following two properties:

(3.12) (a) Dime ({x l a

(b) if E
___

{x l a

+(x) < a}) <a for everya>O;

+(x) > a} and /x(E) > O, then Dime (E) > a

where DimQ denotes diameter packing dimension. It is easy to see, however,
that Dime (.) Dim(.) under assumption (3.10), and it is in fact this equality
induced by (3.10) that makes (3.12) work for diameter packing dimension.
The properties in (3.12) establish that a+(.) is a version of the local diameter
packing dimension map (see [6] for terminology and details) and relate the
behaviour of a+(.) to the distribution of/x-mass over sets of varying diameter
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packing dimension. The results in [6] were intended to complement similar
results obtained in [5] for Hausdorff dimension in general metric spaces. (See
Billingsley [2], [3] for the genesis of the study of pointwise dimension maps
and their relation to Hausdorff dimension and sets of positive probability.)
Specifically, it is shown in [5] that, for a Borel probability measure Ix on a
metric space , the lower pointwise dimension map

(3.13) cr- (x) lim inf
log IX(B(x, 6))

--,0 log 6

satisfies the following two properties:

(3.14) (a) dim((xla-(x) < a}) < a for everycr>0;

(b) if E
_

{x 1 a-(x) > or) and /x(E) > 0, then dim(E)

In particular, (3.14) holds without any restrictions on the metric space . We
now show that (3.12) also holds without any restrictions on provided we
substitute radius-based packing dimension Dim for DimQ. (Hence we obtain
the true complement to the results for Hausdorff dimension.) It is possible to
prove directly that (3.12) holds, but these properties can be obtained more
simply as a corollary to Theorem 3.16:

COROLLARY 3.20. Let IX be a Borel probability measure on a meoqc space,
and let or+(.) denote the upper pointwise dimension map of Ix. Then the
following two properties hold:

(a) Dim({xl o+(x) < or}) < oz forever)/cr > O;

(b) ifE G x l cr+ ( x) > or} and Ix(E) > O, then Dim(E) >

Hence +(.) is a version of the local packing dimension map of Ix.

Proof Let D, {x 1 c+(x) < a} and note that (a) is trivially true if
cr o. We therefore assume that 0 < c < . To prove (a) it is sufficient to
show that Pt3(D) 0 for every /3 > c. Therefore, let /3 > 3/> c be arbi-
trary and let x D. Since cr+(x) < cr there exists 80 > 0 such that
Ix(B(x, 6)) > 6 v for all 0 < 6 < 80. Hence 8-3Ix(B(x, 6)) > 6-t o as
6 0. Taking b(t) t, this shows that inf d+(D) o. Noting that D, is a
Borel set and applying Theorem 3.16 (a), we conclude that Pt(D,)= 0 as
required. Now consider the set E given in (b). If ce 0, (b) is trivially true, so
assume that cr > 0 and let 0 </3 < 3’ < c be arbitrary. To prove (b), it is
sufficient to show that Pt(E) o. Now x E cr+(x) > a > T, and so
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there exists a sequence 6 $ 0 such that /x(B(x, 6n)) < 6 for every n. Hence
lim inf 0 6- t/x(B(x, 6)) 0. Taking 4(t) , we conclude that
sup d4(E) 0. Since /x(E) > 0 by assumption, it now follows from Theorem
3.16 (b) that P(E) o.
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