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HOW MANY VECTORS ARE NEEDED TO COMPUTE
(p, q)-SUMMING NORMS

MARTIN DEFANT AND MARIUS JUNGE

Introduction

In the local theory of Banach spaces the concept of summing operators is
of special interest. The presented paper is concerned with the following
problem raised up by T. Figiel.
For given p and q, 1 < q < p < w, what is the best rate k,, such that

holds for all operators of rank n and some constant c?
In [DJ] an observation of Figiel and Pelczynski was generalized in showing

"gt’p q ( T ) <_ 3"B’plq6n(T)

for all q, p and all operators T of rank n. This exponential growth cannot be
improved in general. Figiel and Pelczynski also showed that there is an
operator T: l2" - l (the Rademacher projection) such that for all k e N

1 +Ink

Recently, Johnson and Schechtman [JOS] discovered that for p =q and
q :/: 2 the rate can not be polynomial. More precisely, every sequence
satisfying (*) growth faster than any polynomial, i.e.,
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for all 0 < < o. This phenomenon is related with the fact that Lp spaces
don’t have the polynomial approximation property, which was proved by
Bourgain. By far the nicest and most important result is Tomczak-
Jaegermann’s inequality, namely

(1) rr2(T ) _< -r’(T) for all T of rank n.

In [DJ] a certain type of quotient formula was used to generalize Tomczak-
Jaegermann’s inequality:

%2(T) _< f%2(T) for all T of rank n.

K6nig and Tzafriri showed that for all 2 < p < oc

(2) rrpl(T ) < Cprr/,(T) for all T of rank n.

In contrast to the case p q we can show that for q < p the (p, q)-summing
norm can be well-estimated by a polynomial number of vectors.

THEOREM l. Let 1 < q < p, r < o with

1 1 1

Then for all operator T of rank n one has

’rr [n(1 +ln7lpq( r) < c --pq

-Inr/2l(T )

for l < r < 2,

for 2=r,

for2 <r<o.

A very helpful tool in the proof of this theorem is again a quotient formula
for (p, q)-summing operators which allows a reduction to the (probably
worst) case q 1.

THEOREM 2. Let 1 < q < p < oo and 1 < r < s <_ q’ with

1 1 1
r p s

Then for all operator T: X --+ Y and n N,

rr,q(T) sup{rrr](TVD) V: lq, --+ X, D" l - lq,, Ilcrlls, [[Vll _< 1}.
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For instance the first case of Theorem 1 is a direct consequence of
Theorem 2 and (2). In the other cases a crucial observation of Jameson gives
the link between limit orders and number of vectors; see Section 2. We are in
debt to W. B. Johnson for showing us Jameson’s paper [JAM]. There has
always been a quite close connection between the theory of absolutely
(p, q)-summing operators and the theory of cotype in Banach spaces. For
instances, as a consequence of Tomczak-Jaegermann’s inequality and it’s
generalization the gaussian cotype constant of an n-dimensional Banach
space can be calculated with n vectors. This problem is still open in the case
of Rademacher cotype. The presented technique allows us to reduce the
number of vectors to the order n(1 + In n)Cq which indicates a positive
solution for the Rademacher cotype. Unfortunately, the constant Cq tends to
infinity as q tends to 2.

THEOREM 3. Let 2 < q < and E an n dimensional Banach space. For the
Rademacher cotype constant one has

Cq(IdE) < 2C"(IdE),

where rn satisfies the following estimate for an absolute constant co

m < n(c0(1 + In n) )l/(1-Z/q ).

Finally, we want to indicate that a linear growth is only possible if q 2 or
/q- /p <_ .
THEOREM 4. Let 1 < q < p < , q < r < with

1 1 1
q p r

If q 4:2 and 2 < r < . Then there exists c > 1 such that for all sequences k
with

for all T ofrank n,

there exists a constant with

n < ?kn.

The constructed examples are very closely related to limit orders of
(p, q)-summing operators. In fact, it is well known that the identity on l
yields an example for the proposition above as long as q > 2. In the case
q < 2 we intensively use the results of Carl, Maurey and Puhl [CMP] about
Benett matrices.
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Preliminaries

In what follows, c0, ca,.., always denote universal constants. We use
standard Banach space notation. In particular, the classical spaces q and l,
1 < q < , n N, are defined in the usual way. By : q

---) lp we denote the
canonical identity. Let (e) r be the sequence of unit vectors in l. For a
sequence o-= (r) r l, " (z) r 1 we define

D(-) o,’,e.
k

The standard reference on operator ideals is the monograph of Pietsch [PIE].
The ideals of linear bounded operators, finite rank operators, integral opera-
tors are denoted by , , . Here the integral norm of T ’(X,Y) is
defined by

bl(T) sup{Itr(SZ)l S -(Y, X), IISll 1}.

Let 1 <q <p < w and n N. For an operator T(X,Y),
pq-summing norm of T with respect to n vectors is defined by

the

"/’/’/q(T) sup E IITxll p)
1/p n )l/qsup lx, x*)lq

< 1
Ilx*llx*_<

An operator is said to be absolutely pq-summing, short pq-summing, (T
1-Ipq(X, Y)) if

77"pq(T) sup ,’/7-/q(T) < .
n

Then (1-Ipq, 7"l’pq) is a maximal and injective Banach ideal (in the sense of
Pietsch). As usual we abbreviate (1-Iq, 7rq) (1-Iqq, 7rqq). For further informa-
tion about absolutely pq-summing operators we refer to the monograph of
Tomczak-Jaegermann [TOJ]. In particular, we would like to mention an
elementary observation of Kwapien; see [TOJ]. Let 1 < q < p < w, 1 < Y/<
/<with q<Y/,p </Sand

1 1 1 1
q P q P

Then for all T, one has

 A(v) -< %(v).
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For 2 < q < % T ’(X, Y) and n N the Rademacher (gaussian) Cotype
q norm with respect to n-vectors is defined by

Cg(T).(_(T).( :=sup VkXk d

where (v)f is a sequence of independent Bernoulli (gaussian) variables on a
probabili space (a, ). operator is said to be of Rademacher (gaussian)
coupe q if the corresponding norm

Co(T) sup Cq ( T) q(T) sup Cq ( T)
nN nN

is finite. For further information and the relation beeen gaussian coupe
and (q, 2)-summing operators see for example [TOJ].

1. Positive results

Proof of Theorem 2. < ". Let Xl,..., x X with

sup a,x, sup El(x,, x*)lq < 1.
][q, _< IIx* x* -<

Therefore the operator V Ee x" lq, X is of norm 1. By the equality
case of H61der’s inequali we obtain

IIZxkll p sup ([l IIZxkll)

"> ". By the maximality of the norms rrr we may assume D’I --+ q
m,

and V" lq, --+ X with IIolls, IIVll < 1. Now let U" l l an operator of
norm 1. By an observation of Maurey [MAU] the extreme points of such
operators are of the form

U ek (R) gk,

where the g,’s are of norm 1 and have disjoint support. Since we have to
estimate the convex expression

)
1/r

TVDU( ek)l[
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mbywe can assume that U is of this form We define - and J q, ---) q,

r and J:= ]ek (R)
Ilo, (g )llq,

The operator J is of norm at most 1. Since D is obviously s1-summing we
have

Therefore by H61der’s inequality we obtain

n

E TVDU(e)
1/r

TV IIO (g ) I1 ’
7"k

E(llTVJ(e)[ll,r.l)
1/r

n )l/p< 2(llTVJ(e,)ll)p Ilrll,

q(T)llVJIIIl’rlls rrq(T).

1/r

Now we will formulate a generalization of Jameson’s lemma [JAM] which he
proved in the case q 1, p 2.

LEMMA 1.1 (Jameson).
q-summing operator. Then

Let 1 < q < p < and let T e(X, Y) be a

7ipq( T) < 21/PTrq( T)

where

n < (21/p 7rq(T) 1/(1/q-1/p

Proof Let us assume 7rq(T) 1. For e > 0 let xl,..., xN in X with

sup
Ilx* [Ix* <

El<x ,x*> _< 1 and (1 e)TrpPq(T) < EIIZxzll p

Furthermore, we assume IlZxll nonincreasing. For 0 < 6 we choose n < N
minimal such that IITxll _< holds for all k > n. Then we have n < 6-q
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because

t/ q 37qq(r) 1.

If P-q . 1/2(1 o)TrpPq(Z) it follows that

N

(1 e)erp(T) _< EIIrxll p

n N

<- llrxll p / P-q E IlZxll q

n+l

<_ EIIZxll p / P-qqq(Z)

n 1
<_ EIITxII p + (1 )TrpPq(T).

This means

(1 g)l/P,77"pq(Z) <_ 21/PTrq(T).

Letting e go to zero we find an n N with

2
21/p rq(T)

7rpq ( T )

1/(1/q- 1/p

Remark 1.2. Exactly the same argument shows that for every operator
T (X, Y) which is of (Rademacher) Cotype 2 one has

Cq(T) < 21/qCg(T),

where n N satisfies

rt < (21/q C2(T) )1Cq(r)

Proof of Theorem 3. Let E be a n-dimensional Banach space. According
to Jameson’s lemma we want to compare the cotype 2 norm with the cotype q
norm via the gaussian cotype. It is well known [PS, Theorem 3.9.] that the
Rademacher cotype 2 can be estimated by the gaussian cotype 2 norm in the
following way.

C2(IdE) < Co2(IdE)l + In (2(Ide)
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Using the inequalities If’2(IdE) _< 1/nl/2-1/qq(IdE) and Ifq(IdE) _< n1/q,
see [TOJ], we obtain

C2(IdE) < c0ffz(ldE)l//1 + In (2(Ide)
< conl/2-1/q6q(ldE)2 + In n.

Combining this estimate with Jameson’s lemma, more precisely the remark
above, we see that there is a constant c > 0 such that

Cq(IdE) <_ 21/qc’(IdE),
with

m < n(clv/1 + In n )1/(1-2/q). [--]

In order to apply Jameson’s lemma an appropriate estimate of the 1-summing
norm by the r1-summing norm is needed.

LEMMA 1.3.
n. Then we have

Let 1 < r < % n N and T .c(X, Y) an operator of rank

’I( T) < Corl( T)

1 1 )-1/2 n1/2 for 1 < r < 2,7 -Y
(n(1 + In n)) 1/2 forr 2,

(1 1) -1/r’

" "7 n1/ r’ for 2 < r < oo

Proof We may assume T C(l,F)with dim F n. The inequality
rr2(S F -- 1oo) _< V/-h--IISll (see [TOJ]) together with Tomczak-Jagermann’s in-
equality implies

rl(T) < /l(T) -7/’2(T) < v/n r’(T).

For 2 < r < c we deduce from Maurey’s theorem (see [TOJ]),

7r(r) n1/2-1/rTrrn2(r) c0 - 7
1/r,

hi/2-1/r "rrr 1( T )

For r 2 we choose 2 < < oo with

1 1 1
2 2+ 21nn

With %1 7/’21 we obtain

37. 2n (T) < 2e2c0(1 + In n)1/2 7r21(T).n
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If 1 < r < 2 we use the other version of Maurey’s theorem (again see [TOJ])
to deduce

_< Co 7 g
1/2

q’/’rl( T).

Combining the last three estimates with the first one gives the assertion.

Proof of Theorem 1. First we prove the theorem in the case q 1, hence
p’= r. From Jameson’s Lemma 1.1 and Lemma 1.3 we deduce that for an
operator T of rank n,

rpl(T ) < 21/Pr(T),
where

m < (2c0)

1 1)
-1

n

n(1 +lnn)
1 1 -r/2

for2 <p < o,

for r 2,

glr/2 for 1 < p < 2.

An elementary computation shows that for all c, c > 1 one has

Hence we get

"rr/;
[c] T) <t (4c) 1/p

rp(T) <_ (16Co) r-1

forl <r<2

forr= 2

for2 < r < oo.

For an arbitrary 1 < q <p < o we define fi r’. Since we have 1/p
1/p + 1/q’ we can deduce from Theorem 2 and the inequalities above that

rrvq(T ) sup{rpl(TVD) V" lq, - X, D I lq,, [[ol[q,, I[V[[ < 1}
<_ Cr SUp{Tr(r’n)( rgD) g" lq, ---) X, D l - lq,, lltrllq’, llgll <_ 1}

CrTrq(r, n)( T),

where m(r, n) n, m(r, n) [n(1 + In n)], m(r, n) [nr/2 for r < 2, r 2,
2 < r, respectively.
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Remark 1.4. The polynomial order of the vectors needed to compute the
pq-summing norm can be improved for several choices of p and q, because
they are close enough to the 2. Let 1 < q < p, r < o with 1/q 1/p + 1/r.
Then for all operators T of rank n one has

gl’,q[rtl+r(1/q-l/2) ]( T)
nr(1/2 1/p)]

for 1 < q < 2 and 2 < r < q’,

for2 <q < o.

Proof First case. We choose 2 < s < w such that 1/q 1/p 1/2-
1/s. By a result of Carl [CAR], together with Tomczak-Jaegermann’s and
Kwapien’s inequality, we have

STq(Z) nl/q-1/2 T2(Z)  l tll/q-1/2

]/tll/q-1/2lll/2-1/SqTsn2(Z) /tl2/q-1/2-1/pTr;q(Z).

By Jameson’s Lemma 1.1 and the elementary estimate in the proof above we
obtain

+r(1/ q-1/2)

"rrpq(r) <_ sl/pzr/p(1/p+l/2)’rr[p I.

Second case.
deduce that

From Kwapien’s and Tomczak-Jaegermann’s inequality we

qTq(T) ,’i7"2(T ) v/,’/7(T)

ll/nl/2-1/P,’IT;2(T) y/nl/2-1/pgrpq(T).

Again with Jameson’s Lemma 1.1 this implies the assertion.

We would like to note the following.

COROLLARY 1.5. Let 1 < r < 0% K a compact Hausdorff space and
T (C(K), Y) of rank n. Then we have

77"p(r) <_ Cp(1 nu In n)l/P’{ "lry(Z) for 2 < p < o,

forl <p<2.
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Proof Using a result of Carl and Defant, see [CAD], and Theorem 2 we
deduce that

’n’p(T) _< Co(1 + In n)1/P’qTpl(T)
< cp(1 + In n)l/P’ [11max,l,p’/2,]

"17"1 ( T) <_ Cp(1 + In n)1/p’

2. Examples

By the positive results of the previous section a polynomial growth can only
appear if 1/q 1/p > 1/2. Therefore for 1 < q < 2 we define the critical
value pq by 1/pq-- 1/q- 1/2. In the sequel limit orders of pq-summing
operators are of particular interest. We intensively use the results of Carl,
Maurey and Puhl (see [CMP]). The next lemma is implicitly contained there
but we reproduce the easy interpolation argument.

LEMMA 2.1. Let 0< 0< 1, 1 <q, r<2 andq <pwith

1 1-0 0 1 1 0
+ and

r q - p q 2"

Then one has

i’gpq(t" lq, ) HI/p

Proof Clearly (see [PIE]) one has

rq( lq, --+ lq ) < rq( l lq ) < n1/q

With Kwapien’s inequality, rqp,
of 2 that

"/’/’21, we deduce from the Orlicz property

(Id)11, 1/q-1/2qpq( lq, --> 2 ) K ’T/’21 l lq, 1211--< n

By interpolation, namely [lq(lq), lp(12)] o lp(lr) see [BEL], this means

-O)/q O(1/q-1/2) 1/p
7"gp q ( q, --+ ) < n n n

Now we can construct the counterexamples

PROPOSITION 2.2. Let 0 < 0 < 1, 1 < q < 2 < s < and q < with

1 1-0 0 1 1 0
q, + - and q 2"
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For all n N there exists an operator T (lq,, l) which satisfies

"B’pq ( T )
COV[-

l/p-lit

for all q < p < t and k N.

Proof Let m Ins/2] and A’lq, --> 12 be a random matrix with entries
+ 1, a so called Benett matrix. Obviously we have

rl/2+s/2p for all q <p.7rpq(A) >_. ml/pn1/2 > -ff,

We will see that this estimate is sharp for some indices p. By [CMP, Lemma
5] one has

[IZ l l11 _< CoVe-max{n1/2, m1/s) < Co S.

Since

1 1-0 0
s’ q 2

we deduce from Lemma 2.1 that

"n’tq(Z) <- "n’t’q(," lqm, -) IT)IIA’17 111
<_ ol/rnl/2m1/t <_ o/’-nl/2+s/2t.

Therefore, for arbitrary q < p < t, k N, we obtain

"rl’pkq ( A ) <_ k /p -1/ ttqk (A)
<_ CoVkl/p-1/ tnl/2+s /2t

k }l/p-1/t<_ ,n’pq ( A )

COROLLARY 2.3. For 1 < q < 2 and q < p < pq let 2 < s < be defined
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For any sequence kn, c > 0 satisfying

%q( T) < Crpk4( T) for all T of rank n

there is a constant C with

nS/2 <_ CleCl/1 +In kn"

Proof We define O.’= 2(l/q- l/p) < 1. For
0 O + e and choose 2 < u < s, p < < pq with

1 1-0 0 1 1 0-- q’ +-’ q 2"

e< 1- O we set

Now let us consider the quotient dn nS/Zk 1. From Proposition 2.2, with
an elementary computation, we deduce that

l/p-lit

< CoVde/Zn(s-v)e/4

< CoVf-d-e /2 ne2sZ(1/8-1/4 q’).

Setting e (1 0)/2 yields a constant c2 such that

In d, < C2 "+" $2(1 O) 8 4q’ Inn.

Therefore there exists an no N such that for all n > no we can choose
e, In d/[s2(1/2- 1/q’)In n] < 1 O. An elementary computation
gives

(In dn) 2 )2s2(1/2 if’)(ln n)

This is only possible if there exists a constant c depending on s, q and C
such that

rlS /2
=dn < exp(c3/1 + In n ).

Remark 2.4. For q 1 the above results can be slightly improved. For
1 < p < 2 < s < p’ < there exists an operator T (lns/21, l) such that
for all k N,

1/s-1/p
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In particular, the inequality

rpl(T) < C(1 + In n) rpk"(T) for all T of rank n

can only be satisfied, if

rtp’/2 .eV/1 +In kn"

This answers a conjecture of Carl and Defant. They suggested

.(r) _< %( + n )",()
for all operators T 5(C(K), Y) of rank n, which turns out to be false.
Furthermore, we recover the exponential order of vectors for 7r. More
precisely, for all n, k N there is an operator T (/nl+,, 1, l)with

(r) _< Co n

Proof Inspecting the proof of Proposition 2.2 we take a Benett matrix
A" lIs/21 l, whose pl-summing norm satisfies

tal/2+s/2p,,,,,, >_ -.
On the other hand

The logarithmic factor does not affect the calculation in the proof of
Corollary 2.3. For the last assertion we note that p’ w and therefore the
choice s 2(1 + In k) implies the assertion. []

Proof of Theorem 4. If 1 < q < 2 this follows immediately from Corollary
2.3. We only have to note that for all e > 0 there is a constant C with

eeV/i +In <_ C.n.
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Now let 2 < q < o. With the help of Benett matrices it was shown in [CMP]
that for2<q<

nq/2p <_ CoV/’rrpq(id,).
Hence we get

"n’pq(id,) _< k/Pllidzll <_ k/p

Therefore every sequence k with ’pq(T) < CTrpk(T) must satisfy

nq/2 <_ (Ccor-)Pkn
Remark 2.5. For operators defined on n-dimensional Banach spaces, the

results of [JOS] and [DJ] imply that the pq-summing norm can be calculated
with nq/2(1 + In n) many vectors. Therefore the order in the proof of the
proposition above is quite correct.
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