LOWER BOUNDS FOR NORMS ON CERTAIN ALGEBRAS

MICHAEL J. MEYER

Introduction

A Banach algebra \mathscr{A} often carries natural algebra norms other than the complete norm $\| \|_{\mathscr{A}}$ with which it is equipped. It is then of interest to study the relation of an arbitrary algebra norm on \mathscr{A} to the complete norm of \mathscr{A} (an algebra norm on \mathscr{A} is a norm which satisfies $||xy|| \le ||x|| ||y||$, for all $x, y \in \mathscr{A}$). Let us say that an algebra norm $\| \| \|$ dominates the complete norm $\| \| \|_{\mathscr{A}}$ on \mathscr{A} if $||x||_{\mathscr{A}} \le C ||x||$ for all $x \in \mathscr{A}$ and some constant C. We are now interested in the following property:

(1) Every algebra norm on \mathscr{A} dominates the complete norm.

The purpose of this paper is to give a simple argument which suffices to establish property (1) for all noncommutative Banach algebras \mathscr{A} for which it is known to hold, and which also allows us to obtain some new examples.

Let $P = P(\mathscr{A}) = \{q \in \mathscr{A} : qx = x \text{ for some nonzero } x \in \mathscr{A}\}$ and note that P contains every nonzero idempotent of \mathscr{A} . An arbitrary algebra norm $\| \|$ on \mathscr{A} satisfies $\|q\| \ge 1$, for all $q \in P$: In fact, if qx = x, for some nonzero $x \in \mathscr{A}$, then

$$||x|| = ||qx|| \le ||q|| ||x||;$$

thus

 $\|q\| \ge 1.$

This can be exploited as follows: Define

$$\beta(x) = \inf\{\|a\|_{\mathscr{A}} \|b\|_{\mathscr{A}} : a, b \in \mathscr{A} \text{ and } axb \in P\} \text{ for all } x \in \mathscr{A}.$$

We set $\beta(x) = \infty$ if there do not exist elements $a, b \in \mathscr{A}$ such that $axb \in P$.

© 1995 by the Board of Trustees of the University of Illinois Manufactured in the United States of America

Received April 25, 1993

¹⁹⁹¹ Mathematics Subject Classification. Primary 46H05, Secondary 46B25.

PROPOSITION 1. Let \mathscr{A} be a normed algebra. Suppose that *C* is constant and $\| \|$ an algebra norm on \mathscr{A} which satisfies $\|x\| \leq C \|x\|_{\mathscr{A}}$ for all $x \in \mathscr{A}$. Then we have $C^2\beta(x)\|x\| \geq 1$ for all $x \in \mathscr{A}$, with $\beta(x) < \infty$.

Proof. Suppose that $\beta(x) < \infty$ and let $a, b \in \mathscr{A}$ be such that $axb \in P$. Then

$$1 \le ||axb|| \le ||a|| ||x|| ||b|| \le C^2 ||a||_{\mathscr{A}} ||b||_{\mathscr{A}} ||x||.$$

Taking the infimum over all such $a, b \in \mathcal{A}$ yields the desired inequality.

Thus upper bounds for the functional β yield lower bounds for continuous algebra norms on \mathscr{A} . Let $S(\mathscr{A}) = \{x \in \mathscr{A} : ||x||_{\mathscr{A}} = 1\}$ denote the unit sphere of the Banach algebra \mathscr{A} . The following theorem allows the reduction from arbitrary norms to continuous norms:

THEOREM 1. Suppose that the Banach algebra \mathscr{A} satisfies $\beta(x) < \infty$ for all $x \in S(\mathscr{A})$. Then for every algebra norm $\| \|$ on \mathscr{A} there exists a continuous algebra norm $\| \|_0$ on \mathscr{A} which satisfies $\|x\|_0 \le \|x\|$ for all $x \in \mathscr{A}$.

Proof. If $\beta(x) < \infty$, for all $x \in S(\mathscr{A})$, then the Banach algebra \mathscr{A} has property (P) in the sense of [6]. Now use [6, Theorem 2 (C), (E)].

COROLLARY 1. If the functional β is bounded on the unit sphere $S(\mathcal{A})$, then each algebra norm on \mathcal{A} dominates the complete norm of \mathcal{A} .

Proof. Suppose that $\beta(x) \leq M$, for all $x \in \mathscr{A}$ with $||x||_{\mathscr{A}} = 1$. Let || || be an algebra norm on \mathscr{A} and choose a continuous algebra norm $|| ||_0$ on \mathscr{A} such that $|| ||_0 \leq || ||$. Choose the constant C such that $||x||_0 \leq C ||x||_{\mathscr{A}}$, for all $x \in \mathscr{A}$. Then, for each $x \in \mathscr{A}$ with $||x||_{\mathscr{A}} = 1$, we have

$$1 \le C^2 \beta(x) \|x\|_0 \le C^2 M \|x\|$$
, that is $\|x\| \ge \frac{1}{C^2 M}$.

We shall now derive estimates for the functional β for various Banach algebras \mathscr{A} . Let $\| \| = \| \|_{\mathscr{A}}$ in Proposition 1 to note that $\beta(x) \ge 1$ for all $x \in S(\mathscr{A})$.

THEOREM 2. If \mathscr{A} is a C*-algebra or \mathscr{A} is the algebra of all bounded linear operators on a Banach space X, then $\beta(x) = 1$, for all $x \in S(\mathscr{A})$.

According to Corollary 1 these algebras have property (1). This has been known for a long time [2], [14]. However the classical proofs for each case are quite dissimilar.

Let now X be a Banach space and $\mathscr{B} = \mathscr{B}(X)$ the algebra of all bounded linear operators on X. Recall that an operator $t \in \mathscr{B}$ is called *strictly singular* if

$$\inf\{\|tx\|: x \in N \text{ and } \|x\| = 1\} = 0,$$

for each infinite dimensional subspace $N \subseteq X$. The family of strictly singular operators on X is a closed two sided ideal in \mathscr{B} which we denote by S. Let us now estimate the functional β in the quotient algebra $\mathscr{A} = \mathscr{B}/S$. For $t \in \mathscr{B}$ we let \tilde{t} denote the coset $t + S \in \mathscr{A}$.

THEOREM 3. Let $\mathscr{A} = \mathscr{B}/S$ be as above. If $X = l_p$, $1 \le p < \infty$, $X = c_0$ or $X = L^1([0, 1])$, then $\beta(x) = 1$, for all $x \in S(\mathscr{A})$.

If $X = l_p$, $1 \le p < \infty$ or $X = c_0$, then S coincides with the ideal of compact operators on X (the only nontrivial closed two sided ideal in \mathscr{B} in this case). Thus \mathscr{A} is the Calkin algebra on X. This case is also treated in [7].

If $X = L^1([0, 1])$, then [8] S coincides with the ideal W of weakly compact operators on X. In this case \mathscr{A} is the weak Calkin algebra \mathscr{B}/W on X.

Finally suppose that $X = C(\Omega)$, where Ω is a compact metric space and $\mathscr{A} = \mathscr{B}/S$ as above. In this case we can only prove a weaker estimate for the functional β on \mathscr{A} .

Again [8] the ideal S coincides with the ideal W of weakly compact operators on X so that \mathscr{A} is the weak Calkin algebra on X. Moreover an operator t on X is weakly compact if and only if $tf_n \to 0$, for each bounded sequence $(f_n) \subseteq X = C(\Omega)$, such that $f_n f_m = 0$ for all $n \neq m$ [3, VI.17]. Consequently

$$\Delta(t) = \sup \, \overline{\lim_{n \uparrow \infty}} \| t f_n \|,$$

where the supremum is taken over all sequences $(f_n) \subseteq X$ with $||f_n|| = 1$ and $f_n f_m = 0$, for all $n \neq m$, defines a (linear) seminorm on the algebra \mathscr{B} , which vanishes exactly on the ideal S. Thus Δ induces a (linear) norm on the quotient \mathscr{A} , which we also denote by Δ , by means of $\Delta(\tilde{t}) = \Delta(t), t \in \mathscr{B}$.

THEOREM 4. Let $X = C(\Omega)$, where Ω is a compact metric space and $\mathscr{A} = \mathscr{B}/S$ as above. Then

$$\beta(x) \leq \frac{2}{\Delta(x)}$$
 for all nonzero $x \in \mathscr{A}$.

Proof of Theorem 2. Assume first that \mathscr{A} is a C^* -algebra and let $x \in S(\mathscr{A})$. Set $u = x^*x$. Then $\rho(u) = ||u|| = ||x||^2 = 1$. Let now $0 < \alpha < \beta < \gamma < 1$ be arbitrary and choose continuous functions f, g, defined on the complex plane and satisfying $||f||_{\infty}$, $||g||_{\infty} \leq 1$ and

$$f(\lambda) = 0 \text{ for } |\lambda| \le \alpha \text{ and } f(\lambda) = 1 \text{ for } |\lambda| \ge \beta,$$

$$g(\lambda) = 0 \text{ for } |\lambda| \le \beta \text{ and } g(\lambda) = 1 \text{ for } |\lambda| \ge \gamma.$$

Set $h(\lambda) = f(\lambda)/\lambda$, for all complex numbers λ and note that h is a continuous function satisfying $|h(\lambda)| \leq 1/\alpha$ for all λ . The continuous functional calculus now yields elements b = h[u] and q = g[u] in \mathscr{A} which satisfy $||b|| \leq ||h||_{\infty} \leq 1/\alpha$ and $q \neq 0$ (since $1 \in Sp(q)$, according to the Spectral Mapping Theorem). Since also $\lambda h(\lambda)g(\lambda) = f(\lambda)g(\lambda) = g(\lambda)$ for all λ , we have ubq = q; that is, $(x^*xb)q = q$ and consequently $x^*xb \in P(\mathscr{A})$. This shows that

$$\beta(x) \leq ||x^*||_{\mathscr{A}} ||b||_{\mathscr{A}} \leq \frac{1}{\alpha}.$$

The result follows if we let $\alpha \uparrow 1$.

Suppose now that $\mathscr{A} = \mathscr{B}(X)$ is the algebra of all bounded linear operators on some Banach space X and let $t \in S(\mathscr{A})$. Suppose that $0 < \alpha < 1$ and choose a unit vector $u \in X$ with $||tu|| > \alpha$. Now let $x^* \in X^*$ be a continuous linear function with $||x^*|| < 1/\alpha$ such that $x^*(tu) = 1$. Let q be the one dimensional operator $b = x^* \otimes u = x^*(\cdot)u \in \mathscr{A}$. Then $||b||_{\mathscr{A}} = ||x^*|| < 1/\alpha$ and the operator $tb = x^* \otimes tu$ is a nonzero idempotent. Consequently $tb \in P(\mathscr{A})$ and so

$$\beta(t) \leq \|b\|_{\mathscr{A}} < \frac{1}{\alpha}. \quad \blacksquare$$

Let now $\mathscr{A} = \mathscr{B}/S$, where $\mathscr{B} = \mathscr{B}(X)$ is the algebra of all bounded linear operators on X and $S \subseteq \mathscr{B}$ the ideal of strictly singular operators. Recall also that $t \in \mathscr{B} \to \tilde{t} \in \mathscr{A}$ denotes the quotient map.

LEMMA 1. Let $t \in \mathscr{B}$ and suppose that there exist a constant $\rho > 0$, an infinite dimensional subspace $N \subseteq X$ and an idempotent $p \in \mathscr{B}$ such that p(X) = t(N) and $||tx|| \ge \rho ||x||$ for all $x \in N$. Then $\beta(\tilde{t}) \le \rho^{-1} ||p||$ in the quotient algebra $\mathscr{A} = \mathscr{B}/S$.

Proof. In fact the restriction $t|_N: N \to t(N)$ is invertible and satisfies $||(t|_N)^{-1}|| \le \rho^{-1}$. Moreover $b = (t|_N)^{-1}p$ is a well-defined operator on X which satisfies $||b|| \le \rho^{-1} ||p||$ and tb = p. The idempotent p has infinite dimensional range and is therefore not strictly singular. Passing to the quotient algebra \mathscr{A} we note that $\overline{tb} = \overline{p}$ is a nonzero idempotent in \mathscr{A} . It follows that

$$\beta(\tilde{t}) \le \|b\|_{\mathscr{A}} \le \|b\| \le \rho^{-1} \|p\|.$$

Let us call a sequence $(f_n) \subseteq L^1([0, 1])$ almost disjointly supported on [0, 1], ([13]), if there exists a sequence $(g_n) \subseteq L^1([0, 1])$ with pairwise disjointly supported elements g_n such that $||f_n - g_n||_1 \to 0$ as $n \uparrow \infty$. We need the following result from [13].

LEMMA 2. Let $X = L^1([0, 1])$, W the ideal of weakly compact operators on X, and $t \in \mathscr{B}(X)$ such that $\operatorname{dist}(t, W) = 1$. Then there exists a normalized sequence $(f_n) \subseteq X$ such that $||tf_n||_1 \to 1$ and both the sequences (f_n) and (tf_n) are almost disjointly supported on [0, 1].

We also need the following lemma [10, 2.2].

LEMMA 3. Let $X = L^{1}([0, 1])$ and set

$$m(\varepsilon) = \frac{1+\varepsilon}{1-\alpha(\varepsilon)}$$
 where $\alpha(\varepsilon) = \frac{\varepsilon(1+\varepsilon)}{1-\varepsilon}$

for all $0 < \varepsilon < 1/3$. Let $(g_n) \subseteq X$ be a normalized disjointly supported sequence and $(f_n) \subseteq X$ any sequence. Then $\sup_n \|g_n - f_n\|_1 < \varepsilon < 1/3$ implies that the closed linear span $N = \overline{\text{span}}(f_n)$ is $m(\varepsilon)$ -complemented in X; that is, there exists an idempotent $p \in \mathscr{B}(X)$ with $\|p\| \le m(\varepsilon)$ and p(X) = N.

Proof of Theorem 3. First, assume that $X = l_p$, $1 \le p < \infty$ or $X = c_0$, let $x \in S(\mathscr{A})$, choose $t \in \mathscr{B}$ with $x = \tilde{t}$ and let 0 < r < 1. For our Banach space X the ideal S coincides with the ideal of compact operators on X. It is shown in [6] that there exists an infinite dimensional subspace $N \subseteq X$ such that $||tx|| \ge r||x||$, for all $x \in N$. Let $\varepsilon > 0$. Replacing N with a suitable subspace, if necessary, we may assume that N is $(1 + \varepsilon)$ -complemented in X. Now Lemma 1 shows that

$$\beta(x) = \beta(\overline{t}) \leq \frac{1+\varepsilon}{r}.$$

The result follows if we let $r \uparrow 1$ and $\varepsilon \downarrow 0^+$.

Now, assume that $X = L^1([0, 1])$, let $x \in S(\mathscr{A})$ and choose $t \in \mathscr{B}$ with $x = \overline{t}$. The ideal S coincides with the ideal W of weakly compact operators on X. Consequently dist $(t, W) = ||x||_{\mathscr{A}} = 1$. By Lemma 2 there exists a normalized sequence $(f_n) \subseteq X$ such that $\lim_n ||tf_n||_1 = 1$ and such that both the sequences (f_n) and (tf_n) are almost disjointly supported. Choose disjointly supported sequences $(g_n), (h_n) \subset X$ such that $||f_n - g_n||_1, ||tf_n - h_n||_1 \to 0$, as $n \uparrow \infty$. Clearly then $||g_n||_1, ||h_n||_1 \to 1$ and we may assume that the sequences $(g_n), (h_n)$ are normalized.

Let $0 < \varepsilon < 1/3$. Replacing (f_n) by a suitable subsequence (and $(g_n), (h_n)$ by the corresponding subsequences), if necessary, we may assume that

$$||f_n - g_n||_1 < \varepsilon$$
 and $||tf_n - h_n||_1 < \varepsilon$ for all $n \ge 1$.

Let $N = \overline{\text{span}}(f_n)$. We wish to show that

$$\|tf\|_1 \ge \frac{1-\varepsilon}{1+\varepsilon} \|f\|_1 \quad \text{for all } f \in N.$$
(2)

It will suffice to show (2) for an arbitrary finite linear combination $f = \sum \lambda_n f_n$. Note first that $\|\sum \lambda_n g_n\|_1 = \sum |\lambda_n|$, since the sequence (g_n) is normalized and disjointly supported. Now the equality $f = \sum \lambda_n g_n + \sum \lambda_n (f_n - g_n)$ implies that

$$(1-\varepsilon)\sum |\lambda_n| \le ||f||_1 \le (1+\varepsilon)\sum |\lambda_n|.$$
(3)

Since $tf = \sum \lambda_n tf_n = \sum \lambda_n h_n + \sum \lambda_n (tf_n - h_n)$ and the sequence (h_n) is normalized and disjointly supported, we obtain similarly

$$(1-\varepsilon)\sum|\lambda_n| \le \|tf\|_1 \le (1+\varepsilon)\sum|\lambda_n|.$$
(4)

The inequalities (3), (4) now imply that

$$\|tf\|_1 \ge (1-\varepsilon)\sum |\lambda_n| \ge \frac{1-\varepsilon}{1+\varepsilon} \|f\|_1.$$

The subspace $N \subseteq X$ is infinite dimensional and from Lemma 3 we know that there exists an idempotent $p \in \mathscr{B}(X)$ with $||p|| \le m(\varepsilon)$ and p(X) = N. Here $m(\varepsilon)$ is as in Lemma 3. Note $m(\varepsilon) \to 1$ as $\varepsilon \to 0^+$. According to Lemma 1 we have

$$\beta(x) = \beta(\overline{t}) \leq \frac{1+\varepsilon}{1-\varepsilon}m(\varepsilon).$$

The result follows if we let $\varepsilon \downarrow 0^+$.

LEMMA 4. Let $X = C(\Omega)$, where Ω is a compact metric space, $t \in \mathscr{B}$ and $r < \Delta(t)$. Then there exists a closed subspace $N \subseteq X$ which is isomorphic to c_0 and such that $||tx|| \ge r||x||$ for all $x \in N$.

Proof. This is a quantitative version of [3, VI.15, p. 159] with similar proof (included for the convenience of the reader). Choose ρ such that $r < \rho < \Delta(t)$ and a sequence $(f_n) \subseteq X$ such that $||f_n|| = 1$, $f_n f_m = 0$ and $||tf_n|| > \rho$ for all $n \neq m$.

Now choose continuous linear functionals $x_n^* \in X^*$ with $||x_n^*|| = 1$ such that $|x_n^*(tf_n)| = |t^*x_n^*(f_n)| > \rho$. Finally let, for each $n \ge 1$, μ_n be the unique

572

regular Borel measure on Ω satisfying

$$t^*x_n^*(f) = \int_{\Omega} f d\mu_n$$
, for all $f \in X$.

Then $\|\mu_n\| = |\mu_n|(\Omega) = \|t^*x_n^*\| \le \|t^*\|$, for all $n \ge 1$. Consequently $(|\mu_n|)$ is a uniformly bounded sequence of positive Borel measures on Ω . Here $|\mu_n|$ denotes the total variation of the measure μ_n as usual.

Let $\varepsilon = \rho - r > 0$ and set $G_n = \{|f_n| > 0\}$, for all $n \ge 1$. Since $f_n f_m = 0$ for $n \ne m$, (G_n) is a sequence of disjoint open subsets of Ω . Replacing (G_n) and (f_n) by suitable subsequences if necessary, we may, according to Rosenthal's lemma [3, I.4.1, p. 18], assume that

$$|\mu_n| \left(\bigcup_{m \neq n} G_m \right) < \varepsilon \quad \text{for all } n \ge 1.$$

The map $J: (\alpha_n)_{n=1}^{\infty} \in c_0 \to f = \sum_{n \ge 1} \alpha_n f_n \in X$ defines an isometric embedding of the space c_0 into X. Let $N = J(c_0) \subseteq X$. Recall that $||f_m|| = 1$, for all $m \ge 1$. Thus, if $f = \sum \alpha_n f_n \in N$, then $||f|| = \sup_n |\alpha_n|$ and for each $n \ge 1$ we have

$$\begin{aligned} \|tf\| \ge |x_n^*(tf)| &= \left| \int_{\Omega} f d\mu_n \right| = \left| \sum_{m \ge 1} \alpha_m \int_{G_m} f_m d\mu_n \right| \\ &\ge \left| \alpha_n \int_{G_n} f_n d\mu_n \right| - \sup_m |\alpha_m| |\mu_n| \left(\bigcup_{m \ne n} G_m \right) \ge |\alpha_n| |x_n^*(tf_n)| - \varepsilon \|f\| \\ &\ge \rho |\alpha_n| - \varepsilon \|f\|. \end{aligned}$$

Taking the supremum over all $n \ge 1$ yields $||tf|| \ge \rho ||f|| - \varepsilon ||f|| = r ||f||$.

Proof of Theorem 4. Let $x \in \mathcal{A}$, $x \neq 0$, and choose an operator $t \in \mathcal{B}$ such that $x = \overline{t}$. Suppose that $r < \Delta(x) = \Delta(t)$. According to Lemma 4 there exists a closed subspace $N \subseteq X$ which is isomorphic to the space c_0 and such that $||tf|| \ge r||f||$, for all $f \in N$. The space $X = C(\Omega)$ is separable and the space c_0 is known to be 2-complemented in every separable space wherein it is contained as a closed subspace [9, 2.f.5]. According to Lemma 1 we have $\beta(x) = \beta(\overline{t}) \le 2/r$. Now let $r \uparrow \Delta(x)$.

Remarks. (A) Theorem 4 would establish property (1) for the weak Calkin algebra $\mathscr{A} = \mathscr{B}(X)/W$ on $X = C(\Omega)$ if one could show that $\Delta(x) \ge \varepsilon$ for some $\varepsilon > 0$ and all $x \in S(\mathscr{A})$. Since $\Delta(x) \le ||x||_{\mathscr{A}}$, for all $x \in \mathscr{A}$ this is equivalent with the completeness of \mathscr{A} in the (linear) norm Δ .

(B) A Banach algebra \mathscr{A} which satisfies $\beta(x) < \infty$ for all nonzero $x \in \mathscr{A}$ is semisimple (the Jacobson radical of \mathscr{A} cannot intersect the set $P(\mathscr{A})$). Consequently our arguments cannot be applied to nonsemisimple Banach algebras such as, for example, the Calkin algebra on the Banach space $L^1([0, 1])$.

On the other hand we have established the semisimplicity of the weak Calkin algebra $\mathscr{A} = \mathscr{B}/W$, for the Banach spaces $X = L^1([0, 1])$ and $X = C(\Omega)$. Let K denote the ideal of compact operators on X, \mathscr{B}/K the Calkin algebra on $X, Q_K : \mathscr{B} \to \mathscr{B}/K$ the quotient map, $R \subseteq \mathscr{B}/K$ the Jacobson radical and $I = Q_K^{-1}(R) \subseteq \mathscr{B}$ the ideal of inessential operators on X. For X as above, $W = S \subseteq I$ [1, 5.6.2]. Now the semisimplicity of the quotient

$$\mathscr{B}/W \cong \mathscr{B}/K/W/K$$

implies that $R \subseteq W/K$, that is, $I \subseteq W$. Thus, for the Banach spaces $X = L^1([0, 1])$ and $X = C(\Omega)$, Ω a compact metric space, the ideal of weakly compact operators coincides with the ideal of inessential operators.

(C) If the Banach space X is isomorphic to its Cartesian square, then it is known that every homomorphism from $\mathscr{B}(X)$ into any Banach algebra is automatically continuous [4]. This property is inherited by all quotients of the algebra $\mathscr{B}(X)$ and implies that every algebra norm on any quotient \mathscr{A} of $\mathscr{B}(X)$ is continuous (with respect to the quotient norm). In conjunction with property (1) this yields the following strong uniqueness of norm property for \mathscr{A} :

Any two algebra norms on \mathcal{A} are equivalent to the complete norm of \mathcal{A} and hence mutually equivalent.

This should be compared with the classical Uniqueness of Norm Theorem: Any two *complete* algebra norms on a semisimple complex algebra are equivalent.

Our results and [4] establish the strong uniqueness of norm property for the following algebras $\mathscr{A}: \mathscr{A} = \mathscr{B}(X)$, X a Banach space isomorphic to its Cartesian square (follows also from [14, 4]), \mathscr{A} the Calkin algebra on $X = l_p$, $1 \le p < \infty$, or $X = c_0$ (see also [7]) and \mathscr{A} the weak Calkin algebra on $X = L^1$. It is also known to hold for all simple C*-algebras \mathscr{A} [5].

An example of a Banach space X such that the Calkin algebra on X carries a continuous algebra norm, which is not equivalent to the quotient norm, is given in [11]. Further interesting constructions can be found in [12].

Acknowledgements. We wish to thank Joseph Diestel and Hans Olav Tylli for kindly supplying useful information

REFERENCES

- 1. S.R. CARADUS, W.E. PFAFFENBERGER and B. YOOD, *Calkin algebras and algebras of operators* on Banach spaces, Marcel Dekker, New York, 1974.
- S.B. CLEVELAND, Homomorphisms of noncommutative *-algebras, Pacific J. Math. 13 (1963), 1097–1109.
- 3. J. DIESTEL and J. UHL, *Vector measures*, Mathematical Surveys, no. 15, Amer. Math. Soc., Providence, Rhode Island, 1977.
- B.E. JOHNSON, Continuity of homomorphisms of algebras of operators, J. London Math. Soc. 42 (1967), 537–541.
- 5. _____, Continuity of homomorphisms of algebras of operators II, J. London Math. Soc. (2) 1 (1969), 81–84.
- 6. M.J. MEYER, Minimal incomplete norms on Banach algebras, Studia Math. 102 (1992), 77-85.
- 7. ____, On a topological property of certain Calkin algebras, Bull. London Math. Soc. 24 (1992), 591–598.
- A. PELCZYNSKI, On strictly singular and strictly cosingular operators I, II, Bull. Acad. Polonaise Sci. 13 (1965), 31–41.
- 9. J. LINDENSTRAUSS and L. TZAFRIRI, Classical Banach spaces I, Springer-Verlag, New York, 1977.
- 10. H.O. TYLLI, Lifting of non-topological divisors of zero modulo the compact operators, preprint.
- 11. K. ASTALA and H.O. TYLLI, On the bounded compact approximation property and measures of noncompactness, J. Funct. Anal. 70 (1987), 388-401.
- 12. H.O. TYLLI, The essential norm of an operator is not self dual, preprint.
- 13. L. WEIS and M. WOLFF, On the essential spectrum of operators on L¹, Semesterberichte Funktionalanalysis (Tubingen, Sommersemester 1984), pp. 103–112.
- 14. B. YOOD, Homomorphisms on normed algebras, Pacific J. Math. 8 (1954), 373-81.

GEORGIA STATE UNIVERSITY Atlanta, Georgia