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ORTHOGONAL MARTINGALES UNDER
DIFFERENTIAL SUBORDINATION AND APPLICATIONS

TO RIESZ TRANSFORMS

RODRIGO BAIqUELOS AND GANG WANG

1. Introduction

Let H be a separable Hilbert space with norm I" and inner product (., .). Let 9v

{grt }/>_0 be a family of right-continuous sub-a-fields of a probability space {f2, P, A}
such that .To contains all sets of probabilty zero. For two 9r-adapted continuous-
time H-valued martingales X {Xt}t>_o and Y {Yt}t>_o, let IX, Y] {IX, Y]t}t>_O
be the quadratic covariation process between X and Y (see, for example, [DM]).
Unless otherwise stated, we assume all the martingales in the paper are H-valued
where H is a separable Hilbert space, and have right-continuous paths with left-limits
(r.c.l.1.). For notational simplicity, we use [X] {[X]t }/>_0 to denote [X, X]. We say
the martingale Y is differentially subordinate to the martingale X, if [X]t [Y]t is a
nondecreasing and nonnegative function of t. The notion of differential subordination
permits generalizations of various sharp martingale inequalities of Burkholder [Bur
1-4] from the discrete-time and diverse stochastic integral settings to the present more
general setting (see [Wan]). For example, if X and Y are continuous-time martingales
with Y being differentially subordinate to X, then Theorem of [Wan] says

(1.1) IIYII (p* 1)llXllp, for < p <

where p* max{p, p/(p 1)} and the inequality is strict if p 2 and 0 < X lip <
cx. It is also sharp since it is already sharp in the special cases considered in [Bur ].
For a martingale X, the norm X lip is defined by

X lip sup X, lip.

Because of the close relationship between martingales and harmonic analysis, new
sharp inequalities under differential subordination for continuous-time martingales
have very important applications in analysis. For example, in Bafiuelos and Wang
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ORTHOGONAL MARTINGALES 679

[BW] we showed that the Beurling-Ahlfors operator B, which acts on Lp functions
in the complex plane C, defined by

fc f()
Bf(z) ---p.v. dm(es

r ( z)

where dm() is the Lebesgue measure on C, has a representation as a martingale
transform and that (1.1) implies

(1.2) [[Bfl[p 4(p*- 1)[[fllp for < p < cx.

The inequality (1.2) gives the best known estimate for the Lp constant for the operator
B and it gives hope that the well known conjecture ofIwaniec [Iwa], B lip p* 1, is
true. Iwaniec’s conjecture is important because of its applications to quasi-conformal
mappings, and partial differential equations; (see [Ast] [IM] and [IMNS]).

Another interesting application of martingale differential subordination in analysis
is to the norms ofthe Riesz transforms Rj Lp (n) LP(Nn), j n, defined
by

xj yj
f (y) dy,Rj f (x cn IX yl

where x (x x,,) 6 I" and

C/,/

The Lp norms of the Riesz transforms are related to a variation of the inequality
(1.1). We say two real valued martingales X and Y are orthogonal if the quadratic
covariation process [X, Y]t is 0 for every t. For two H-valued martingales X
(Xl, X2 Xi and Y (Y, Y2 Yi ), X and Y are orthogonal if for
each i, j > 1, [Xi, Yj] 0. The following theorem was proved in [BW]. For
< p <cx,let

Cp cot and Ep -Jr- C2p.
2p*

THEOREM A. Let X and Y be two R-valued continuous-time orthogonal mar-
tingales with continuous paths. If Y is differentially subordinate to X, then for
< p <cx,

(1.3) IlYllp CpllXllp, IIx/X2 + y21lp EpllXllp

and the inequalities are sharp. In addition, if < p < 2, X may be taken to be
II-valued; if2 < p < o, Y may be taken to be H-valued.
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Inequalities (1.3) are the martingale versions of Pichorides [Pic] and Ess6n [Ess]
type inequalities for harmonic and conjugate harmonic functions. Using the inequal-
ities (1.3) and the martingale representation of the Riesz transforms Rj [Bail 1-2],
Bailuelos and Wang ([BW]) prove that the norm of the Riesz transform gj lip Cp
for < p < cxz; a result first obtained by Iwaniec and Martin [IW] using the
Calder6n-Zygmund method of rotations.

In this paper we will generalize inequalities (1.3) to continuous-time martingales
which may or may not have continuous paths. Moreover we will also show that the
inequalities (1.3) are strict for the nontrivial cases. More precisely, we prove the
following theorem:

THEOREM 1. Let X and Y be two P-valued continuous-time orthogonal martin-
gales. If Y is differentially subordinate to X, thenfor < p < cxz,

(1.4) IIYllp Cpl[Xl[p, IIv/X2 + Y211p EpllXllp

and the inequalities are sharp. In addition, if < p <_ 2, X may be take to be
H-valued; if 2 < p < cx, Y may be taken to be ]-valued. Moreover, inequalities
(1.4) are strict if p =/: 2 and 0 < [IXl[p < cxz.

Since the discrete-time martingales can be imbedded into continuous-time mar-
tingales, Theorem covers general martingales (continuous-time or discrete-time)
which are mutually orthogonal and have the correct subordination condition.
We note that the strictness is new even for the continuous path martingales con-

sidered in Theorem A. As a consequence, the strictness of the inequalities (1.4) gives
some new information about Riesz transforms. In fact, using the argument similar
to the one in Section 4 of [BW], we will show in Section 3 that the norms of Riesz
transforms are not attainable.

The rest of the paper is organized as follows. In Section 2 we will prove Theorem
1. The proof is based on the techniques of Burkholder [Bur 1-4] and Wang [Wan]
with the appropriate functions modified from those used by Pichorides and Ess6n.
They are the same function used by Bailuelos and Wang [BW]. One needs to be a
little more careful in treating the jumps in the general martingale case. In Section 3,
we will give the applications of Theorem to Riesz transforms.

2. Main result

We begin with some of the properties of martingale orthogonality and differential
subordination. First we study orthogonality. Recall that two r.c.l.1, martingales
X {Xt}t>_0 and Y {Yt}t>_0 are orthogonal if the quadratic covariation process
[X, Y] {[X, Y]t}t>_o is identically 0. For any r.c.l.1, process Z, let Z {Z}t_>0 be
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the continuous part of Z with Z 0. For > 0, let AtZ Zt Zt- and define

A0Z Z0. Then, we have the decomposition

z, z; + >_ 0.
0<s <t

It is well known, see for example [DM] or [Pro], that the continuous part of quadratic
covariation process [X, Y] is the quadratic covariation process of the continuous part
of X and Y; i.e.,

(2.2) [X, Y] [X, Y].

It is also well known that the purely jump part of the quadratic covariation [X, Y] is
the product of the purely jumps of X and Y:

(2.3) At[X, Y] (AtX, AtY), > 0.

Applying (2.1) to [X, Y], we have the following lemma.

LEMMA 1. Two martingales X and Y are orthogonal ifand only if

[X’, Y]t 0 and (AtX, At Y) 0, > 0.

Now we go to martingale differential subordination. Applying the decomposition
(2.1) to the difference of the quadratic variation processes [X] [Y] and using the
relationships (2.2)-(2.3), we have the following lemma.

LEMMA 2. The martingale Y is differentially subordinate to the martingale X
if and only if (1) yc. is differentially subordinate to X and (2) ]AtY < ]AtXlfor
t>0.

Combining Lemmas and 2, we have:

COROLLARY 1. Let X and Y be two orthogonal martingales. Then Y is differen-
tially subordinate to X ifand only if (1) Y is differentially subordinate to Xc, (2) X
and yc are orthogonal, (3) (AtX, AtY O and ]AtY < IAtX]for > O.

We now state Theorem again.

THEOREM 1. Let X and Y be two JR-valued continuous-time orthogonal martin-
gales. If Y is differentially subordinate to X, thenfor < p <

(2.4) IlYllp CpllXllp, v/x2 + r2
p Up X p

and the inequalities are sharp. In addition, if < p < 2, X may be take to be
H-valued; if 2 < p < cx, Y may be taken to be H-valued. Moreover, inequalities
(2.4) are strict if p 2 and 0 < ]]Xllp < .
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The proof of the theorem is based on Burkholder’s technique of constructing
special functions and applying It6’s formula. We give the following general result on
orthogonal martingales under differential subordination. The proof is a modification
of Proposition of Wang [Wan], it should also be compared with Proposition 1.2 of
[BW] where martingales have continuous-paths. Some notation is useful. Let (., .)
denote the inner product of H. It is sufficient to considerjust the Hilbert space 12. Let
fx, fy, fxx, fxy, fyy to be the first and second order derivatives of f (x, y) defined on
H x H to R. We restrict ourselves to considering a function f satisfying

(2.5) f ((O, x), (0, y)) f (x, y)

for x (Xl, x2, x3 ), Y (Yl, Y2, Y3 E ].

PROPOSITION 1. Let f (x, y) be a continuous function on H , bounded on
bounded sets; C on H H \ ({Ix[ 0} t2 {[y[ 0}), whosefirst order derivative is
bounded on bounded sets not containing O, the origin of H, and satisfying

(2.6) f(x + h, y + k) f(x, y) (fx(X, y), h) (fy(X, y), k) <_ 0

when IxllYl 0, Ikl Ihl and (h, k) 0; C2 on Si, >_ 1, where S is a sequence
of open connected sets, such that the union of the closure of Si is x . Suppose
for each > 1, there exists a nonnegative measurablefunction ci (x, y) defined on Si
such thatfor (x, y) Si with IxIlYl - 0,

(2.7) (hfxx(X, y), h) + (kfyy(X, y), k) < -ci(x, y)(Ihl 2 -Ikl2)

for all h, k lI-lI. Assumefurther thatfor each n > 1, there exists afunction Mn which
is nondecreasing in n such that

(2.8) sup ci(x, y) < Mn < cx

where the supremum is taken over all (x, y) Si such that 1/n2 <_ IXl 2 -t- ly[ 2 n2

and all > 1. Let X and Y be valued orthogonal martingales such that Y is

differentially subordinate to X. Thenfor 0 < s < t,

(2.9) E(f(Xt, Yt)Jff) < f (X., Y) a.e.

provided f is nonnegative or suPt If (Xt, Yt)l is integrable.

ProofofProposition 1. It is enough to prove (2.9) for s 0 and
the trivial a-field. Let Tn inf{t > 0: IXtl 2 + IYtl 2 + [X]t -- [Y]t > n2} Then
XtAT,,-, Yt/,T,,- are bounded by n for all > 0, and lim Tn x. Here and elsewhere

n--- (x)

in the paper, we define X0- 0 and Y0- 0. We will show that for any n > 0,

(2.10) Ef (Xt,,, Yt/T,,) < f (Xo, Yo).
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This implies (2:9) by either Fatou’s lemma or the Lebesgue dominated convergence
theorem. Fix n _> 0. Let Xt Xt/r,,, Yt XtAr,, to simplify notation.
Given > 0and0 < a < 1/2. Choosenl > n such that 1/(nl +2) < a.

By enlarging the dimension of H if necessary, we may assume Xt (a, Xt) and
Yt (a, Yt) E ]I-]I. Choose ma,e such that E -i>ma, ([X/]z- + [Y/]e-) < (:/Mn+2.
This is possible since

E ([i]x- + [’’i]oc-) 2a2 + E ([X/]cx- -t- [Yi]_)
i>l i>l

< 2a2 + n2.

For rn > 1, we let

-.m (a, X Xm_l, 0 ),

where

m (a, Y1 Ym-1, 0 ),

X (Xl, X2 ), Y (El, Y2 ).

Now let rn > ma,e and let g be a C nonnegative function on 1 X I such that
g has support inside the unit ball and assume

ffg(x,y)dxdy-l.m
Such g exists. In fact, we can choose g such that g is a radial function: g(x, y)
g(Ixl 2 +

Let be positive integer such that / < a and / _< a 1/(n + 2). For
x, y E Rm, define

f(x-u/1, y-v/1)g(u,v)dudv.

In the above, we use the notation f(x, y) f((x, 0 ), (y, 0 )) for x, y 6

]];m.

By the dominated convergence theorem, since f is continuous and bounded on
bounded sets,

(2.11) Ef(Xt_, Yt-)= lim lim lim EUt(-_,_).
a--O m--/--cxz

Because f is continuous and is C on H H \ ({Ixl 0} U {lYl 0}), integration
by parts shows that if Ixl > a and lYl >_ a, then

f’(x y)-- f f f(x-u/1,y-v/l)g(u,v)dudv

ffy(X, y) f, m fRm fyy(X U/1, y v/1)g(u, v)dudv.
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Therefore, by (2.7), when Ixl > a, lYl > a and h, k 6 H, we have

(hfxx(X, y), h) + (kfyy(X, y), k) <_ -c(x, y)(lhl 2 -Ikl2)

where

c(x, y) i ffn" ci(x u/l, y v/l)g(u, v)dudv,

and Ri {(u, v)" (x, y) (u, v)/1 c=_ Si}.
Let {h{ }, {k/} be two triangular sequences 6 R such that

sup- Ik/I 2 < oc, and supZ Ihl 2 <

Then, for ]xl > a, [Yl > a,

(2.12)

lim Z((hf’ (x, y), h ji) -JI (k/fy(X, y), k/))
j--+ oo

< -c(x, y) lim (Ih/Ie -Ik/I).
j--* oo

By differential subordination and Corollary l, this implies

(2.13)

i flxix, ("- gsm_)d[’’m, Xj Is
’= jl 0+

-I- f,y, (--_, rs_)d[r rj Is)

mfo’- C(Xs_ _)d([--Tm]s
"_

< Mn,+2 ([X ]t- -+- [Yi ]t-),
i>m

since 0 _< c(X,_, _) <_ Mn,+2 because V/a _< I_l2 -+-I12 _< n -k- 1.

Applying It6’s formula to ft (m,-m), we have

(2.14)

where

I <fx/(, "’sL), d’) + (f(’, ’sL), d7>
+ +
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212 ,. Ys-) d[Xi Xj ]s
j--| -t-

-JI- fJiYi (--’ Y,-) d[ Yj ]s,
"= j=l

t-

fl (- Ys-) d[Xi ]sI3 xiy] Yj
’= j=l +

0<s<t

0<s <t

By Corollary 1, orthogonality implies I3 0. Inequality (2.13) implies that

2/2 _< M,+ ([X 1,- + [Y ],-).
i>m

Since

-m--(f’(’7-- "--)’ At )- (f;(-- Yt-), Atgm)

it follows from (2.14) and the martingale property that

(2.15)

0<s 5t

--E ((f(L, sL), sm) + (f(L’ sL)’ sm))’
0<sEt

by the choice of .
Let , then m , and then 0. By the dominated convergence

theorem, we have

Ef(t, t) f(go, go)+  sf(X, r)
O<st

0<s<t

f(X0, Yo)

because of (2.6) and Corollary 1.
Letting a 0 proves (2.10).
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Remark. IfHxHisreplacedbyNxNandNxR, HxN\({Ixl 0}{lYl 0})
is replaced by R x H \ IR x {0} and H x N \ {0} x R, and IxllYl -- 0 is replaced by
lYl - 0 and Ixl :/: 0 respectively in the statement of Proposition 1, the above proof
will be still valid. In fact, we need only to replace ./-a by a; replace ,n by X,
]t x I by IR x N", Ixl >_ a, lYl >_ a by lYl >_ a in the case of ]R x H, and replace
-,n by Y, ]1 x Rm by I X I, Ixl >_ a, lyl >_ a by Ixl >_ a in the case of H x R.
This leads to the corresponding lemmas which will be used in the proof of Theorem
next.

ProofofTheorem 1. We first consider the case < p < 2. By Minkowski’s
inequality, it is enough to show

(2.16) IIv/X= + Y211p EpllXllp.

For x 6 H and y 6 ]R and let

Vl (X, y) Rp secp pp Ixl p,

U1 (x, y) tan V cos pO,

where Ix R cos 0, y R sin 0, < 0 < It is clear that U1 is continuous
2- -2

on H x R and C on H x R \ {0} x R. In [BW], it is shown that U satisfies the
following properties"

(a) V1 (x, y) < U (x, y) with equality holds only if R sec()lxl;
(b) For x, h E H, Ix 0, y, k E R, there exists a nonnegative measurable

function c (x, y) which is bounded on R > r for every r > 0 such that

(hUxx(X, y), h} nt- Ulyy(X, y)k2 < --Cl(X, y)(Ihl 2 k2).

In fact, strict inequality in (a) was not stated explicitly in Section 2 of [BW]. However,
since F(0) defined there attains its maximum only at , strictness follows easily.
We will show (b) implies the following"

(c) For x, h 6 ]I-I[, y, k 6 IR with Ixl 0, Ikl Ihl and hk O,

(2.17) Ul(X + h, y + k) U(x, y) (Ulx(X, y),h) Uly(X, y)k <_ O.

In fact, it is enough to consider the case k 0. Let a > 0 and G(t) U ((a, x +
th), y) U1 ((a, x), y) t(Ulx((a, x), y), h). Then the mean value theorem and (b)
imply that G (1) G (0) < 0. Let a --+ 0 to show (2.17).
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Applying Proposition and the remark to U and using properties (b)-(c), we have

(2.18) EU (St, Yt) EU (Xo, Yo)

for any >_ 0. Note U (X0, Y0) < 0 since IY01 IX01. Combining property (a) with
(2.18), inequality (2.16) follows.

Next we consider the case 2 < p < cxa. Again, by Minkowski’s inequality, it is
enough to show

(2.19)

For x 6 1R and y 6 ]I-lI, set

IIYIIp CpllXllp.

V2(x,y)--lylp-cotp pp Ixl p,

and

U2(x, y) 7r

COtzpz-Rpcosp -0
ifO < 0 <

2q

ifq-q <0 <n’-2-,
<O<zr

2q-

where in this case, x Rcos0, lY[ Rsin0, 0 < 0 < rr, and q p/(p 1). A
simple calculation shows that U2 is continuous on IR 1I-1I and C when lYl : 0.

Section 2 of [BW] shows U2 satisfies the following properties:

(a’) V2(x, y) < U2(x, y) with equality only if lyl cot()lxl.
(b’) For x, h ]R, y, k ]I-lI, lYl :/: 0, and lYl - cot()lxl, there exists a non-

negative measurable function c2 (x, y) which is bounded on R < r for every
r > 0, such that

U2xx(X, y)h2 q- (kU2yy(X, y), k) < --c2(x, y)(Ihl 2 k2).

Again, we will show that (b’) implies the following"

(c’) For x, h 6 IR, y, k 6 1I-1I with lYl 0, Ikl < Ihl and hk 0,

(2.20) U2(x + h, y + k) U2(x, y) U2x(X, y)h {U2y(X, y), k) < O.

It is enough to consider the case [k[ 0 < Ihl. In this case, inequality (2.20)
becomes

(2.21) U2(x + h, y) U2(x, y) U2x(X, y)h < O.

Fix x, y, h. Let be an integers and define

ul2(z) f U2(z -}-u/l, y)g(u)du



688 RODRIGO BAlqUELOS AND GANG WANG

for some C function g which has support in [-1, 1]. Similar to the arguments at
the beginning of the proof of Proposition 1, U2 is C2 and satisfies

(2.22) U (z) < 02zz

for all z E R because of (b’). This implies

U(x + h) Ut2(x) U2x(x)h < O.

Letting --+ cx gives (2.21).
Inequality (2.19) then follows from (a’)-(c’) and Proposition 1.
The inequalities (2.4) are sharp since they are already sharp when X and Y have

continuous-paths as stated in Theorem A. It only remains to prove the strictness. The
argument is similar to that given in [Bur 4] and [Wan].

Assume p - 2 and 0 < IIXllp < x. We prove that inequality (2.16) is strict. The
others are similar.

For V and U defined above, let u(t) EUI(Xt, Yt) and v(t) EVI(Xt, Yt).
The above argument shows that v(t) < u(t). By the martingale convergence theorem,
both X and Y have limits X and Y at , respectively. Using Doob’s maximal
function inequality, we see that v and u are r.c.l.1, and have limits at infinity. Thus,
strictness follows if we can show v() < 0.

If ElXol p O, then u(0) < 0 since IF01 IX01. Thus v(t) u(t) 5 u(0) < 0 for
any 0. Therefore, without loss of generality, we may assume that X0 Y0 0
and IlXt lip > 0 for all > 0.

It is enough to show P(IYI tan()lXl) < since by (a), this implies that
v() < u() 0.

Suppose IYI tan()lXl almost surely. Let Ut U(Xt, Yt). Then U 0.2.
Since by Proposition 1, G, 0} is a unifoly integrable supermaingale starting
from 0, this implies P(G 0, for all 0) 1. Therefore, IYI tan()lXI.

Let Tn inf{t > 0, IXtl + IYtl n}. Then IXr-I n, IYr-I n. Moreover,
(X_ X) r", (Y_ y)r, are maingales. By the definition of the quadratic variation,
for any > 0 we have

120= [Yr., -tan

+ g, rl,, tan

2J + J.
Observe that J1 is a martingale, so EJ 0, and that E J2 is negative unless we

have E[X, X]r,,At 0 because tan() > 1. Taking expectation of both sides, we
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must have E[X, X]r,/t 0. Therefore, EIXtl 2 0. This contradicts the fact that

EIXtl p > 0 for > 0 which we assumed at the beginning. This completes the proof.

3. Applications to Riesz transforms

The relationship between martingales, Riesz transforms, and harmonic functions
have been studied extensively in the past. See, for example, [GV], [Var], and [Bail
1-2]. Recently, Bafiuelos and Wang [BW], using Theorem A, gave a proof that the
Riesz transforms have norms Cp. This result was first obtained by Iwaniec and Martin
[IW]. The technique used by Bafiuelos and Wang also leads to other important and
interesting results regarding Riesz transforms, the Beurling-Ahlfors operator, and
harmonic functions. We will show here, using that technique, that Theorem gives
more information about the Riesz transforms. In particular, we show that the norms
of the Riesz transforms are not attainable.

THEOREM 2.
p < oo. Then

Let Rj, j n be the j-th Riesz transform in n and <

(3.1) Ilejfllp Cpllfllp and II/(Rjf)2 +/2lip Epllfllp.

The above inequalities are sharp and strict if p :/: 2 and 0 < f lip < .
Note that except for the strictness, Theorem 2 is Theorem 3 of [BW].

Proof. For the sake ofcompleteness, we briefly describe the relationship between
martingales and Riesz transforms. We refer the reader to [BW] for details.

Let Bt (Xt Yt (X] X’/ Yt be the background radiation process defined
by Gundy and Varopoulos [GV] in the upper half space R_+ of ]Rn+. The process
B {Bt}_<t<o starts at time -cx and has initial distribution of Lebesgue
measure on ]R x {cx}. It terminates on the boundary ]R x {0} at time 0. We
may think of B as "Brownian motion" and observe that the usual rules of stochastic
integration and potential theory apply. See Varopoulos [Var] for details.

Given any function f(x) E LP(Rn), the space of Lp function in Rn, define

Uf(x, y) to be the Poisson extension of f in IR+. Let

VUf \-xl Oxn’ Oy

dR, (dX] dX, dY)T
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where for v (v Vn+l) E Iin+l, l) T denote the transform of x. For j
n, let Aj (a/m) be an (n + l) x (n + 1) matrix such that

I 1, l--n+l,m--j+l

a/m- [-1, l--j+l,m=n+l

0, otherwise.

Thus for every v E R"+1,

(3.2) (Ajv, Ajv) < (v, v) and (Ajv, v) O.

For any (n + 1) x (n + 1) matrix A and f Lp (R"), let

A f {A fi}-<t<0 AVUI(X,, Y.). dB,
cx) -cx<t<0

denote the martingale transform B by AVUf. Then using basic properties of con-
ditional expectation and stochastic integrals, the fact that the Green’s function for
the background radiation process is 2y, the Cauchy-Riemann equation, and the
Littlewood-Paley identity, it follows that (see [BW])

(3.3) Rjf(x) E(Aj f0lB0 (x, 0)),

f (x) E(I folBo (x, 0)),

where I is the identity matrix.
Since

[A; fit (A;VUf(Bs), AVUf(B,)) ds,

f_’[I flt (VUf(B,), VUy(Bs)) ds,

[A f, I fit (A.iVUy(Bs), VU.(Bs))ds,

Relationship (3.2) implies that A f is differentially subordinate and orthogonal
to I f. Thus it follows from Theorem that when < p < cx, the following
inequalities hold and are strict if p 2 and 0 < f lip < cx:

[IAj * flip <_ Cplll * flip and IIv/Aj . f2 + I f211p <_ Epl[I flip.

By (3.3) and the fact that conditional expectation is a contraction operator, we have

IIRjfll <_ Cpllfl]p and Ilv/(Rjf)2 + f2llp _< Epllfllp

and the inequalities are strict if p 2 and 0 < f lip < oo. This completes the proof.
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