ON AN INTEGRAL OPERATOR AND ITS SPECTRUM

Joaquin Bustoz, Mourad E. H. Ismail ${ }^{1}$ and Jifeng Ma

1. Introduction

The action of the differential operator $d / d x$ on the ultraspherical polynomials (spherical harmonics) $C_{n}^{v}(x)$ is given by

$$
\begin{equation*}
\frac{d}{d x} C_{n}^{\nu}(x)=2 v C_{n-1}^{\nu+1}(x) \tag{1.1}
\end{equation*}
$$

This was used in [6] to provide a right inverse to $d / d x$. In this note we study the corresponding question for the Pollaczek polynomials $\left\{P_{n}^{v}(x ; a, b)\right\}$ [3]. Recall [3] that the Pollaczek polynomials have the generating function

$$
\begin{equation*}
\sum_{n=0}^{\infty} P_{n}^{v}(x ; a, b) t^{n}=\left(1-t e^{i \theta}\right)^{-v+i h(x)}\left(1-t e^{-i \theta}\right)^{-v-i h(x)} \tag{1.2}
\end{equation*}
$$

with

$$
\begin{equation*}
h(x):=\frac{a x+b}{\sqrt{1-x^{2}}}, \quad x=\cos \theta \tag{1.3}
\end{equation*}
$$

The branch of the square root is the branch that makes $\sqrt{x^{2}-1} \approx x$ as $x \rightarrow \infty$. Here

$$
\begin{equation*}
e^{i \theta}=x+\sqrt{x^{2}-1} \tag{1.4}
\end{equation*}
$$

The orthogonality relation of the Pollaczek polynomials is

$$
\begin{equation*}
\int_{-1}^{1} P_{m}^{v}(x ; a, b) P_{n}^{v}(x ; a, b) \rho(x ; v) d x=\frac{2 \pi \Gamma(n+2 v) \delta_{m, n}}{2^{2 v}(n+a+v) n!}, \tag{1.5}
\end{equation*}
$$

and the weight function $\rho(x ; v)$ is

$$
\begin{equation*}
\rho(x ; v)=\left(1-x^{2}\right)^{\nu-1 / 2} e^{(2 \theta-\pi) h(x)} \Gamma(\nu+i h(x)) \Gamma(\nu-i h(x)) . \tag{1.6}
\end{equation*}
$$

The parameters a, b, v are assumed to satisfy

$$
\begin{equation*}
a>|b| \quad \text { and } \quad v>0 . \tag{1.7}
\end{equation*}
$$

[^0]1991 Mathematics Subject Classification. Primary 33C56 ; Secondary 45A05.

Define a linear operator T on polynomials through

$$
\begin{equation*}
T P_{n}^{v}(x ; a, b)=2 v P_{n-1}^{v+1}(x ; a, b) \tag{1.8}
\end{equation*}
$$

The purpose of this note is to define a formal right inverse to T. The construction of the inverse operator depends on solving the connection coefficient problem expressing $P_{n}^{\nu}(x ; a, b)$ in terms of $\left\{P_{j}^{\nu+1}(x ; a, b)\right\}_{j=0}^{n}$. The solution of this connection coefficient problem is in Section 2. Section 3 contains an integral representation of a formal right inverse to T. The inverse operator T^{-1} is a linear integral operator with a non-symmetric kernel. It turns out that T^{-1} is compact, hence is trace class but not normal. In Section 2, we also find the eigenvalues and eigenfunctions of T^{-1} explicitly. The eigenvalues are related to zeros of Bessel functions $J_{v+a / x}(x)$. Section 4 contains q-analogues of the results of Sections 2 and 3. In Section 4 we first solve a connection coefficient problem for the q-Pollaczek polynomial. We then define a linear operator T_{q} by its action on the q-Pollaczek polynomials in a manner similar to (1.8). The definition is in (4.8). We also introduce a right inverse to T_{q} and identify its eigenvalues and eigenfunctions.

2. A connection coefficient problem

A theorem of Christoffel [7] asserts that if $\left\{p_{n}(x)\right\}$ are orthogonal with respect to $w(x)$, then the polynomials orthogonal with respect to $\pi(x) w(x)$, where $\pi(x)$ is a polynomial, are given by an explicit determinant expression.

The functional equation of the gamma function gives

$$
\rho(x ; v+1)=\left(1-x^{2}\right)\left[v^{2}+h^{2}(x)\right] \rho(x ; v)
$$

Hence

$$
\begin{equation*}
\rho(x ; v+1)=\left[v^{2}\left(1-x^{2}\right)+(a x+b)^{2}\right] \rho(x ; v) \tag{2.1}
\end{equation*}
$$

In this case the Christoffel formula becomes

$$
\begin{align*}
& {\left[v^{2}\left(1-x^{2}\right)+(a x+b)^{2}\right] P_{n}^{v+1}(x ; a, b)} \tag{2.2}\\
& \quad=\text { Constant }\left|\begin{array}{lll}
P_{n}^{v}(x ; a, b) & P_{n+1}^{v}(x ; a, b) & P_{n+2}^{v}(x ; a, b) \\
P_{n}^{v}\left(x_{1} ; a, b\right) & P_{n+1}^{v}\left(x_{1} ; a, b\right) & P_{n+2}^{v}\left(x_{1} ; a, b\right) \\
P_{n}^{v}\left(x_{2} ; a, b\right) & P_{n+1}^{v}\left(x_{2} ; a, b\right) & P_{n+2}^{v}\left(x_{2} ; a, b\right)
\end{array}\right|,
\end{align*}
$$

where x_{1} and x_{2} are the zeros of $\rho(x ; v+1) / \rho(x ; v)$.
Lemma 2.1. Assume that

$$
\begin{equation*}
v^{2}+b^{2}>a^{2} \tag{2.3}
\end{equation*}
$$

Then

$$
\begin{align*}
& P_{n}^{\nu}\left(x_{1} ; a, b\right)=\frac{(2 v)_{n}}{n!}\left(\frac{b+\sqrt{\Delta}}{v-a}\right)^{n}, \tag{2.4}\\
& P_{n}^{v}\left(x_{2} ; a, b\right)=\frac{(2 v)_{n}}{n!}\left(\frac{b-\sqrt{\Delta}}{v-a}\right)^{n}, \tag{2.5}
\end{align*}
$$

where

$$
\begin{equation*}
x_{1}:=\frac{a b+v \sqrt{\Delta}}{v^{2}-a^{2}}, \quad x_{2}:=\frac{a b-v \sqrt{\Delta}}{v^{2}-a^{2}} \tag{2.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\Delta:=v^{2}-a^{2}+b^{2} \tag{2.7}
\end{equation*}
$$

In (2.4) and (2.5) we used the shifted factorial notation

$$
\begin{equation*}
(\sigma)_{0}:=1, \quad(\sigma)_{n}:=\prod_{j=1}^{n}(\sigma+j-1) . \tag{2.8}
\end{equation*}
$$

Theorem 2.2. We have

$$
\begin{align*}
\frac{\rho(x ; v+1)}{\rho(x ; v)} P_{n}^{v+1}(x ; a, b)= & \frac{(2 v+n)(2 v+n+1)(v+a)}{4(v+a+n+1)} P_{n}^{v}(x ; a, b) \tag{2.9}\\
& +\frac{(n+1)(2 v+n+1) b}{2(v+a+n+1)} P_{n+1}^{v}(x ; a, b) \\
& -\frac{(n+1)(n+2)(v-a)}{4(v+a+n+1)} P_{n+2}^{v}(x ; a, b)
\end{align*}
$$

We now prove Lemma 2.1 and Theorem 2.2.

Proof of Lemma 2.1. Recall that x_{1} and x_{2} are the zeros of $[v+i h(x)][v-i h(x)]$. In fact $v+i h\left(x_{1}\right)=v-i h\left(x_{2}\right)=0$. Thus (1.2) gives

$$
\sum_{n=0}^{\infty} P_{n}^{v}\left(x_{1} ; a, b\right) t^{n}=\left(1-t e^{i \theta_{1}}\right)^{-v+i h\left(x_{1}\right)}
$$

$x_{1}=\cos \theta_{1}$, and the binomial theorem yields

$$
P_{n}^{v}\left(x_{1} ; a, b\right)=\frac{\left(\nu-i h\left(x_{1}\right)\right)_{n}}{n!} e^{i n \theta_{1}}=\frac{(2 v)_{n}}{n!} e^{i n \theta_{1}} .
$$

A calculation using (1.4) and (2.6) establishes (2.4). Similarly we prove (2.5).

Proof of Theorem 2.2. Lemma 2.1, (2.1) and (2.2) show that the left-hand side of (2.9) is a constant multiple of

$$
\begin{align*}
\frac{(2 v+n)_{2}}{(n+1)_{2}} \frac{v+a}{v-a} P_{n}^{v}(x ; a, b)+ & \frac{2 b(2 v+n+1)}{(v-a)(n+2)} P_{n+1}^{v}(x ; a, b) \tag{2.10}\\
& -P_{n+2}^{v}(x ; a, b)
\end{align*}
$$

The three-term recurrence relation [3]

$$
\begin{align*}
(n+1) P_{n+1}^{v}(x ; a, b)= & 2[(n+v) x+b] P_{n}^{v}(x ; a, b) \tag{2.11}\\
& -(n+2 v-1) P_{n-1}^{v}(x ; a, b)
\end{align*}
$$

and the initial conditions

$$
\begin{equation*}
P_{0}^{v}(x ; a, b)=1, \quad P_{1}^{v}(x ; a, b)=2[(v+a) x+b] \tag{2.12}
\end{equation*}
$$

show that

$$
\begin{equation*}
P_{n}^{v}(x ; a, b)=\frac{2^{n}(v+a)_{n}}{n!} x^{n}+\text { lower order terms } \tag{2.13}
\end{equation*}
$$

and the constant multiple of (2.10) can be found by equating coefficients of the highest power of x on both sides of (2.2). The constant is

$$
\frac{(v-a)(n+1)(n+2)}{4(v+a+n+1)}
$$

A calculation now establishes (2.9).
Formula (2.9) has a dual expressing $P_{n}^{\nu}(x ; a, b)$ in terms of $\left\{P_{j}^{\nu+1}(x ; a, b)\right\}_{j=0}^{n}$. It is easier to derive this dual directly instead of using (2.9).

THEOREM 2.3. If $v+a$ is not a negative integer then

$$
\begin{gather*}
(v+a+n) P_{n}^{v}(x ; a, b)=(v+a) P_{n}^{v+1}(x ; a, b)+2 b P_{n-1}^{v+1}(x ; a, b) \tag{2.14}\\
+(a-v) P_{n-2}^{v+1}(x ; a, b) .
\end{gather*}
$$

Proof. From (1.2) we find

$$
\begin{aligned}
\sum_{n=0}^{\infty} P_{n}^{v}(x ; a, b) t^{n} & =\left(1-t e^{i \theta}\right)\left(1-t e^{-i \theta}\right) \sum_{n=0}^{\infty} P_{n}^{v+1}(x ; a, b) t^{n} \\
& =\left(1-2 x t+t^{2}\right) \sum_{n=0}^{\infty} P_{n}^{v+1}(x ; a, b) t^{n}
\end{aligned}
$$

Hence

$$
\begin{equation*}
P_{n}^{v}(x ; a, b)=P_{n}^{v+1}(x ; a, b)-2 x P_{n-1}^{v+1}(x ; a, b)+P_{n-2}^{v+1}(x ; a, b) \tag{2.15}
\end{equation*}
$$

and we eliminate $x P_{n-1}^{\nu+1}(x ; a, b)$ between (2.15) and (2.11) (with v replaced by $v+1$). The result is (2.14).

It is worth noting that (2.9) and (2.14) are equivalent and can be derived from each other [1], [5].

3. An integral operator

Let $g \in L_{2}(-1,1, \rho(x, v+1))$ and let its orthogonal series be

$$
\begin{equation*}
g(x) \sim \sum_{n=0}^{\infty} g_{n} P_{n}^{\nu+1}(x ; a, b) \tag{3.1}
\end{equation*}
$$

Then

$$
\begin{equation*}
g_{n}=\frac{2^{2 v+2}(n+1+v+a) n!}{2 \pi \Gamma(n+2 v+2)} \int_{-1}^{1} P_{n}^{v+1}(y ; a, b) \rho(y, v+1) g(y) d y \tag{3.2}
\end{equation*}
$$

Since $T P_{n}^{\nu}(x ; a, b)=2 v P_{n-1}^{\nu+1}(x ; a, b)$ one can define T^{-1} through its action on the polynomials $P_{n}^{\nu}(x ; a, b)$ via

$$
T^{-1} P_{n}^{v+1}(x ; a, b)=P_{n+1}^{v}(x ; a, b) /(2 v)
$$

One can then extend the definition of T^{-1} to all of $L_{2}(-1,1, \rho(x, v+1))$ in the following manner:

$$
T^{-1}\left(\sum_{n=0}^{\infty} g_{n} P_{n}^{v+1}(x ; a, b)\right)=\sum_{n=0}^{\infty} \frac{g_{n}}{2 v} P_{n+1}^{v}(x ; a, b)
$$

More precisely, if $g(x)$ has the orthogonal series (3.1) define

$$
\begin{equation*}
\left(T^{-1} g\right)(x)=\int_{-1}^{1} g(y) K_{\nu}(x, y) \rho(y, v+1) d y \tag{3.3}
\end{equation*}
$$

where

$$
\begin{equation*}
K_{\nu}(x, y):=\sum_{n=0}^{\infty} \frac{2^{2 v}(n+1+v+a) n!}{\pi \nu \Gamma(n+2 v+2)} P_{n+1}^{v}(x ; a, b) P_{n}^{v+1}(y ; a, b) \tag{3.4}
\end{equation*}
$$

Our next objective is to find the discrete spectrum of T^{-1}. Observe that T^{-1} maps $L_{2}(-1,1, \rho(x, v+1))$ into $L_{2}(-1,1, \rho(x, v))$. So if $T^{-1} g=E g$ then

$$
\begin{equation*}
g \in L_{2}(-1,1, \rho(x, v)) \cap L_{2}(-1,1, \rho(x, v+1)) \tag{3.5}
\end{equation*}
$$

Now assume (3.5) holds and

$$
\begin{equation*}
T^{-1} g=E g \tag{3.6}
\end{equation*}
$$

Therefore (3.3) implies

$$
\begin{equation*}
g(x) \sim \sum_{n=0}^{\infty} a_{n}(E) P_{n}^{v}(x ; a, b), \quad a_{0}=0 \tag{3.7}
\end{equation*}
$$

Therefore $E a_{n}(E)$ is the coefficient of $P_{n}^{v}(x ; a, b)$ in $T^{-1} g$; that is

$$
E a_{n}(E)=\frac{2^{2 v}(n+v+a)(n-1)!}{\pi v \Gamma(n+2 v+1)} \int_{-1}^{1} g(y) \rho(y, v+1) P_{n-1}^{v+1}(y ; a, b) d y
$$

Apply (2.10) to obtain

$$
\begin{align*}
2 v E a_{n}(E)= & \frac{v+a}{(n-1+v+a)} a_{n-1}(E)+\frac{2 b}{n+v+a} a_{n}(E) \tag{3.8}\\
& +\frac{a-v}{n+v+a+1} a_{n+1}(E)
\end{align*}
$$

In view of (1.5) the function g of (3.7) is in $L_{2}(-1,1, \rho(x, v))$ if and only if

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left|a_{n}(E)\right|^{2} \frac{\Gamma(n+2 v)}{(n+1)!}<\infty \tag{3.9}
\end{equation*}
$$

In order to determine the large n asymptotics of $a_{n}(E)$ we set

$$
\begin{equation*}
a_{n}(E)=\left(i \sqrt{\frac{\nu+a}{v-a}}\right)^{n-1} \frac{v+a+n}{v+a+1} a_{1}(E) b_{n-1}(E), n>0 \tag{3.10}
\end{equation*}
$$

Since $a_{0}(E)=0$ and $a_{1}(E)$ is an arbitrary constant, we see that the b_{n} 's are generated via

$$
\begin{gather*}
b_{-1}(E)=0, \quad b_{0}(E)=1, \tag{3.11}\\
b_{n+1}(E)+b_{n-1}(E)=\frac{2 i}{\sqrt{\nu^{2}-a^{2}}}[v(v+a+1+n) E-b] b_{n}(E) \tag{3.12}
\end{gather*}
$$

At this stage we note that it is more convenient to renormalize E and b_{n} through

$$
\begin{equation*}
u:=i v E / \sqrt{v^{2}-a^{2}}, \quad B:=-i b / \sqrt{v^{2}-a^{2}}, \quad c_{n}(u)=b_{n}(E) \tag{3.13}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
c_{n+1}(u)=2[(n+v+a+1) u+B] c_{n}(u)-c_{n-1}(u) . \tag{3.14}
\end{equation*}
$$

Now formula (3.14) is (1.11) in [4] and in the notation of [4] we have

$$
\begin{equation*}
a_{n}(E)=\left(i \sqrt{\frac{v+a}{v-a}}\right)^{n-1} \frac{v+a+n}{v+a+1} a_{1}(E) \tau_{n-1}(u, 1+a+v, B) \tag{3.15}
\end{equation*}
$$

In view of

$$
\begin{equation*}
\Gamma(a+z) / \Gamma(b+z) \approx z^{a-b}, z \rightarrow \infty,|\arg z|<\pi \tag{3.16}
\end{equation*}
$$

(3.13) in [4] and (3.15) establish

$$
\begin{align*}
a_{n}(E) \sqrt{\frac{\Gamma(n+2 v)}{\Gamma(n+2)}} \approx & \frac{n^{v}}{v+a+1}\left(i \sqrt{\frac{v+a}{v-a}}\right)^{n-1} a_{1}(E) J_{v+a+B / u}(1 / u) \tag{3.17}\\
& \times(2 u)^{n+v+a-1+B / u} \Gamma(n+v+a+B / u) \text { as } n \rightarrow \infty
\end{align*}
$$

This shows that the series (3.9) diverges unless $1 / u$ is a nontrivial zero of $J_{v+a+B z}(z)$ or $u=0$. If $u=0$ then (3.14) implies

$$
c_{n}(0)=U_{n}(B)
$$

$\left\{U_{n}(x)\right\}$ a Chebyshev polynomial of the second kind. Therefore

$$
\sqrt{1-B^{2}} c_{n}(0) \approx \frac{1}{2}\left(\frac{b+\sqrt{\Delta}}{\sqrt{v^{2}-a^{2}}}\right)^{ \pm(n+1)} \text { as } n \rightarrow \infty
$$

according as $b>0$ or $b<0$, respectively. When $b=0$ then

$$
\left|c_{n}(0)\right|= \begin{cases}1 & n \text { odd } \\ 0 & n \text { even }\end{cases}
$$

Thus we conclude that the series (3.9) diverges at $E=0$.
The remaining candidates for eigenvalues are when u, as per (3.13), is a nontrivial zero of $J_{v+a+B / u}(1 / u)$. Ismail [4] established the recursion relation

$$
\begin{align*}
J_{v+a+B / u+n}(1 / u)= & \tau_{n}(u, v+a, B) J_{v+a+B / u}(1 / u) \tag{3.18}\\
& -\tau_{n-1}(u, v+a+1, B) J_{v+a-1+B / u}(1 / u) .
\end{align*}
$$

When $J_{v+a+B / u}(1 / u)$ vanishes then (3.18) yields

$$
\begin{align*}
J_{v+a-1+B / u}(1 / u) \tau_{n-1}(u, v+a+1, B) & =-J_{v+a+n+B / u}(1 / u) \tag{3.19}\\
& \approx-\frac{(2 u)^{-v-a-n-B / u}}{\Gamma(v+a+n+1+B / u)}
\end{align*}
$$

as $n \rightarrow \infty$. It also follows from [4] that $J_{v+a-1+B / u}(1 / u)$ does not vanish at the nontrivial zeros of $J_{v+a+B / u}(1 / u)$. Finally (3.15) and (3.19) imply the convergence of the series (3.9). This establishes the following theorem.

ThEOREM 3.4. The eigenvalues $\left\{\lambda_{n}\right\}$ of the integral operator T^{-1} of (3.3) are precisely the reciprocals of the non-trivial zeros of $J_{v+a-b z / v}\left(-i \sqrt{v^{2}-a^{2}} z / v\right)$. The corresponding eigenfunctions are

$$
\begin{align*}
g\left(x, \lambda_{n}\right)=\sum_{k=1}^{\infty} & \left(i \sqrt{\frac{v+a}{v-a}}\right)^{k-1} \frac{v+a+k}{v+a+1} \tag{3.20}\\
& \times \tau_{k-1}\left(1 / \eta_{n}, 1+v+a,-i b / \sqrt{v^{2}-a^{2}}\right) P_{k}^{v}(x ; a, b),
\end{align*}
$$

where $\left\{\eta_{j}\right\}$ are the zeros of $J_{v+a+B z}(z)$, and

$$
\begin{equation*}
\lambda_{n}=-\frac{i \sqrt{\nu^{2}-a^{2}}}{\nu \eta_{n}} \tag{3.21}
\end{equation*}
$$

4. The q-Pollaczek polynomials

In this section we study the same problem for q-Pollaczek polynomials. By [2], q-Pollaczek polynomials are defined by the following three-term recurrence formula:

$$
\begin{align*}
F_{0}(x ; U, V, \Delta ; q)= & 1 \tag{4.1}\\
F_{1}(x ; U, V, \Delta ; q)= & 2[(1-\Delta U) x+V] /(1-q) \\
\left(1-q^{n+1}\right) F_{n+1}(x ; U, V, \Delta ; q)= & 2\left[\left(1-U \Delta q^{n}\right) x+V q^{n}\right] F_{n}(x ; U, V, \Delta ; q) \\
& -\left(1-\Delta^{2} q^{n-1}\right) F_{n-1}(x ; U, V, \Delta ; q),(n \geq 2)
\end{align*}
$$

For convenience, we use the simpler notations

$$
F_{n}(x)=F_{n}(x ; U, V, \Delta ; q) ; \quad G_{n}(x):=F_{n}(x ; U, q V, q \Delta ; q)
$$

From [4] we know that the q-Pollaczek polynomials have the generating function

$$
\begin{equation*}
F(x, t)=\sum_{n=0}^{\infty} F_{n}(x) t^{n}=\frac{(t / \xi ; q)_{\infty}(t / \zeta ; q)_{\infty}}{(t / \alpha ; q)_{\infty}(t / \beta ; q)_{\infty}} \tag{4.2}
\end{equation*}
$$

where α and β are roots of $t^{2}-2 x t+1=0$, so that $\alpha=e^{i \theta}, \beta=e^{-i \theta}$; and ξ and ζ are given by

$$
\Delta^{2} t^{2}-2(U \Delta x-V) t+1=(1-t / \xi)(1-t / \zeta)
$$

In (4.2) we use the notation

$$
(a ; q)_{0}:=1, \quad(a ; q)_{n}=\prod_{j=1}^{n}\left(1-a q^{j-1}\right), j=1,2, \ldots \text { or } \infty
$$

Now we want to express $F_{n}(x)$ as a linear combination of $G_{j}(x),(0 \leq j \leq n)$. This will be a q-analogue of Theorem 2.3. It is clear that (4.2) implies

$$
\begin{align*}
\sum_{n=0}^{\infty} G_{n}(x) t^{n} & =\frac{(t q / \xi ; q)_{\infty}(t q / \zeta ; q)_{\infty}}{(t / \alpha ; q)_{\infty}(t / \beta ; q)_{\infty}} \tag{4.3}\\
& =\frac{F(x, t)}{(1-t / \xi)(1-t / \zeta)}=\frac{F(x, t)}{\Delta^{2} t^{2}-2(U \Delta x-V) t+1}
\end{align*}
$$

hence

$$
\begin{equation*}
F_{n}(x)=G_{n}(x)-2(U \Delta x-V) G_{n-1}(x)+\Delta^{2} G_{n-2}(x) \tag{4.4}
\end{equation*}
$$

In (4.1), replace Δ by $q \Delta, V$ by $q V$, and eliminate $x G_{n-1}(x)$ between (4.1) and (4.4). Then

$$
\begin{align*}
\left(1-U \Delta q^{n}\right) F_{n}(x)= & (1-U \Delta) G_{n}(x)+2 V G_{n-1}(x) \tag{4.5}\\
& +\Delta(\Delta-U) G_{n-2}(x)
\end{align*}
$$

From [2] the polynomials $\left\{F_{n}(x)\right\}$ are orthogonal with respect to the weight function

$$
\begin{align*}
w(x) & =w(x ; U, V, \Delta ; q) \tag{4.6}\\
& :=\frac{(1-U \Delta)\left(\Delta^{2}, q, e^{2 i \theta}, e^{-2 i \theta} ; q\right)_{\infty}}{2 \pi \sin \theta\left(e^{i \theta} / \xi, e^{-i \theta} / \xi, e^{i \theta} / \zeta, e^{-i \theta} / \zeta ; q\right)_{\infty}}
\end{align*}
$$

Formula (4.5) has a dual expressing $G_{n}(x) W(x)$ in terms of $\left\{F_{j}(x) w(x)\right\}_{j=0}^{\infty}$, where the weight function W is the weight function for $\left\{G_{n}\right\}$. In other words

$$
W(x)=w(x ; U, q V, q \Delta ; q)
$$

The dual formula to (4.5) is

$$
\begin{equation*}
G_{n}(x) W(x)=\sum_{j=n}^{n+2} C_{n, j} F_{j}(x) w(x) \tag{4.7}
\end{equation*}
$$

where

$$
I_{n}:=\int_{-1}^{1} F_{n}^{2}(x) w(x) d x=\frac{(1-U \Delta)\left(\Delta^{2} ; q\right)_{n}}{\left(1-U \Delta q^{n}\right)(q ; q)_{n}}
$$

$$
\begin{aligned}
I_{n}^{*} & :=\int_{-1}^{1} G_{n}^{2}(x) W(x) d x=\frac{(1-U \Delta q)\left(\Delta^{2} q^{2} ; q\right)}{\left(1-U \Delta q^{n+1}\right)(q ; q)_{n}} \\
C_{n, j} & =\frac{1}{I_{j}} \int_{-1}^{1} G_{n}(x) F_{j}(x) W(x) d x \\
C_{n, n} & =\frac{I_{n}^{*}(1-U \Delta)}{I_{n}\left(1-U \Delta q^{n}\right)}=\frac{(1-U \Delta q)\left(1-\Delta^{2} q^{n}\right)\left(1-\Delta^{2} q^{n+1}\right)}{\left(1-U \Delta q^{n+1}\right)\left(1-\Delta^{2}\right)\left(1-\Delta^{2} q\right)} \\
C_{n, n+1} & =\frac{I_{n}^{*} 2 V}{I_{n+1}\left(1-U \Delta q^{n+2}\right)}=\frac{2 V(1-U \Delta q)\left(1-q^{n+1}\right)\left(1-\Delta^{2} q^{n+1}\right)}{\left(1-U \Delta q^{n+1}\right)\left(1-\Delta^{2}\right)(1-U \Delta)\left(1-\Delta^{2} q\right)} \\
C_{n, n+2} & =\frac{I_{n}^{*} \Delta(\Delta-U)}{I_{n+2}\left(1-U \Delta q^{n+2}\right)}=\frac{\Delta(\Delta-U)(1-U \Delta q)\left(1-q^{n+1}\right)\left(1-q^{n+2}\right)}{\left(1-U \Delta q^{n+1}\right)\left(1-\Delta^{2}\right)(1-U \Delta)\left(1-\Delta^{2} q\right)}
\end{aligned}
$$

It is worth mentioning that in the following calculation, the first expression of the above $C_{n, j}$ is more convenient.

Consider a linear operator T_{q} defined on the span of the F_{n} 's through

$$
\begin{equation*}
T_{q} F_{n}(x)=\frac{2(1-\Delta) q^{(1-n) / 2}}{1-q} G_{n-1}(x) \tag{4.8}
\end{equation*}
$$

This defines T_{q} on a dense subset of $L_{2}(-1,1, w)$. We now seek a linear operator T_{q}^{-1} for which

$$
T_{q}^{-1} G_{n}(x)=\frac{(1-q) q^{n / 2}}{2(1-\Delta)} F_{n+1}(x)
$$

For $g(x) \in L_{2}(-1,1, W(x))$. Let $g(x) \sim \sum_{n=0}^{\infty} g_{n} G_{n}(x)$. We define T_{q}^{-1} as the integral operator

$$
\begin{equation*}
\left(T_{q}^{-1}\right)(x)=\int_{-1}^{1} g(y) K_{q}(x, y) W(y) d y \tag{4.9}
\end{equation*}
$$

where the kernel $K_{q}(x, y)$ is defined by

$$
\begin{align*}
K_{q}(x, y) & :=\sum_{n=0}^{\infty} \frac{(1-q)\left(I_{n}^{*}\right)^{-1} q^{n / 2}}{2(1-\Delta)} F_{n+1}(x) G_{n}(y) \tag{4.10}\\
& =\sum_{n=0}^{\infty} \frac{(1-q)\left(1-U \Delta q^{n+1}\right) q^{n / 2}(q ; q)_{n}}{2(1-\Delta)(1-U \Delta q)\left(q^{2} \Delta^{2} ; q\right)_{n}} F_{n+1}(x) G_{n}(y)
\end{align*}
$$

Next, we find the discrete spectrum of T_{q}^{-1}. It is easy to check that T_{q}^{-1} maps $L_{2}(-1,1, W(x))$ into $L_{2}(-1,1, w(x))$. Hence if

$$
\begin{equation*}
T_{q}^{-1} g=E g \tag{4.11}
\end{equation*}
$$

then $g \in L_{2}(-1,1, W(x)) \cap L_{2}(-1,1, w(x))$. Now assume that (4.11) holds; then by (4.9),

$$
\begin{equation*}
g(x) \sim \sum_{n=0}^{\infty} A_{n}(E) F_{n}(x), \quad A_{0}(E):=0 \tag{4.12}
\end{equation*}
$$

Combining (4.9) with (4.11), we get

$$
\begin{align*}
E A_{n}(E)= & \int_{-1}^{1} g(y) \frac{(1-q) q^{(n-1) / 2}}{2(1-\Delta) I_{n-1}^{*}} G_{n-1}(y) W(y) d y \tag{4.13}\\
= & \frac{(1-q)(1-U \Delta) q^{(n-1) / 2}}{2(1-\Delta)\left(1-U \Delta q^{n-1}\right)} A_{n-1}(E) \\
& +\frac{2 V(1-q) q^{(n-1) / 2}}{2(1-\Delta)\left(1-U \Delta q^{n}\right)} A_{n}(E) \\
& +\frac{\Delta(\Delta-U)(1-q) q^{(n-1) / 2}}{2(1-\Delta)\left(1-U \Delta q^{n+1}\right)} A_{n+1}(E)
\end{align*}
$$

We take

$$
U=q^{a}, \quad \Delta=q^{v}, \quad a<v
$$

and renormalize as

$$
\begin{equation*}
A_{n}(E)=D^{n-1} \frac{1-q^{n+a+v}}{1-q^{1+a+\nu}} q^{-(n-1)^{2} / 4} A_{1}(E) b_{n-1}(L E) \tag{4.14}
\end{equation*}
$$

where

$$
\begin{align*}
D & =i\left(\frac{1-q^{a+v}}{q^{2 v+a}\left(q^{a}-q^{v}\right)}\right)^{\frac{1}{2}} \tag{4.15}\\
L & =\frac{i q^{\frac{1}{4}+\frac{a}{2}}\left(1-q^{\nu}\right)}{(1-q) \sqrt{\left(1-q^{a+v}\right)\left(q^{a}-q^{v}\right)}}
\end{align*}
$$

Then (4.13) becomes
(4.16)

$$
b_{n}(E)=2\left[E\left(1-q^{n+a+v}\right)+M q^{(n+a+v) / 2}\right] b_{n-1}(E)-q^{n+a+v-1} b_{n-2}(E)
$$

where

$$
M=\frac{-V i}{q^{\frac{1}{4}+\frac{v}{2}} \sqrt{\left(1-q^{a+v}\right)\left(q^{a}-q^{v}\right)}}
$$

We shall first consider the symmetric case $V=0$. In this case, $M=0$ and (4.16) becomes

$$
\begin{equation*}
b_{n}(E)=2 E\left(1-q^{n+a+v}\right) b_{n-1}(E)-q^{n+a+v-1} b_{n-2}(E) \tag{4.17}
\end{equation*}
$$

which is (1.22) of [4]. Ismail [4] introduced a q-analogue of the Lommel polynomials. Comparing (4.17) with (3.6) in [4] we arrive at the identification

$$
\begin{align*}
b_{n}(E) & =h_{n, a+v+1}(E ; q) \tag{4.18}\\
& =\sum_{j=0}^{[n / 2]} \frac{(2 E)^{n-2 j}(-1)^{j}\left(q^{a+v+1} ; q\right)_{n-j}(q ; q)_{n-j}}{(q ; q)_{j}\left(q^{a+v+1} ; q\right)_{j}(q ; q)_{n-2 j}} q^{j(j+a+v)}
\end{align*}
$$

By (3.9) of [4] we get

$$
\begin{equation*}
h_{n, a+v+1}(E ; q) \approx \frac{(q ; q)_{\infty} J_{a+v}^{(2)}(1 / E ; q)}{(2 E)^{-n-a-v}} \text { as } n \rightarrow \infty \tag{4.19}
\end{equation*}
$$

where $J_{a+v}^{(2)}$ is a q-Bessel function [4].
Equation (4.12) is true iff

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left|A_{n}(E)\right|^{2} \frac{(1-U \Delta)\left(\Delta^{2} ; q\right)_{n}}{\left(1-U \Delta q^{n}\right)(q ; q)_{n}}<\infty \tag{4.20}
\end{equation*}
$$

We consider the asymptotic behavior of $A_{n}(E)$ so as to determine the solution of (4.11). We have

$$
\begin{aligned}
\left|A_{n}(E)\right| & \approx D^{n-1} \frac{A_{1}}{1-q^{1+a+\nu}} q^{-(n-1)^{2} / 4} b_{n-1}(L E) \\
& \approx D^{n-1} \frac{A_{1}(2 L E)^{n-1+a+\nu}}{1-q^{1+a+\nu}} q^{-(n-1)^{2} / 4}(q ; q)_{\infty} J_{a+\nu}^{(2)}(1 / L E ; q) \text { as } n \rightarrow \infty
\end{aligned}
$$

If $E \neq 0$ or $J_{a+v}^{(2)}(1 / L E ; q) \neq 0$, then $\left|A_{n}(E)\right| \rightarrow \infty$ as $n \rightarrow \infty$; i.e., (4.11) has no solutions in this case. If $E=0$ from (4.13) we get

$$
A_{2 n}(0)=0, \quad A_{2 n+1}(0)=\left(1-q^{2 n+a+v+1}\right)\left(\frac{1-q^{a+v}}{q^{v}\left(q^{a}-q^{v}\right)}\right)^{n}
$$

and (4.20) is not true. If $J_{a+v}^{(2)}(1 / L E ; q)=0$, then by (1.19) and Theorem 4.3 of [4] we obtain

$$
q^{n(a+v)+n(n-1)) / 2} J_{a+v+n}^{(2)}(1 / L E ; q)=-h_{n-1, a+v+1}(L E ; q) J_{a+v-1}^{(2)}(1 / L E ; q)
$$

On the other hand we know that

$$
J_{a+v+n}^{(2)}(1 / L E ; q) \approx(2 L E)^{-(a+v+n)} \frac{\left(q^{a+v+n+1} ; q\right)_{\infty}}{(q ; q)_{\infty}} \text { as } n \rightarrow \infty
$$

so (4.20) holds. Summarizing the above, we get Theorem 4.1.
THEOREM 4.1. The eigenvalues $\left\{\lambda_{n}(q)\right\}$ of the T_{q}^{-1} of (4.11) are the reciprocals of zeros of $J_{a+v}^{(2)}\left(L^{-1} \xi ; q\right)$, where L is given by (4.15). The corresponding eigenfunctions are in the form of (4.12).

Finally, we come to the nonsymmetric case $V \neq 0$. From the Birkhoff-Tritjinski theory for difference equations we see that the second order difference equation (4.16) has two linearly independent solutions $b_{n, 1}(E)$ and $b_{n, 2}(E)$ such that

$$
\begin{align*}
& b_{n, 1}(E)=(2 E)^{n} O(1) \quad \text { as } n \rightarrow \infty \tag{4.21}\\
& b_{n, 2}(E)=\left(q^{a+v+1 / 2} / 2 E\right)^{n} q^{n^{2} / 2} O(1) \quad \text { as } n \rightarrow \infty
\end{align*}
$$

Thus there are functions $C(E)$ and $D(E)$ such that

$$
\begin{equation*}
b_{n}(E)=C(E) b_{n, 1}(E)+D(E) b_{n, 2}(E) \tag{4.22}
\end{equation*}
$$

By (4.14) and (4.20) we can verify that the spectrum of the integral operator (4.11) consists of the zeros of $C(E)$ and possibly the origin. But when $E=0$ the recurrence relation (4.16) degenerates to

$$
\begin{equation*}
b_{n}(0)=2 M q^{(n+a+v) / 2} b_{n-1}(0)-q^{n+a+v-1} b_{n-2}(0) \tag{4.23}
\end{equation*}
$$

The change of variables

$$
b_{n}(0)=q^{(n(n-1) / 4} c_{n}
$$

changes (4.23) into the second order difference equation with constant coefficients

$$
\begin{equation*}
c_{n}=2 M q^{(a+v+1) / 2} c_{n-1}-q^{a+v+1 / 2} c_{n-2} . \tag{4.24}
\end{equation*}
$$

The two linear independent solutions of (4.24) are asymptotically like

$$
\left|c_{n}\right|=\left|q^{(a+\nu) / 2}\left(M q^{1 / 2} \pm \sqrt{M^{2} q-q^{1 / 2}}\right)\right|^{n} O(1)
$$

From here it is clear that (4.20) does not hold.

REFERENCES

[1] R. Askey, Orthogonal polynomials and special functions, CBMS, SIAM, Philadelphia, 1975.
[2] J. Charris and M. E. H. Ismail, On sieved orthogonal polynomials V: Sieved Pollaczek polynomials, SIAM J. Math. Anal. 18 (1987), 1177-1218.
[3] T. S. Chihara, An introduction to orthogonal polynomials, Gordon and Breach, New York, 1978.
[4] M. E. H. Ismail, The zeros of basic Bessel functions, the functions $J_{v+a x}(x)$, and associated orthogonal polynomials, J. Math. Anal. Appl. 82 (1982), 1-19.
[5] M. E. H. Ismail, M. Rahman and R. Zhang, Diagonalization of certain integral operators II, J. Comput. Appl. Math. 68 (1996), 163-196.
[6] M. E. H. Ismail and R. Zhang, Diagonalization of certain integral operators, Advances in Math. 108 (1994), 1-33.
[7] G. Szegö, Orthogonal polynomials, Fourth Edition, Amer. Math. Soc., Providence, 1975.

Arizona State University, Tempe, Arizona
University of South Florida, Tampa, Florida
University of South Florida, TAMPA, Florida

[^0]: Received August 29, 1995.

