
ILLINOIS JOURNAL OF MATHEMATICS
Volume 40, Number 4, Winter 1996

ON AN INTEGRAL OPERATOR AND ITS SPECTRUM

JOAQUIN BUSTOZ, MOURAD E. H. ISMAIL AND JIFENG MA

1. Introduction

The action of the differential operator d/dx on the ultraspherical polynomials
(spherical harmonics) C(x) is given by

d
(1.1) C (x) 2vC+_ (x).

dx

This was used in [6] to provide a right inverse to d/dx. In this note we study the
corresponding question for the Pollaczek polynomials Pn (x; a, b)} [3]. Recall [3]
that the Pollaczek polynomials have the generating function

(1.2) Z PnV (x; a, b)t (1 teiO)-v+ih(x)(1 te-i) -v-ih(x)

n=0

with

ax+b
(1.3) h(x) , x cos0.

/1 --X2

The branch of the square root is the branch that makes /X2

Here

(1.4) ei x + v/x :z 1.

The orthogonality relation of the Pollaczek polynomials is

--1 , x as x -+ cxz.

(1.5) P, (x; a, b) Pn (x; a, b)p(x; v) dx

-1

2zr F (n + 2V)(m,n
22V(n + a + v)n!

and the weight function p(x; v) is

(1.6) p(x; 1)) (1 X2)V-1/2e(20-r)h(x)I"(P -[- ih(x))I-’(v ih(x)).

The parameters a, b, v are assumed to satisfy

(1.7) a > Ibl and v > 0.
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Define a linear operator T on polynomials through

(1.8) TP,(x;a,b) 2vP,+](x" a b)

The purpose of this note is to define a formal right inverse to T. The construction of
the inverse operator depends on solving the connection coefficient problem expressing
Pn (x; a, b) in terms of pf+l (x; a, b) }7=0" The solution of this connection coefficient
problem is in Section 2. Section 3 contains an integral representation of a formal
right inverse to T. The inverse operator T-1 is a linear integral operator with a
non-symmetric kernel. It turns out that T-1 is compact, hence is trace class but
not normal. In Section 2, we also find the eigenvalues and eigenfunctions of T -1

explicitly. The eigenvalues are related to zeros of Bessel functions J+a/x (x). Section
4 contains q-analogues of the results of Sections 2 and 3. In Section 4 we first solve
a connection coefficient problem for the q-Pollaczek polynomial. We then define a
linear operator Tq by its action on the q-Pollaczek polynomials in a manner similar to
(1.8). The definition is in (4.8). We also introduce a right inverse to Tq and identify
its eigenvalues and eigenfunctions.

2. A connection coefficient problem

A theorem of Christoffel [7] asserts that if {pn(X)} are orthogonal with respect to
w (x), then the polynomials orthogonal with respect to 7r (x)w (x), where zr (x) is a

polynomial, are given by an explicit determinant expression.
The functional equation of the gamma function gives

p(x; v + 1) (1 x2)[p2 - hZ(x)lp(x; v).

Hence

(2.1)

In this case the Christoffel formula becomes

(2.2) [v2(1 X2) + (ax -I-- b)z]Pf+l(x; a, b)

P, (x; a, b) b)P+l(x a

Constant P (Xl; a, b) Pn+l (Xl; a, b)

Pf (x2; a, b) PV+l (x2; a, b)

where x and x2 are the zeros of p (x; v + 1)/p (x; v).

p(x; v + 1) Iv2(1 x2) + (ax -+- b)2]p(x; v).

P+2 (x; a, b)

ev+2(xl a b)

PV+2 (x2; a, b)

LEMMA 2.1. Assume that

(2.3) 1)
2 --]--b2 > a2.
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Then

(2.4) P(Xl; a, b)
(2V)n b

n! v-a I

(2.5)

where

(2.6)

and

(2.7)

Pn (x2; a, b) ((2V)n b.
n! v-a /I

ab + vq/ ab v/
Xl

1)2 a2 x2 "- 1)2 a2

A ;--- 1)2_ a2 + b2.

In (2.4) and (2.5) we used the shifted factorial notation

(2.8) ()o 1,
",_%

(r)n |l(cr + j 1).
j=l

THEOREM 2.2. We have

(2.9)
p(x; v + 1) PnV+ (x; a, b)
p(x; v)

(21) + n)(2v + n + 1)(1) + a)
4(v+a+n+ l) P (x; a, b)

(n + 1)(21) + n + 1)b+
2(1) + a + n + 1) PV+l (x; a, b)

(n + 1)(n + 2)(1) -a)
4(1) + a + n + l)

P+2(x; a, b).

We now prove Lemma 2.1 and Theorem 2.2.

ProofofLemma 2.1. Recall that xl andx2 arethezerosof[v+ih(x)][v-ih(x)].
In fact 1) + ih(Xl) v ih(x2) O. Thus (1.2) gives

E P(xl; a, b)t (1 tei’) -v+ih(x’),
n--0

x cos 01, and the binomial theorem yields

rn "V’xl a, b)
(v ih(xl))n ein’ (21))n einO’

n! n!

A calculation using (1.4) and (2.6) establishes (2.4). Similarly we prove (2.5).
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Proofof Theorem 2.2. Lemma 2.1, (2.1) and (2.2) show that the left-hand side
of (2.9) is a constant multiple of

(2v + n)2 v + a 2b(2v + n + 1)
(2.10)

(n + 1)2 v a
P2(x, a, b) +

(v a)(n + 2)
P/+(x, a, b)

PnV+2(x; a, b).

The three-term recurrence relation [3]

(2.11) (n + 1)Pf+l(x;a,b) 2[(n + v)x +b]P(x;a,b)

(n + 2v 1)Pn_l(X; a,b)

and the initial conditions

(2.12) P (x; a, b) 1, P (x; a, b) 2[(v + a)x + b]

show that

(2.13) P, (x; a, b)
2 (v + a)n

n x + lower order terms,

and the constant multiple of (2.10) can be found by equating coefficients of the highest
power of x on both sides of (2.2). The constant is

(v -a)(n + 1)(n + 2)
4(v+a+n+ 1)

A calculation now establishes (2.9).
Formula (2.9) has a dual expressing P,(x; a, b) in terms of {Pf+l (x; a, b)}=0. It

is easier to derive this dual directly instead of using (2.9).

THEOREM 2.3. If v + a is not a negative integer then

(2.14) (v + a + n)P(x; a, b) (v + a)P+(x; a, b) + 2bP+_(x; a, b)

Proof.

+(a v) ta+ (x" a, b)n-2

From (1.2) we find

P(x; a, b)t (1 tei)(1 te-i) (x; a, b)t
n=0 n=0

(1 2xt -t- 2) Z Pn+l (x; a, b)tn.
n--0
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Hence

enV+l p v+l (X" a b)en(x, a, b) enV+l(x, a, b) 2x (x, a, b) +. n-2

and we eliminate x Pn+_ (x’, a b) between (2.15) and (2.11) (with v replaced by v + 1).
The result is (2.14).

It is worth noting that (2.9) and (2.14) are equivalent and can be derived from each
other ], [5].

3. An integral operator

Let g 6 L2(-1, 1, ,o(x, v + 1)) and let its orthogonal series be

g(x) ’ g,e+ (x; ,, ,).
n--O

Then

(3.2) gn
22v+2(n nt- + v + a)n!

2n’l-’(n + 2v + 2)
P,+(y; a,b),o(y, v + 1)g(y)dy.

-1

Since TP(x; a, b) 2vP,+_ (x; a, b) one can define T- through its action on the
polynomials P (x; a, b) via

T- Pn+ (x; a, b) P,+ (x; a, b)/(2v).

One can then extend the definition of T- to all of L2(-1, 1, p(x, v + 1)) in the
following manner:

gn
(x’a b)T- gnp+l (x; a, b) vvP+l

n=0 n=0

More precisely, if g(x) has the orthogonal series (3.1) define

(3.3) (T-lg)(x) f g(y)Ku(x, y),o(y, v -t-- 1)dy,

-1

where

(3.4)
22v(n + + v + a)n!

K(x, y):= Z
,=0 rcvF(n + 2v +2) P,+l (x; a, b)P,+(y; a, b).
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Our next objective is to find the discrete spectrum of T-1 Observe that T-1 maps
L2(-1, 1, ,o(x, v + 1)) into L2(-1, 1, ,o(x, v)). So if T-lg Eg then

(3.5) g L2(-1, 1, p(x, v)) L2(-1, 1, p(x, v + 1)).

Now assume (3.5) holds and

(3.6)

Therefore (3.3) implies

T-lg Eg.

(3.7) g(x) an(E)Pf (x; a, b), ao 0.
n=0

Therefore Ean(E) is the coefficient of P,(x; a, b) in T-lg; that is

Ean(E)
22V(n + v + a)(n 1)! fzrvI"(n+2v+ 1)

g(y)p(y,v+ 1)P,+_ll(y;a,b)dy.
-1

Apply (2.10) to obtain

v+a 2b
(3.8) 2vEan(E) an-l(E) + an(E)

(n- +v+a) n+v+a
aN,i)

+ an+l(E).
n+v+a+l

In view of (1.5) the function g of (3.7) is in L2(-1, 1, ,o(x, v)) if and only if

(3.9)
n=l (n + 1)!

In order to determine the large n asymptotics of an (E) we set

(3.10) an(E)
v + a u + a + n

al(E)bn-l(E) n > O.
Vv -a v +a +

Since ao(E) 0 and al (E) is an arbitrary constant, we see that the bn’s are generated
via

(3.11) b_l(E) 0, bo(E) 1,

(3.12) bn+l (E) + bn-I (E)
2i

/1)2 a2
[v(v + a + + n)E b]bn(E).

At this stage we note that it is more convenient to renormalize E and bn through

(3.13) u := ivE/v/v2 a2, B "= -ib/v/v2 a2, Cn(U) bn(E).
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Therefore

(3.14) Cn+l (/,/) 2[(n + v + a + 1)u + Blcn(u) -Cn_l(b/).

Now formula (3.14) is (1.11) in [4] and in the notation of [4] we have

( /v nt-a)n-1 v Wa nt-n
(3.15) an(E) al(E)rn_l(U, + a + v, B).

v-a v+a+

In view of

(3.16) 1-’(a

(3.13) in [4] and (3.15) establish

(3.17)

F(n + 2v)
an(E)

r(n +2)
n v+a

" a (E)Jv+a+B/u(1/u)v+-+ v---]
x(2u)n+v+a-l+B/UF(n + v A- a -4- B/u) as n - .This shows that the series (3.9) diverges unless 1/u is a nontrivial zero of Jv+a+Bz(Z)

or u 0. If u 0 then (3.14) implies

c.(O) Un(B),

{Un (x)} a Chebyshev polynomial of the second kind. Therefore

(b+,qf)
+(n+l)

as n --+ ec1 B2 cn(O) - /v2 a2

according as b > 0 or b < 0, respectively. When b 0 then

nodd
Ic,(O)

0 n even.

Thus we conclude that the series (3.9) diverges at E 0.
The remaining candidates for eigenvalues are when u, as per (3.13), is a nontrivial

zero of J+a+/u(1/u). lsmail [4] established the recursion relation

(3.18) Jv+a+B/u+n(1/U) rn(u, V -t- a, B)Jv+a+B/u(1/u)

-rn-l(U, v q- a + 1, B)Jv+a-l+B/u(1/u).

When Jv+a+B/u(1/U) vanishes then (3.18) yields

(3.19) Jv+a_l+B/u(1/U)rn_l(U, V + a + 1, B) --Jv+a+n+B/u(1/U)

(2u)----n-/u
F(v + a + n + + B/u)
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as n x. It also follows from [4] that Jv+a-l+B/u(1/tl) does not vanish at the
nontrivial zeros of Jv+a+B/u(1/U). Finally (3.15) and (3.19) imply the convergence
of the series (3.9). This establishes the following theorem.

THEOREM 3.4. The eigenvalues {)n of the integral operator T- of (3.3) are
precisely the reciprocals ofthe non-trivial zeros of Jv+a-bz/(-iv2 a2z/P). The
corresponding eigenfunctions are

(3.20) g(x, An)
k=l V V a ]

v+a+k
v+a+l

rk- (1/On, + v + a, -ib/x/p2 a2)P (X; a, b),

where {/]j} are the zeros of Jv+a+Bz(Z), and

(3.21) /,n
V/1)2 a2

4. The q-Pollaczek polynomials

In this section we study the same problem for q-Pollaczek polynomials. By [2],
q-Pollaczek polynomials are defined by the following three-term recurrence formula:

(4.1) F0(x; U, V, A; q) 1,

Fl(X; U, V, A; q) 2[(1 AU)x + V]/(1 -q),

(1- qn+’) F,+l(X; V, V, A; q) 2[(1--VAqn)x+Vqn]Fn(x;U,V,A;q)

(1 A2qn-l) F,_(x; U, V, A; q), (n > 2).

For convenience, we use the simpler notations

F(x) Fn(x; U, V, A; q); Gn(x) F(x; U, qV, qA; q).

From [4] we know that the q-Pollaczek polynomials have the generating function

(4.2) F(x, t) Z Fn(x)t
(t/; q)(t/(; q)

n=0 (t/u; q)(t/; q)

where ot and/ are roots of 2 2xt + 0, so that t eiO, [3 e-i; and and
are given by

A2t2 2(UAx V)t + (1 t/) (1 tiff).
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In (4.2) we use the notation

(a; q)0 1, (a; q)n H(1 aqJ-), j 1, 2 or
j=l

Now we want to express Fn (x) as a linear combination of Gj (x), (0 < j < n). This
will be a q-analogue of Theorem 2.3. It is clear that (4.2) implies

(4.3) Z Gn(x)t
n--0

(tq/; q)(tq/; q)
(t/; q)(t/fl; q)

F(x,t) F(x,t)
(1 t/)(1 t/) A2t2 2(UAx V)t +

hence

(4.4) F(x) Gn(x) 2(UAx V)Gn-I(X) + A2Gn-2(x).
In (4.1), replace A by q A, V by q V, and eliminate xG_ (x) between (4.1) and (4.4).
Then

(4.5) (1 UAqn)Fn(x) (1 UA)Gn(x) -t- 2VGn_(x)

+ A(A U)Gn_2(x)

From [2] the polynomials Fn (x) are orthogonal with respect to the weight function

(4.6) w(x) w(x; U, V, A; q)

(1 UA) (A2, q, e2i0, e-2i; q)
2zr sinO (ei/, e-i/, ei/(, e-i/(; q)

Formula (4.5) has a dual expressing Gn(x)W(x) in terms of {Fj(x)w(x)}j=0’ where
the weight function W is the weight function for G }. In other words

W(x) w(x; U, qV, qA; q).

The dual formula to (4.5) is

(4.7)
n+2

Gn(x)W(x) E Cn,jFj(x)w(x)
j=n

where

-1

(1-UA)(A2;q)n

(1-Ulkqn)(q;q)n
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I* f Gn2(x)w(x) dx
-1

(1 UAq)(A2q2; q)
(1 --UAqn+l)(q;q)

+/- f Gn(x)Fj(x)W(x)dx
-1

,El

Cn,n+l

Cn,n+2

i( uzx)

In (1 UAqn)

(1 UAq)(1 A2qn) (1 A2qn+l)
(1 UAqn+’) (1- A2) (1 A2q)

I,2V 2V(1 UAq)(1 qn+l) (1 A2qn+l)
In+l (1 U Aqn+2) (1--UAqn+l)(1-A2) (1- U A) (1- A2q)

2A(A U)

ln+2(1-UAqn+2)
A(A U)(1 UAq) (1 qn+l) (1 qn+2)
(1 UAqn+l) (1 A2) (1 UA)(1 AZq)

It is worth mentioning that in the following calculation, the first expression of the
above C,,,j is more convenient.

Consider a linear operator Tq defined on the span of the Fn’s through

2(1 A)q(l-n)
(4.8) TqFn(x) Gn-l(X).

1-q

This defines Tq on a dense subset of L2(-1, 1, w). We now seek a linear operator
Tq-1 for which

TIGn(x) (1 q)qn/2
2(1 A)

F,,+j(x).

For g(x) L2(-1, 1, W(x)). Let g(x) ym=ognGn(x). We define Tq-1 as the
integral operator

(4.9) (x, f g(y)Kq(x, y)W(y)dy,

-1

where the kernel Kq (x, y) is defined by

(4.10) Kq(x, y) :-- E (1 q) (I)-’ qn/2

n---0 2(1 A)
Fn+l(X)Gn(y)

E (1 q)(1 UAqn+l)qn/2(q; q)n

n--0 2(1 A)(1 UAq)(q2A2; q)n
Fn+l(X)Gn(y).
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Next, we find the discrete spectrum of Tq-1. It is easy to check that Tq-1 maps
L2 (- 1, 1, W (x)) into L2(- 1, 1, w (x)). Hence if

(4.11) T-l g E g,

then g 6 L2(-1, 1, W(x)) f-) L2(-1, 1, w(x)). Now assume that (4.11) holds; then
by (4.9),

(4.12) g(x) an(E)Fn(x), Ao(E) O.
n=0

Combining (4.9) with (4.11), we get

(4.13) EA,,(E) f g(y)
(1 q)q(,-)/2
2(1 A)I*

Gn-l(y)W(y)dy
n--I

--1

(1 q)(1 U A)q(n-l)

2(1--A)(1--UAqn-l)
An-(E)

2V(1 q)q(n-1)/2
nt- An(E)

2(1 A) (1 UAq")

A(A U)(1 q)q(n-1)/2
2(1 A)(1 UAqn+l)

A,+I(E).

We take

U--qa, A--q, a <v

and renormalize as

(4.14) An(E) Dn_l qn+a+v
ql+a+v

q (n-1)2/4A (E)bn- (LE)

where

(4.15) D
q2v+a (qa qV)

iq1/4+ (1 q)

(1 q)v/(1 _qa+V)(qa _qU)

Then (4.13) becomes

(4.16)

bn(E) 2 [E (1 qn+a+) + Mq(,,+a+)/2] b,,_,(E) q"+a+-’b,,_z(E)
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where

-Vi
M=

q1/4+v/(1 qa+v) (qa qV)

We shall first consider the symmetric case V O. In this case, M 0 and (4.16)
becomes

(4.17) bn(E) 2E (1 -qn+a+V) bn_l(E -qn+a+v-lbn_2(E
which is (1.22) of [4]. Ismail [4] introduced a q-analogue ofthe Lommel polynomials.
Comparing (4.17) with (3.6) in [4] we arrive at the identification

(4.18) b,,(E) hn,a+v+l(E; q)

[. (2E)n-2J(_l)j (qa+v+l; q)n-j (q; q)n-j

j=0 (q; q)j (qa+v+l; q)j (q; q)n-2j
qj(j+a+v)

By (3.9) of [4] we get

i(2)(q,q).,a+v(1/E;q)
(4.19) hn,a+v+l (E; q) as n --+ c

(2E)-n-a-v

where/,(2) is a q-Bessel function [4].
Equation (4.12) is true iff

(4.20) Z IA"(E)I2
(1 UA) (A2; q)n

< X.

n=l (1 --UAqn)(q;q)n

We consider the asymptotic behavior of An(E) so as to determine the solution of
(4.11). We have

IAn(E)I " Dn-1 A1 -(n-l)2/4bn
__ql+a+o

q (LE)

, D,,_l Al(2LE)n-l+a+ ._, j(2)
ql+a+v

q-n-1)2/a(q, q) a+v (1/LE; q) as n --
If E :/: 0 or j(2)a+v (1/LE; q) 0, then IAn(E)I -- cxz as n cxz; i.e., (4.11) has no
solutions in this case. If E 0 from (4.13) we get

A2n(0) 0, 1. =qa___+v_ )nA2n+l(0) (1 q2n+a+v+l)
qV (qa

and (4.20) is not true. If j(2)a+v (1/LE; q) 0, then by (1.19) and Theorem 4.3 of[4]
we obtain

qn(a+v)+n(n-1))/2j(2) /,(2) (1/LE; q).a+v+n (1/LE; q) -hn-l,a+v+l(LE; q)"a+v-1
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On the other hand we know that

qa+v+n+ 1.
t(2)
"a+v+n (1/LE; q) . (2LE)-(a+u+n) q)

(q; q)
as n -- cx

so (4.20) holds. Summarizing the above, we get Theorem 4.1.

THEOREM 4.1. The eigenvalues )n (q ofthe T- of(4.11 are the reciprocals of
(2) (L_l;zeros od da+ q), where L is given by (4.15). The corresponding eigenfunctions

are in theform of(4.12).

Finally, we come to the nonsymmetric case V 5 0. From the Birkhoff-Tritjinski
theory for difference equations we see that the second order difference equation (4.16)
has two linearly independent solutions bn, (E) and bn,2(E) such that

(4.21) bn, l(E) (2E)nO(1) as n -bn,z(E) (qa+v+l/Z/ZE)n qn2/20(1) as n --- cxz.

Thus there are functions C(E) and D(E) such that

(4.22) bn(E) C(E)bn,(E) -k- D(E)bn,2(E).

By (4.14) and (4.20) we can verify that the spectrum of the integral operator (4.11)
consists of the zeros of C(E) and possibly the origin. But when E 0 the recurrence
relation (4.16) degenerates to

(4.23) bn(O) 2Mq(n+a+v)/2bn_l (0) qn+a+v-1 bn-2(0).

The change of variables

bn(O) q(n(n-l)/4Cn

changes (4.23) into the second order difference equation with constant coefficients

(4.24) Cn 2Mq(a+v+l)/2Cn-I --qa+v+l/2Cn-2.

The two linear independent solutions of (4.24) are asymptotically like

[Cnl Iqa+’/2(Mq/2 +/- v/M2q -q’/z)ln O(1).

From here it is clear that (4.20) does not hold.
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