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ON INTERMEDIATE RICCI CURVATURE AND
FUNDAMENTAL GROUPS

FREDERICK WILHELM

Synge’s Theorem states that a closed Riemannian n-manifold with positive sec-
tional curvature is orientable if n is odd and has fundamental group of order or 2 if
n is even. Products of real projective spaces show that Synge’s Theorem is false for
positive Ricci curvature. On the other hand, there is some evidence which suggests
that large manifolds with positive Ricci curvature resemble large manifolds with pos-
itive sectional curvature ([Anderl ], [Coldl,2], [CheColl,2], [Perl 1,2]). There is also
some evidence to the contrary ([Ander2], [Otsu]).

It will be shown here that Synge’s Theorem remains valid for any manifold M
with positive Ricci curvature provided the first systole, sys M (i.e., the length of the
shortest closed noncontractible curve) is sufficiently large.

THEOREM 1. Let M be a complete Riemannian n-manifold with Ric M > n

and sys M > rr /n----n--l"

(i) Ifn is even and M is orientable, then M is simply connected.
(ii) Ifn is odd, then M is orientable.

It is easy to see that a nonsimply connected, complete, Riemannian n-manifold
with Ric M > n has sys M < rc and that equality holds only if M is isometric
to RPn. Indeed if sys M > r, then the diameter of the universal cover hT/is > r,
so r must be < zr by the Bonnet-Myers Theorem. If r rr, then is isometric to
S by [Cheng], and M is easily seen to be RPn (cf. [Will]). By combining results
in [Cold 1,2], [CheCol2], and [FukYam] with an idea from [Will,2] it is also easy to
see the following.

Given n I%I there is an e(n) > 0 so that a complete, nonsimply con-
nected, Riemannian n-manifold M with Ric M > n and sysl M >
7r e is diffeomorphic to R pn.

(See the end of the paper for a sketch of the proof.)
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A careful analysis of the proofs of the results cited above might yield an explicit
estimate for zr e(n); however, the answer would be considerably larger than the

in Theorem In fact the in Theorem isnumber zr pinching constant optimal.

Example A. For each natural number k > 2, put the product metric on Sk x Sk

with each factor having constant curvature 1. Let Z2 act as the antipodal map on both
factors. Then the quotient M (Sk x Sk)/Z2 is orientable, has fundamental group
isomorphic to Z2, Ricci curvature _= k 1, and sys M zr V/. To rescale so that

the Ricci curvature is 2k dim M 1, we must multiply all lengths by V 2-_-1-1
becomes zr f/k-1So sysl X/2--r_

Example B. In the odd dimensional case we also consider a product of spheres,
Sk x Sk+l (k > 2) with an Einstein product metric, and set M (Sk x Sk+I)/z2
where Z2 is acting as the antipodal map on both factors. If the Sk factor has constant
curvature and the Sk+ factor has constant curvature 1, then the metric is Einstein

with Ricci curvature _= k, and syslM zrx/-. To rescale so that M has Ricci

curvature 2k dim M we must multiply all lengths by V/1/2. The first systole

then becomes zr./2-;l.

Nothing can be done about the fact that the pinching constant in Theorem con-
verges to zr as n goes to cxz. (It is optimal.) As one might expect, the reason for this
is that, in some sense, the hypothesis Ric M > n means less and less as n goes to
infinity. This principle is exemplified in the proof as well as in the examples above.
However, the method of proof is quite flexible. One can change both the curvature
and the systole hypotheses and obtain additional information, and with these changes
the pinching constant becomes independent of the dimension.

To be concrete, we recall ([Wu], [Shen]) that a Riemannian manifold M is said
to have kth-Ricci curvature > provided that for any choice {v, Wl, w2 wk} of
an orthonormal (k + 1)-frame the sum of sectional curvatures Y= sec(v, wi) is
> t. In short hand this is written as Rick M > t. Clearly Rick M > tk implies
Rick+l M > t(k / 1). Ric M > is the same as sec M > t, and RiCh-1 M > is
the same as Ric M > t. Theorem is a special case of our

MAIN THEOREM. Let M be a complete Riemannian n-manifold with Rick M > k
I

sys M > 7r,/and k

(i) Ifn is even and M is orientable, then M is simply connected.
(ii) Ifn is odd, then M is orientable.
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This generalizes Synge’s Theorem because in case k the pinching constant
is 0.

Remark. There have apparently been no systematic attempts to find "legitimate"
examples ofmanifolds with positive intermediate Ricci curvatures. (An "illegitimate"
example is one that has positive sectional curvature.) It seems to the author that the
techniques of [Berger], [Wal], [A1Wal], [Eschl,2], and [Baza] should also yield some
"legitimate" examples. As a starting point one should ask:

Which n-dimensional, normal homogeneous spaces have Rick > 0 for
some k which is small compared to n?

Proofofthe main theorem. Part (i) would follow if we could show that a com-
plete, even dimensional, orientable, nonsimply connected Riemannian manifold M

Rick M > k has sys M < rr/&-. Similarly part (ii) follows if a complete,with

odd dimensional, nonorientable, Riemannian manifold M with Rick M > k has

sys M <

The two statements are proven together.
.Let ?" [0, l] M be a noncontractable, normal, geodesic loop which is of mini-

mal length in its free homotopy class. In case M is nonorientable and odd dimensional
we also assume that , induces an orientation reversing deck transformation on the

universal cover/1 To prove the main theorem it suffices to show that <
k

The hypotheses on orientability and dimension parity are used to appeal to the
following standard lemma of linear algebra [doCar].

Lemma 2. Let A be an orthogonal linear transformation of n-1, and suppose
det A (-1)n. Then A fixes some nonzero vector ofJRn-

Our hypotheses on , combined with Lemma 2 imply that the map P: T(o)M
T(o)M given by parallel transport around , fixes a nonzero vector perpendicular to
(0). We can therefore find a unit, periodic, parallel field E along ?, with period I.

Let V: (-e, e) x [0, l] M be the variation

V(s, t) exp(t sE(t),

and let Len(s) denote the length of the curve V(s, t). Then from the second
variation formula and the fact that , is a loop with minimal length in its free homotopy
class we get

d2 f00 < S2 Len(s)l.=0 (E’, E’) (R(E, ), E)dt

(R(E,)),E)dt (3)
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Let{F/ }i= be a parallel orthonormal (k l)-frame along ?’ that is perpendicular
to E and }. Since Ric, M > k it follows from equation (3) that

(g(F/,)), Fi)dt >_ :.
i=1

(4)

Let be a lift of , to the universal cover, of M. Let ’i be the lift of Fi. Set
if’/ sin t/i. Arguing as in the proof of the Bonnet-Myers Theorem, we find that
the sum of the indices

k-I k-I

f00 Zi=I ](’zi’ Vi) il’= (Vi, V/’ -- R(Vi,f0 (7rt) ( rr2
sin2 T - (//

i=1

where the inequality is due to the fact that }lt0,t] is minimal. On the other hand,

Ii, 1 is also minimal, so arguing as above we find

cos2 --(fi’i, fi’i)- (R(fi’i, ), Pi) dt. (6)

We show below that if we make an appropriate choice of parametrization of } and an
appropriate choice of {/i k-}i=, then the right hand side of (6) is

k-l f0’ (rrt) ( :rr2
--< /1"= COS2 T --(/, L)- (R(/, ), /) dt. (7)

Taking this for granted for the moment and adding the resulting inequality to (5) gives
us

(8)

Combining this with inequality 4 we get

71.2 k-I

fo 7tr2 k-I

fo"-(i, i>d, > i (R(i, ), i)d, > kl,

or

7"t"
2 k > 12

k
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or

as desired.
It remains to show that inequality (7) is valid provided we make the right choice

of{P/ k-}i= and choose the appropriate parametrization of .
By an abuse of notation we let denote the geodesic extension of to [0, o). Let

,,vk-,(t) be the set of orthonormal (k 1)-frames at (t) that are perpendicular to
and the lift of E, and let )rk- [,.Jt -T’k- (t) Since V is periodic and zr (M)

is finite, is periodic. Therefore -k- is compact.
We define a continuous function I" ,T’k- ---+ by

cos2 7(t- r) (R(Pt(fi), ’), Pt(fi)))dt,

where r is the parameter time along of the foot point of f/ k-}i= and Pt (fi) denotes
the extension of fi to a parallel field along . Then inequality (7) will be valid
provided we choose j k-}i= SO that it maximizes I and (if necessary) we choose a

(normal geodesic)reparametrization of with (0) (r).

Concluding remarks

Remark 9. Notice that the proof of the main theorem really only requires that V is
a loop of minimal length in its free homotopy class. Thus it shows that in a complete,
even dimensional, orientable, Riemannian manifold M with Rick M > k, every free

homotopy class contains a representative with length < zrV/-, and in a complete,
odd dimensional, nonorientable, Riemannian manifold M with Rick M > k every
free homotopy class that induces an orientation reversing deck transformation of M
contains a representative with length < zrV/-.

Also notice that for the proof we really only need Rick >_ k for all orthonormal
k + 1-frames {v, Wl, w2 Wk} with v and even this is only needed in an
integral sense. If the theorem were restated along these lines, it would be optimal
for all k. The relevant RiCk’S in Examples A and B are all > (if all factors have
constant curvature 1). To rescale so that all of these RiCk’S are > k we must multiply

the metric bY v/k2---2, andhencesys, becomes zr v/k---2 as required.

Remark 10. The reader might recall that Weinstein has shown that any isometry
of a compact, oriented, Riemannian, n-manifold with positive sectional curvature has
a fixed point if either n is even and f preserves orientation or n is odd and f reverses
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orientation ([Wein] or [doCar]). Since Synge’s theorem is an easy corollary of this,
it should not be surprising that with a little more work we can prove the following.

THEOREM 11. LetM be a complete, orientedRiemannian n-manifoldwith Rick >_

and let f: M M be an isometry ofM whose minimal displacement is > zr V/ -.k
Then

(i) f reverses orientation ifn is even, and
(ii) f preserves orientation ifn is odd.

Sketch ofproof. Let p be a point where the displacement of f is minimal, and
let ?’: [0, l] M be a normal, minimal geodesic with ?, (0) p and , (1) f (p).
Then the orbit of , under the iterates of f determines a smooth geodesic extension

of ,. From here the proof is very similar to the proof of the main theorem. The
extra technicalities arise from the fact that may not be periodic, and hence the
justification of inequality (7) will no longer be valid. There would be no problem if
the supremum of the functional I restricted to the set of frames with foot point in the

.T"k- is realized. If this supremum is not realized, take a sequenceorbit of p, fi (p) Y }i=l
of frames i.j }i,jr,<_j<_k-I almost realizing the supremum of I. Say the foot points
of these frames is {fi,,(p) }m= The sequence of frames subconverges to a frame
{/j }jk.-_. Let x be the foot point of {l’j }jk.;. Then { [[i.,l.(i.,+l)l]}m=l subconverges to
a geodesic , and E lti,,t,i,, +1)1] subconverges to a parallel field on . The proof of the
main theorem now goes through with replaced by 7, E replaced by/, and {Fi }i=k-

replaced by {j}-. Inequality (7) will hold by construction.

Remark 12. We sketch the proof of the pinching theorem stated on page 488.
Recall that the radius of a compact metric space X is given by rad X

minxx maxyx dist(x, y). Let sys M be > zr e for some sufficiently small e > 0.
Then the radius of the universal cover/Q ofM is > zr e. By Theorem C in [Cold2]
and the main theorem in [Cold this implies that h is Gromov-Hausdorff close to
the unit sphere sn(1) and has volume almost equal to that of sn(1). By Theorem
A.10 in [CheCol2], M is diffeomorphic to Sn, and it is easy to see that the action
of rr (M) on M is close to the antipodal action on sn(1) in the sense of [FukYam],
Definition 3.3. Therefore by Lemma 3.4 of [FukYam], M is Gromov-Hausdorff close
to the constant curvature metric on R pn, and hence is diffeomorphic to Rpn by
Theorem 1.12 of [CheCol2].

Acknowledgement. I am grateful to Peter Petersen for several useful criticisms
of a rough draft of this paper.

Actually f only has to be conformal.



494 ’FREDERICK WILHELM

REFERENCES

[Ander

[Ander2]

[A1Wal]

[Baza]

[Berger]

[Cheng]

[Coldl]

[Cold2]

M. Anderson, Convergence and rigidity under Ricci curvature bounds, Invent. Math. 102
(1990), 429-445.

Metrics ofpositive Ricci curvature with large diameter, Manuscripta Math. 68
(1990), 405-415.
S. Allof and N. Wallach, An infinitefamily ofdistinct 7-manifolds admitting positively curved
Riemannian structures, Bull. A.M.S. $1 (1975), 93-97.
Ya. V. Bazaikin, On onefamily of 13-dimensional closed Riemannian positively curved mani-
folds, preprint. To get the tex file send an empty email message to dg-ga@msri.org with "get
9410006" in the subject field.
M. Berger, Les varits riemanniennes homognes normales simplemente connexes gt courbure
strictement positive, Ann. Scoula Norm. Sup. Pisa 15 (1961), 179-246.
S. Y. Cheng, Eigenvalue comparison theorem and geometric applications, Math Z. 143 (1975),
289-297.
T. H. Colding, Shape of manifolds with positive Ricci curvature, Invent. Math. 124 (1996),
175-191.
T. H. Colding, Large manifolds with positive Ricci curvature, Invent. Math. 124 (1996), 193-
214.

[CheColl] J. Cheeger and T. H. Colding, Lower bounds on Ricci curvature and the almost rigidity of
warpedproducts, Ann. of Math. 144 (1996), 189-237.

[CheCol2] On the structure of spaces with Ricci curvature bounded from below L J. Diff.
Geom., to appear.

[doCar] M. do Carmo, Riemannian geometry, Birkhiuser, 1992.
[Eschl J.-H. Eschenburg, New examples of manifolds with strictly positive curvature, Invent. Math.

66 (1982), 469-480.
[Esch2] Freie isometrische Aktionen auf kompakten Liegruppen mit positiv gekriimmten

Orbitri’umen, Sehriftenreihe Math. Inst. Univ. Mtinster, Ser. 2, vol. 32, Univ. Mtinster, Mtinster,
1984.

[FukYam] K. Fukaya and T. Yamaguehi, Thefundamental groups ofalmost nonnegatively curved mani-
folds, Ann. of Math. 136 (1992), 253-333.

[Otsu] Y. Otsu, On manifolds ofpositive Ricci curvature with large diameters, Math. Z. 206 (1991),
255-264.

[Peril G. Perelman, Manifolds of positive Ricci curvature with almost maximal volume, J. Amer.
Math. Soc. 7 (1994), 299-305.

[Perl2] A diameter sphere theoremfor manifolds ofpositive Ricci curvature Math. Z. 218
(1995), 595-596.

[Shen] Z. Shen, A sphere theorem for positive Ricci curvature, Indiana Univ. Math. J. 38 (1989),
229-233.

[Wal] N. Wallach, Compact homogeneous Riemannian manifolds with strictly positive curvature,
Ann. of Math. 96 (1972), 277-295.

[Wein] A. Weinstein, Afixedpoint theoremforpositively curved manifolds, J. Math. Mech. 18 (1968),
149-153.

[Will] E Wilhelm, Collapsing to almost Riemannian spaces, Indiana Univ. Math. J. 41 (1992), 1119-
1142.

[Wil2] On Radius, systole, and positive Ricci curvature, Math. Z. 218 (1995), 597-602.
[Wu] H. Wu, Manifolds ofpartially positive curvature, Indiana Univ. Math. J. 36 (1987), 525-548.

Department of Mathematics, University of California, Riverside CA 92521
fred@math.ucr.edu


