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1. Introduction

Let .: M 1" be a moment map associated to a Hamiltonian action of a com-
pact connected Lie group G on a compact connected symplectic manifold (M, co).
Pullbacks by of smooth functions on 0" are called collectivefunctions. They form
a Poisson subalgebra of the algebra of smooth functions on M. Its centralizer is the
algebra of invariant functions; i.e., a smooth function f on M is invariant if and only
if {f, h} 0 for every collective function h, where denotes the Poisson
bracket corresponding to the symplectic form co.

Motivated by a study of completely integrable systems in [GS ], Guillemin and
Sternberg conjectured in [GS3] that the centralizer ofthe algebra ofinvariant functions
is the algebra of collective functions. They proved this conjecture for neighborhoods
of generic points in M.
A collective function is clearly constant on the level sets of the moment map.

The converse need not be true. For example, the standard linear action of the group
lul 2 2) identifyG SU(2)onC2hasamomentmap(u, v) (-fly, --Iol whenwe

the vector space 1" with g x C. The function f(u, v) lu2 + Iol is constant on

lul2 I Itthe level sets of because it is equal to (lvl2 + ( lv12)2) 21 II is
not collective because the function Ixll is not smooth on x C.

In Section 2 of this paper we show that the centralizer of the algebra of invariant
functions is the algebra of functions that are constant on the level sets of the moment
map. In fact, these two algebras are mutual centralizers in the Poisson algebra C (M).
See Theorem and Corollary 2.12. This was already shown in the thesis of the first
author [K], but our current proof is shorter.

This result raises the following question: what is the obstruction for a function
that is constant on the level sets of the moment map to be collective? In Section 3,
Theorem 2, we express this obstruction as a condition on the Taylor series of the
function. The proof uses theorems of Bierstone and Milman and ofMade, Guillemin,
and Sternberg. Theorem 2 essentially reduces the identification of the centralizer of
the invariant functions to an algebraic question. Based on this, E Knop recently
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announced a complete description of the centralizer of the invariant functions on a
Hamiltonian space in terms of the little Weyl group (defined in [KN]) of the space.

If the Lie group G is abelian, every function which is constant on the level sets of
the moment map is a collective function. So the conjecture ofGuillemin and Sternberg
is true for torus actions. The history of the proof is as follows. In their paper [GS3],
Guillemin and Sternberg proved that for a linear torus action on a symplectic vector
space the centralizer of the invariants consists of functions that are constant on the
level sets of the moment map. They claimed that these functions are collective. This
claim is not obvious; we prove it in Section 4 of this paper. In [L2], the second author
showed that this claim implies that the conjecture of Guillemin and Sternberg is true
for torus actions on compact manifolds, and, more generally, for actions of compact
Lie groups on compact manifolds, provided that the image of the moment map does
not intersect the walls of the Weyl chambers. We recall (slightly stronger versions
of) these results in Section 4.

The first counterexample to the conjecture of Guillemin and Sternberg was given
by the second author in [L2]. This is the standard action of SU(2) on C2 with
moment map (u, v) (To, 1/2 lul 2 lv12). This action of SU(2) extends to the
standard action of U (2) on (2 with the same orbits (spheres) and with a moment
map (u, v) (v, lu[2, [v12). The centralizer of the invariants (for either SU(2) or
U (2)) consists of the U (2)-collective functions. For instance, the function f (u, v)
lUl 2 -- I1)12 on (2 is in the centralizer of the invariants, is not SU(2)-collective, but is
U (2)-collective.
A similar phenomenon happens more generally: for a Hamiltonian action ofSU (2)

with a proper moment map, either the centralizer of the invariant functions consists
of the collective functions, or the action of SU (2) extends to an action of U (2) with
the same orbits and for which the centralizer of the invariant functions consists of the
U (2)-collective functions. This we show in Section 5.

In the rest of this introduction we describe the context in which Guillemin and
Sternberg posed their conjecture. The notion of mutually centralizing subgroups in
the symplectic group originated in physics. It was studied by Sternberg and Wolf, by
Howe, by Kashiwara and Vergne, and by Jakobsen and Vergne, in [SW], [H], [KV],
and [JV] respectively. In the classical analogue of this notion one considers two
connected Lie groups, G and H, that act on a symplectic manifold M with moment
maps

M

such that the respective algebras of collective functions, F*C([*) and *C(I*),
are mutual centralizers in the Poisson algebra Ca(M). The G-moment map, , then
becomes an orbit map for the action of H. This means that the H-invariants are
exactly the pull-backs via of smooth functions on 1". Similarly, the G-invariants
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are the H-collective functions. This has several consequences. First, generically, the
G-reduced spaces are coverings of coadjoint orbits of H and vice versa. Moreover,
we get a correspondence between the coadjoint orbits of G and those of H which
occur in the images of the respective moment maps. This phenomenon, which is the
classical analogue of Howe’s dual pairs in representation theory [H], was observed
and explained by Kazhdan, Kostant and Sternberg in [KKS] for the case that the
G-orbits form a foliation.

More generally, A. Weinstein [W] defined a dualpair to be a pair of Poisson maps
f: M A and g: M B from a symplectic manifold M to Poisson manifolds
A and B such that the algebras f*C(A) and g*C(B) are mutual centralizers in the
Poisson algebra C (M). Dual pairs and their infinite dimensional analogs occur in
the study of tops, compressible fluids, elasticity, Maxwell-Vlasov equations [MRW],
etc., and have led to the notion ofMorita equivalence of Poisson manifolds (cf. [GL]).

The conjecture of Guillemin and Sternberg is equivalent to the maps

M

M/G j*

forming a "dual pair", where is the moment map and zr is the quotient map, and
where we interpret the Poisson algebra C(M/G) as the algebra of functions on

MG whose pullback to M is smooth. Note that the quotient M/G need not be a
manifold hence the quotes around the expression "dual pair".

Given a Hamiltonian action of a Lie group G, one may wonder whether there exists
a Hamiltonian action of another Lie group, H, such that the corresponding moment
maps form a dual pair (1.1). A necessary condition for the existence of this other
action is that the centralizer in C(M) of the algebra of G-invariant functions be
equal to the algebra of G-collective functions.

An example to keep in mind is the standard action of the group G U(2) on the
symplectic vector space M C2. The G-orbit map is F(z, w) [zl 2 + Iwl =, which
generates the diagonal action of H S Another interesting example is the natural
action of the orthogonal group O(k) on (T*k)n, the n-fold product of the cotangent
bundle of k. The space (T*k)n is the phase space of the n-body problem, and
O(k) is its natural symmetry group. The group H in this case is the symplectic group
Sp(2n) (cf. [LMS]).

2. The centralizer of invariant functions

Let : M t* be a moment map associated to a Hamiltonian action of a
compact Lie group G on a symplectic manifold (M, 09). Recall, this means that for
any element ofthe Lie algebra t ofG we have d -t (t)w, where (, )
is the -component of the moment map andt is the vector field on M that generates
the action of the one parameter subgroup {exp(t), 6 I} of G. We also require
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that be equivariant with respect to the given action of G on M and the coadjoint
action on 1". The main result of this section reads"

THEOREM 1. The centralizer ofthe algebra ofG-invariantfunctions in the Pois-
son algebra ofsmoothfunctions on M is the set ofsmoothfunctions that are locally
constant on the level sets ofthe moment map.

Proof Since the Hamiltonian flow of an invariant function preserves the level
sets of the moment map, the Poisson bracket of an invariant function and a function
that is locally constant on the level sets of the moment map is zero. This shows
that the centralizer of the invariant functions contains the functions that are locally
constant on the level sets of the moment map. We would like to show that there is
nothing else in the centralizer.

Let h be a function in the centralizer of the invariant functions. Let ?’ (t) be any
smooth curve contained in a level set of the moment map . Since any two points in
a connected component of a level set of can be connected by a piece-wise smooth
curve (see Lemma A.4), we are done if we can prove that the derivative of h(F(t))
is zero for all t. This derivative is equal to og(p, Xh) where Xh is the Hamiltonian
vector field of h.

For any vector in the Lie algebra 1 we have 0 (, d) o9(, t). Hence
if ?’(t) is a smooth curve contained in a level set of the moment map, the tangent
vectors lie in the symplectic perpendiculars to the G-orbits.

To finish the argument it suffices to show that the Hamiltonian vector field, Xh, of
a function h in the centralizer of the invariant functions is tangent to the G-orbits. Let
r(t) be an integral curve of the vector field Xh. Then for any G-invariant function,
f, we have t(f(cr(t)) (Xhf)(cr(t)) 0; i.e., f is constant along or(t). Since,
G being compact, the G-invariant functions separate orbits, the integral curve cr (t) is
contained in a single G-orbit. Hence the vector field Xh is tangent to G-orbits. This
proves Theorem 1.

The rest of this section contains corollaries of Theorem 1. We assume throughout
that is the moment map for a Hamiltonian action of a compact Lie group G on a
connected symplectic manifold (M, o9). We do not assume that G is connected or
that is proper unless we explicitly say so.

COROLLARY 2.1. The set offunctions that are locally constant on the level sets

of is a Poisson algebra.

Proof The Jacobi identity implies that for any subset, R, of C (M) the central-
izer, R := {f 6 C(M) {f, h} 0 for all h 6 R}, is a Poisson algebra. Apply
this when R is the set of invariant functions.

The conjecture of Guillemin and Sternberg in [GS3] is stated differently than the
way we quoted it in the introduction. Namely, it is stated in terms of the the double
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centralizer ("double commutator") of the set of functions {(I) (I)dimG}, where
(I) are the coordinates of the moment map with respect to some basis of the vector
space t*. However,

Lemma 2.2. The double centralizer of the set ofcoordinate functions of the mo-
ment map is equal to the centralizer ofthe set ofinvariantfunctions.

The proof uses two lemmas:

Lemma 2.3. Afunction Poisson commutes with all the coordinates ofthe moment
map ifand only ifthefunction is invariant under the identity component ofthe group.
Consequently, the centralizer of the collective functions is equal to the functions
invariant under the identity component of the group.

Proof This follows easily from the definition of the moment map.

Lemma 2.4. Every smooth function on M which is invariant under the identity
component of the, compact group G is locally equal to a G-invariantfunction.

Proof
groups.

This is an easy consequence of the slice theorem for actions of compact

ProofofLemma 2.2. If G is connected, the lemma follows immediately from
Lemma 2.3. If G is disconnected, the centralizer of the G-invariant functions is
the same as the centralizer of the G0-invariant functions where Go is the identity
component; this follows from Lemma 2.4.

Notation 2.5. Let C (M) denote the G-invariant smooth functions on M. Let
Go be the identity component of G, and let C (M) denote the G0-invariant smooth
functions; equivalently, these are the smooth functions on M that are locally constant
on the G-orbits.

Let C(M) denote the smooth functions on M that are constant on the level
sets of the moment map , and C (M)*oc the functions that are locally constant on
these level sets. Let *C(I*) denote the collective functions, i.e., pullbacks by
of smooth functions on 1".

In this notation, Theorem says that the centralizer of C(M) is C(M)oc.*
COROLLARY 2.6. The algebra C(M) and the algebra C(M)G are mutualloc

centralizers in the Poisson algebra C (M).
Moreover, the centralizers of the algebras *C(M) c C(M)* c C(M)*loc

are all equal to C (M), and the centralizers ofthe algebras C (M) c_ C (M)o
are both equal to C (M)oc
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Proof Theorem applied to the group Go implies that the centralizer ofC M)
is equal to C (M)loc. Conversely, since the algebra C (M)lo contains the collec-
tive functions, its centralizer is contained in the centralizer of the collective functions,
which is equal to the G0-invariant functions by Lemma 2.3.

COROLLARY 2.7. Let be a moment map associated to a Hamiltonian action

of a compact Lie group G on a symplectic manifold (M, o0). If G is connected, the
following properties of are equivalent:

1. The algebra of collective functions and the algebra of invariantfunctions are
mutual centralizers in the Poisson algebra C(M).

2. The double centralizer of the set ofcoordinate functions of the moment map is
the algebra ofcollective functions.

3. Every smooth function on M that is locally constant on the level sets of the
moment map is collective.

Proof. Since the centralizer of the collective functions is the invariant functions
(Lemma 2.3), condition is equivalent to

1’. The centralizer ofthe algebra ofinvariantfunctions is the algebra ofcollective
functions.

The equivalence of conditions 1’ and 2 is immediate from Lemma 2.2; the equivalence
of conditions 1’ and 3 is immediate from Theorem 1. U!

Definition 2.8. A smooth map : M ---+ N between two smooth manifolds has
the division property if any smooth function on M that is locally constant on the level
sets of is the pullback via of a smooth function on N.

The hard part of Corollary 2.7 can be rephrased as follows:

COROLLARY 2.9. Let : M 1* be a moment map associated to an action

ofa compact connected Lie group G on a symplectic manifold (M, o0). The algebra
ofcollectivefunctions and the algebra of invariantfunctions are mutual centralizers
in the Poisson algebra C(M) if and only if the moment map has the division
property.

One obstruction for a map to have the division property is topological--the con-
nectedness of the level sets of the map. Another obstruction has to do with analytic
properties of the map. The following examples illustrate these ideas: (1) The map
x - x on IR does not have the division property because of the singularity at x 0;
the function f(x) x is nota pullback of a smooth function. (2) The map eiO - e2i0
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on the unit circle does not have the division property because the level sets are not con-
nected; the function f(ei) cos(0) is nota pullback. (3) The map (x, y) x2 + y2
from 12 to has the division property; every rotationally invariant smooth function
is a smooth function of x2 + y2. This is a special case of a theorem of G. Schwarz
[Sch].

Two global properties of a moment map will be relevant to us" properness of the
map and connectedness of its level sets. The first of these often implies the second:

PROPOSITION 2.10. Let " M * be a moment map associated to an action

ofa compact Lie group, G, on a connected symplectic manifold, (M, w). If this map
is proper, its level sets are connected.

Proof. For torus actions this proposition was proved by Atiyah [A]. The general
case was proved by Kirwan [Kil, Ki2]. El

This result has recently been generalized"

Proposition 2.11. Let M 1* be a moment map associated to an action

of a compact Lie group G on a connected symplectic orbifold (M, w). Let t*+ be a
Weyl chamber, identified with a subset of 1* via a choice ofan Ad-invariant metric.
Suppose that there exists a G-invariant open subset N of 1* containing the image
(M), such that the intersection N N t*+ is convex and the map dp is proper as a map

from M to N. Then the level sets of are connected.

Proof See [LMTW]. El

We proceed with consequences of Theorem 1.

Corollary 2.12. Let" M 1* be a momentmap associated to a Hamiltonian
action of a compact Lie group, G, on a connected symplectic manifold, (M, w). If
the group G is connected and the moment map, , is proper, the algebras C(M)
and C(M) are mutual centralizers in the Poisson algebra C(M). (See Notation
2.5.)

Proof If G is connected, C(M) C(M). If is proper, its level
sets are connected, so C (M)oc C (M). The rest is immediate from Corollary
2.6. Fq

Corollary 2.13. If the moment map, " M 1", is proper, the centralizer of
the invariantfunctions consists ofthose smoothfunctions on M that are pullbacks by
do ofcontinuousfunctions on *"

(C(M)G) C(M) (2.1)



THE CENTRALIZER OF INVARIANT FUNCTIONS 469

Let N C fJ* be an open set containing the moment image, dp(M). If the moment
map, P, is proper as a mapfrom M to N and has connected level sets, the centralizer
ofthe invariantfunctions consists ofthose smoothfunctions on M that are pullbacks
by P ofcontinuousfunctions on N:

(C(M))c CO(M) fq p*C(N).

Proofof Corollary 2.13. The first part follows from the second, because the level
sets of a proper moment map are connected (Proposition 2.10). A function in the
centralizer of the invariants is the pullback of a function on N (Theorem 1). The
function on N is continuous because the moment map is proper, r-!

Remark 2.14. If the moment map is not proper, (2.1) may fail to hold. See
Examples 3.9 and 3.10.

3. Division property can be detected formally

Let : M [t* be a proper moment map associated to an action of a compact
Lie group G on a symplectic manifold (M, w). In this section we show that the
difference between the. algebra of functions that are constant on the level sets of the
moment map and the algebra of collective functions can already be detected on the
level of power series of these functions. This result is stated in Theorem 2. The
main idea of the proof is to apply a theorem of Bierstone and Milman to the Marie-
Guillemin-Sternberg local normal form of the moment map.
We first recall a definition of Bierstone and Milman. Recall that a function is fiat

at a point if its Taylor series at that point vanishes.

Definition 3.1. Let tp: M --- N be a smooth map between two smooth mani-
folds. A smooth function f on M is aformal pullback with respect to if for every
point y in the image (M) there exists a function, tp, on N such that f *tp is flat
at all the points of p-i (y).

Remark 3.2. Every formal pullback with respect to is constant on the level sets
of tp; if f P*0 is flat, f(x) p(y) for all x -1 (y).

Remark 3.3. In the notation of Bierstone and Milman, the set of formal pullbacks
with respect to q is (p*C(N)) they have no term to describe the elements of this
algebra. In a more recent paper [BMP], with W. Pawlucki, they use the term "formal
composite with " to describe a formal pullback.

Remark 3.4. Recall, the Taylor series at a point p ofa smooth function f" M -----+
is an element of the algebra Hi Si (TM) of (formal) power series at p. Conversely,
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by Borel’s theorem, every power series at p is a Taylor series of some smooth function
on M. Therefore, one can think of a power series at a point p as an equivalence class
of functions: two functions are equivalent if and only if their difference is flat at p.
Since the pullback of functions induces a well defined pullback of Taylor series, being
a formal pullback is a condition on Taylor series: a smooth function f: M ---+
is a formal pullback with respect to a smooth map : M --- N if and only if for
every y N there exists a power series tp on N, centered at y, such that for all x in
the level set -l (y), the power series of f at x is the pullback of the power series

We will now state the main result of this section. Recall, a continuous map
p: A ---+ B is semi-proper if for every compact set L C B there is a compact set
K C A such that (K) L A p (A).

THEOREM 2. Let M * be a moment map associated to a Hamiltonian
action ofa compact Lie group G on a connected symplectic manifold (M, o9). Ifthis
map, , is proper, every formal pullback with respect to is a collective function,
i.e., is in *C(I*).

Let N be an open subset offj* containing the moment image, (M). Ifthe moment
map, , is semi-proper as a mapfrom M to N and has connected level sets, every
formal pullback with respect to is a pullback ofa smoothfunction on N, i.e., is in
Oo*C N).

COROLLARY 3.5. A proper moment map has the division property (see Defi-
nition 2.8) if and only if every smooth function on M that is locally constant on the
level sets of is aformal pullback with respect to .

The proof of Theorem 2 relies upon the following theorem of Bierstone and Mil-
man. Recall that a semi-analytic subset of an analytic manifold is a subset that is
locally defined by inequalities involving analytic functions.

THEOREM 3 [Bierstone-Milman [BM2, Theorem 0.1 ]]. LetM andN be real an-
alytic manifolds. Let : M N be a real analytic mapping that is semi-proper
and whose image, do (M), is semi-analytic. Then a function f is a formal pullback
with respect to ifand only if it is the pullback by ofa smoothfunction on N.

Remark 3.6. Theorem 0.1 in [BM2] requires the image (M) to be Nash suban-
alytic. Bierstone and Milman point out in [BMI that every semi-analytic set is Nash
subanalytic.

A priori, our manifolds and maps are only smooth and not real analytic, so we
cannot apply Theorem 3 directly. We will use the following variant:
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PROPOSITION 3.7. Let M and N be smooth manifolds, and let dp: M -----> N be
a smooth map that satisfies thefollowing conditions.

1. The image dp(M) is closed.
2. For every point x in M there exist neighborhoods b1/2 ofx in M and Wx ofP (x)

in N such that:

(a) dP(Ux) dp(M) (3 Wx;

(b) the restriction [v,: Ux ---> Wx is semi-proper;

(c) there exist real analytic structures on Ux and on Wx compatible with
their smooth structures such that the restriction ap [: Ux Wx is a
real analytic map whose image is a semi-analytic subset of Wx.

Then the set ofpullbacks by the map dp coincides with the set offormalpullbacks with
respect to

Proof. Clearly, every pullback is a formal pullback. Conversely, let f 6 C (M)
be a formal pullback with respect to P. Letx be a point in M, and let Ux and Wx be as in
Condition 2 above. Since f is a formal pullback with respect to , its restriction flvx
is a formal pullback with respect to the map lvx: Ux Wx. Theorem 3 applies to
this map because of Conditions 2(b) and 2(c). Hence there exists a smooth function
tpx on Wx such that f tpx o P on Ux. This equality holds on all of -l((Ux))
because f, being a formal pullback with respect to , is constant on the level sets
of (see Remark 3.2). Condition 2(a) implies that -l((Ux)) P-(Wx), so

f qgx o P on all of P-l(Wx). The open sets Wx together with the complement of
the image (M) form an open cover of the target manifold, N. Using a partition of
unity subordinate to this cover we piece together the functions px to form a function
tp on N such that f

Thus to prove Theorem 2 it is enough to verify that every proper moment map on
a connected symplectic manifold satisfies the hypotheses of Proposition 3.7.

PROPOSITION 3.8. Let dp: M ----+ * be a moment map associated to an action

of a compact connected Lie group G on a connected symplectic manifold (M, w).
Assume that the map dp is semi-proper as a map into an open subset N ofg* and that
its level sets are connected. Let x be a point in M, and let Ga be the stabilizer of
its image, ot P(x), under the coadjoint action. Then there exist a neighborhood
Ux of the orbit G x in M and a neighborhood Wz ofthe point dp(x) in * with the
following properties.

1. P(Ux) p(M) N Wx.
2. The restriction q)]u.: Ux -- Wx is semi-proper.
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3. There exist real analytic structures on Ux and on Wx, compatible with their
smooth structures, such that:

(a) the restriction lv.: Ux Wx is a real analytic map;

(b) the image (Ux) is a semi-analytic subset of Wx.

Moreover, the neighborhoods Ux and Wx can be chosen to be arbitrarily small, i.e.,
can be chosen to be contained in any given neighborhoods U’ of G x and W’
of alP(x).

Note that only property is global. It is only to prove this property that we assume
that the moment map is semi-proper and its level sets are connected.

ProofofProposition 3.8. Let us first prove properties 1-3 when the orbit G x
is isotropic, equivalently, when ot is fixed under the coadjoint action of G. Since ot

is fixed, the translation ot of the moment map by -or is still a moment map. So,
without loss of generality, we can assume that ot 0.

In the appendix (Theorem 5) we describe a local model for a neighborhood of an
isotropic orbit G x,

where Gx is the stabilizer of x, lx is its Lie algebra, t is the annihilator of lx in
1", and the vector space V is the symplectic slice at x. The action of G on Y is
Hamiltonian with a moment map r" Y t* given by the formula

Py([g, rl, v]) Ad (g)(r/+ i(Pv(V))),

where v is a quadratic map from V to 1 and is a Gx-equivariant embedding of 1*
in t*. Moreover, by Theorem 5 there exists a neighborhood Ux of G x in M and an
equivariant embedding, t: U Y, of U onto a neighborhood of the zero section
in the model Y, such that r o t.

By Lemma A.5, the image under the moment map of a small neighborhood of
an orbit G x does not change as x varies along a connected component of the
level set - ((x)). By Remark A.6, this image is the intersection of the cone
r(Y) with a neighborhood of the origin in 1". Lemma A.5 together with the facts
that is semi-proper and its level sets are connected implies that we can choose a
neighborhood W of the origin in 1" and shrink the neighborhood U of G x so that

(Ux) (M) f3 Wx dpr(y) 0 Wx, i.e., so that property holds.
The map y is analytic with respect to the natural real analytic structures of the

model Y and of the vector space 1". If we endow Ux with the real analytic structure
induced by its embedding, t, into Y, property 3(a) holds.

Consider the action of+ on Y given by

k. [g, r/, v] [g, ,kr/, /v].
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The map r: Y ---> 0* is homogeneous of degree one with respect to this action
of +. After possibly shrinking Ux and Wx further, we can assume that the open
set t(U) c_ y is preserved under multiplication by any L < 1; for such L we define
,k: U U by t() m) t(m). Let K be a compact subset of the open set

W. Then there exists a positive number < such that K is contained in )Wx. By
homogeneity, K fq (U) is contained in (). U). Then L := closure(,k Ux) fq- (K) is a compact subset of Ux whose image is Kn (U). This proves property 2.

Since the map v is algebraic, its image, v(V), is a semi-algebraic subset
of O, by the Tarski-Seidenberg theorem (see, for example, [BR, Theorem 2.3.4]).
Furthermore, since Adt (G) c_ GL(I*) is algebraic, the set r(Y) Ad (G)(0x x
v(V)) is a semi-algebraic subset of 1". Restricting to the open subset W, we see

that (Ux) r(Y) f)W is a semi-analytic subset of W. This proves property 3(b).
We now remove the assumption that the orbit is isotropic. Let ot (x), and let

Go, denote its stabilizer under the coadjoint action. Let S be a slice at ot for the action
of G and R - (S) the corresponding symplectic cross-section (cf. Theorem 5).
By Corollary A.2, up to a composition with diffeomorphisms, the moment map is
a fiber bundle map

G XG R G xG S, [g, r] - [g, R(r)],

and n ln is the Go, moment map.
The subgroup Go, acts on G by right multiplication. Since G G/Go, is a locally

trivial fibration, there exists a section on a neighborhood V of the identity coset in
G! Go,. This section simultaneously trivializes the bundles G R G/ Go, and
G 6, S ---> G/ Go, over the set V. With respect to these trivializations, the moment
map is the map

id x PR "lg x R "l x S n r) -> n dP R r ).

Since Go, x is isotropic in R (Remark A.3) and R is a Go, moment map, properties
1-3 are satisfied by the map R: Ux Wx where Ux is a neighborhood of Go, x
in R and W is a neighborhood of o in S. Properties 1-3 for CR immediately imply
properties 1-3 for id x CR: V X U ----> V x W. Hence the moment map has
properties 1-3. IZI

To prove our main result, Theorem 2, it suffices to verify that the hypotheses of
Proposition 3.7 are satisfied by the moment map:

ProofofTheorem 2. The first part of the theorem follows from the second by
setting N t*.

Let N be an open subset of t* containing the moment image, (M), with the
property the moment map : M N is semi-proper. Condition in Proposition
3.7, that the image (M) is a closed subset of N, is satisfied because the image of any
semi-proper map is closed. Conditions 2(a)-2(c) hold by Proposition 3.8. Theorem 2
then follows from Proposition 3.7.
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We conclude this section with two examples which show that the properness con-
dition in Theorem 2 is necessary.

Example 3.9. Let M be the cotangent bundle of the two dimensional torus, T2,
minus the zero section. This manifold is the product M T2 (R2 \ {0}). The
moment map is the projection onto the second factor; it is not proper. The function
f(x, y) y///x2 + y2 does not extend to a smooth function on R2 but it does pull
back to a smooth function on M which is a formal pullback.

Example 3.10. In this example, a formal pullback f does not even descend to a
continuous function on the image of the moment map.
We construct a Hamiltonian T2-space by gluing two spaces. The first space, MI,

is the product T2 U where U is the subset of R2 obtained by removing the origin
and the positive x-axis. We can view MI as an open subset of the cotangent bundle of
T2 and take the induced symplectic form. The moment map is the obvious projection
onto U. Its image is 2 minus the origin and the positive x-axis.

The second space, M2, consists of the points of C2 whose first coordinate is
nonzero. This space inherits a symplectic form and an action of T2 from C2. The
moment map sends (z, w) - (Izl2, Iw12). The image of the moment map is the set
{(x,y) 62: x >0, y>0}.
We glue the two spaces along the pre-images of the open positive quadrant by

sending (z, w) to (E, ]-, Izl 2, Iw12). This gluing map is an equivariant symplecto-
morphism.
We obtain a space M with a symplectic form, a T-action and a moment map. The

image of the moment map is 2 minus the origin. The branch of arctan(y/x) which
is discontinuous along the positive x-axis pulls back to a smooth function on M.

4. Division property of a toral moment map

Consider a Hamiltonian action of a torus, T, on a symplectic manifold, (M, co).
Recall that the conjecture of Guillemin and Sternberg, asserting that the algebra of
invariant functions and the algebra of collective functions are mutual centralizers in
the Poisson algebra C(M), holds if and only if the moment map, : M t*,
has the division property (Definition 2.8 and Corollary 2.9).

Theorem 2, proved in Section 3, provides a criterion for determining that a moment
map has the division property; see Corollary 3.5. In this section we use this criterion
to prove that moment maps arising from torus actions have the division property.

The results presented here were believed to be known for some time. By (the easy
part of) Corollary 2.7, our Proposition 4.1 is equivalent to Proposition 4.1 in [GS3],
which asserts that for a symplectic linear action of a torus on a symplectic vector
space, the double centralizer of the set of coordinate functions of the moment map is
the algebra of collective functions. Unfortunately, the arguments presented in [GS3]
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only show that this double centralizer consists of functions that are constant on the
level sets of the moment map. The missing arguments are not trivial (we don’t see
a way of avoiding the theorem of Bierstone and Milman); we provide them in our
proof of Proposition 4.1.

In [L2], Lerman used Proposition 4.1 of [GS3] and the Marle-Guillemin-Sternberg
normal form to deduce a set of sufficient conditions for the Guillemin-Sternberg
conjecture to hold, equivalently, for the moment map to have the division property.
We recall (slight generalizations of) these conditions in Corollaries 4.2 and 4.4. Our
proof of Proposition 4.1 thus closes the gap in the proof of these corollaries.

PROPOSITION 4.1. Let T be a torus acting linearly and symplectically on a sym-
plectic vector space V, and let @: V t* be a corresponding moment map. Then
for any > O, the map

I x : N x V -----> Ntx t*, (u, v)> (u, (v)) (4.1)

has the division property (see Definition 2.8).

Proof. We may identify V with Cn (where n i dim V) in such a way that T
acts as a subtorus of the standard maximal torus ,]n of U(n). The T-moment map,

is the composition of the "i[’n-moment map,

F: (Zl Zn) > (Izll 2,..., IZnl2),

with a linear projection r" Lie(qI’n) * ]1n t*. The diagram

commutes. Consider the action of’i[’n on Ntx (n which is trivial on t and standard on
Cn It is easy to see that the qr-invariant polynomials on ]l X ([n are the polynomials
in u ut, Izl 12 Iznl 2 where U ut are coordinates on . That is, the
qI’n-invariant polynomials on t x Cn are the pullbacks by I x F of polynomials on
Nt x . It follows by a theorem of G. Schwarz [Sch] that the qI’n-invariant smooth
functions on N x C" are the pullbacks by I x F of smooth functions on ]l X ]n.

In particular, if f 6 C( x C) is constant on the level sets of I x @, it is
’]l"n-invariant (because it is also constant on the level sets of I x F), so there exists a
smooth function, g 6 C (t x n), with g o (I x F) f. Since the image of I x F
is the closed positive orthant t x N_, the function g is constant on the intersections
of the level sets of I x 7r with this orthant. It is not clear a priori that g can be chosen
to be constant on the level sets of I x
We would like to show that f is a formal pullback with respect to @. It is enough

to find, for every value c in the image of I x @, a Taylor series on IR x t*, centered
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at or, whose pullback is equal to the Taylor series of f at all the points in the level set
(I (I)) -1 (o).

Since f can be written as a composition f g o (I x F) for g C( x n), it
is enough to find a formal power series on N x t*, centered at or, whose pullback to
N x Nn is equal to the Taylor series of g at every point in the level set (N
(I x 7Lr) -1

We can choose new coordinates on N x Nn and on N x t* such that the map I x r
becomes the projection (Xl xk, yl Ym) - (xl xk), where k dim T
and k + m + n. It is sufficient to show that for every point p (I x
(N x (N+)n), the mixed partial derivatives

are

(1) independent of p and
(2) equal to zero whenever the multi-index a is not zero.

Condition 2 implies condition because any two such points pl and p2 can be
connected by a smooth path which lies entirely inside the closed positive orthant and
on which the yi-coordinates are constant.

Since in the interior of the positive orthant the function g is constant on level sets

of the projection, "+g
ov, oxb (q) 0 for every q in the interior of the positive orthant

provided a 0. B, continuity, this also holds for all q in the closed orthant. This
proves condition 2.
We have shown that if a function f is (locally) constant on the level sets of (I) then

it is a formal pullback with respect to (I). By Corollary 3.5 of Theorem 2, the map
has the division property.

COROLLARY 4.2. A proper moment mapfor a Hamiltonian action ofa torus on
a connected symplectic manifold has the division property.

Proof. This was proved by Lerman in [L2]. The essential ingredients are the
facts that the level sets of are connected (cf. Proposition 2.11) and that, by the
Marle-Guillemin-Sternberg local normal form, the moment map locally looks like
the map (4.1). ffl

Notation 4.3 Denote by 9* the elements of 9* whose stabilizers under the coad-reg
joint action of G are tori.

COROLLARY 4.4. Let G be a compact Lie group acting on a symplectic manifold
M with a proper moment map : M 9*. Suppose that the image (M) is
contained in 9r*eg" Then has the division property.
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Proof. This too was proved in [L2]. Like Corollary 4.2, it follows from the fact
that the level sets of a proper moment map are connected and from the fact that, by
the local normal form, the moment map on a neighborhood of a point x locally looks
like the map (4.1), with the toms T being the stabilizer of (x). v!

In Section 5 we will use the following, somewhat stronger, statement.

COROLLARY 4.5. Let : M * be a proper moment map associated to a
Hamiltonian action ofa compact connected Lie group G on a connected symplectic
manifold M. Then the restriction [*-(reg)*" (I)-1 (Ireg)* lreg* has the division
property.

Proof. The proof, mutatis mutandis, is the same as the proof of Corollary 4.4.

Note that the hypothesis that the moment map is proper can be replaced by the
hypotheses that it is semi-proper as a map into some open subset of 1" and that its
level sets are connected.

Remark 4.6. For Lie groups of rank or 2 we can prove Corollary 4.5 without
appeal to the theorem of Bierstone and Milman. The key point is:

LEMMA 4.7. If V is a symplectic vector space and : V I is a moment
mapfor a linear circle action, has the division property.

Proof. Assume, without loss of generality, that (0) 0. We can iden-
tify V with Cn in such a way that the circle action becomes ,k. (Zl Zn)
(.m’z m"zn) and the moment map becomes (z Zn) Y milzil 2 for
some integers m mn which are not all zero. Note that the level sets of are
connected. Let f be a smooth function on V that is constant on these level sets. We
need to find a smooth function,

If image() I, the exponents mi cannot all have the same sign. There exists
then a unique function tp on I such that f tp o . Since the image of the regular
points of is then all of I, the function tp is smooth.

Otherwise, image() is a ray and all the mi’s have the same sign. The moment
map is a composition of the map J (Zl zn) (Izl[ 2 [zn 12) from V to
and of the linear projection zr(x x,) Y mixi from ]1 to ]1. By a theorem
of G. Schwarz, there exists a smooth function q3 on ]1 such that f q3 o J. The
diagonal line {(t t)} in ]1n is transverse to the kernel of the projection re; this
follows from the fact that all the mi’s have the same sign. Therefore there exists a
linear map s" ]1n whose image is the diagonal line and such that zr s is the
identity. The function o q3 s is smooth on and satisfies f tp zr; the reason
is that if x is in (V) then s(x) is in J (V).
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A similar proof works for actions of tori of rank 2 but not for higher dimensional
tori. This is because if the image of the positive orthant via a linear projection from In

to IRk has more than k extremal rays, this image is identified via r with the intersection
of an affine subspace with the positive orthant in IRn.

5. The centralizer of SU(2)-invariant functions

Suppose that the group SU(2) acts on a connected symplectic manifold (M, w) in
a Hamiltonian fashion and that the moment map, : M su(2)*, is proper. In this
section we completely characterize the centralizer of the SU (2)-invariant functions
in Ca(M).

THEOREM 4. 1. If the zero level set p-1 (0) is empty, or if there is a point in
the zero level set which is notfixed by SU (2), the moment map has the division
property; equivalently, the centralizer ofthe invariantfunctions consists ofthe
algebra of collective functions.

2. Ifthe zero level set do- (0) is nonempty, and ifall the points in this level set are

fixed by SU (2), the centralizer ofthe invariantfunctions is strictly larger than
the algebra ofSU(2)-collectivefunctions. The action ofSU(2) then extends to
an action ofU (2) with the same orbits and hence the same algebra ofinvariant
functions"

C(M)SU(2) C(M)U(2).

The centralizer of the algebra of invariant functions consists of the U(2)-
collective functions:

(COO(M)SU(2)) *C(u(2)*),

where is the U(2)-moment map.

Proof. Let f be in the centralizer of the invariant functions. By Corollary 2.13,
f pushes forward to a continuous function, .f, on the image, (M). Recall that
the function f is collective if and only if there exists a smooth function q9 on su(2)*
with f q) o , i.e., if and only if .f is smooth on the interior of (M) and
extends to a smooth function on all of su(2)*.

Since the coadjoint action of SU(2) factors through the standard representation of
SO(3) on su (2)* - R3, the origin is the only point which has a nonabelian stabilizer.
By Corollary 4.5 there exists a smooth function q9 on ]I{ \ {0} such that q) o f
on -1 (R \ {0}). The function p may or may not extend to a function on I which
is smooth at the origin.

If the zero level set -1 (0) is empty then, since the moment map is proper, the
image (M) avoids a whole neighborhood of 0. The push-forward, .f, then
extends to a smooth function on IR3.
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If the zero level set is nonempty, the image (M) contains a neighborhood of 0
(unless M is a single point).

Assume that the zero level set contains a point p whose stabilizer is not all of SU (2).
This stabilizer can be either zero or one dimensional. If it is zero dimensional, the
moment map is a submersion from a neighborhood of p to a neighborhood of 0,
hence the push-forward .f is smooth at 0.

If the stabilizer of p is one dimensional, it is either a maximal torus in SU(2)
or the normalizer of a maximal torus. Denote the stabilizer by H. The orbit of p
can be identified with the quotient SU(2)/H, which is either a sphere, S2, or a real
projective plane, ]12 S2/2. It is no loss of generality to assume that the orbit is
S2. By Theorem 5, a neighborhood of the orbit is equivariantly diffeomorphic to a
neighborhood of the zero section in the bundle SU(2) x/4 ([9o V) over SU(2)/H.
Here V is a symplectic vector space and b0 is the annihilator of [9 in su(2)*. The
cotangent bundle of the orbit is the sub-bundle SU (2) /4 19. The moment map on
SU (2) x/4 [9o restricted to the fiber over eH e SU(2)/H is the inclusion of 19o in
su(2)*. The image of SU(2) x/4 10 under the moment map is SU(2) [9o su(2)*
(the annihilator [9o is a plane through the origin in su(2)* 3 and SU(2) acts by
rotations). We are thus reduced to proving the following:

PROPOSITION 5.1. Consider the bundle TS2 (x, y) e 3 ]3 x 12
l, x y 0} and consider the mapfrom it to ]1 given by (x, y) - y. Suppose that

o is a continuous function on ]3 that is smooth on ]3 \ {0} and whose pullback to
TS2 via the map (x, y) - y is smooth. Then tp is smooth on 3.

The restriction of the bundle TS2 to the equator S C S2 can be identified with
the cylinder

S xx
with coordinates 0 mod 2zr, r, and u. In these coordinates the embedding S x x

TS2 is given by

(0, r, u) (sin 0, cos 0, 0, r cos 0, r sin 0, u).

On this cylinder the map to 3 is

J: S x x ]13, J(O, r, u) (r cos0, r sin0, u).

Its image, J (S x ), is all of 3. We are done if we can show

(5.1)

PROPOSITION 5.2. Suppose that tp is a continuousfunction on 3 that is smooth
on 3 \ {0} and whose pullback, J*tp, is smooth on S x x . Then tp is smooth
on ]1

We prove Proposition 5.2 in a string of lemmas. We keep the notation of the
Proposition.
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LEMMA 5.3. Suppose o is a smoothfunction on N3
\ {0} whose pullback, J*o,

extends to a smoothfunction on S x N x N. Thenfor every multi-index thefunction
J* extends to a smoothfunction on S x x N.

Proof. Let f 6 C (S x N x N) be a smooth extension of J*p. We can write

f (O, r, u) f (O, O, u) + r(O, r, u)

where p is smooth on S x R x N. For all 0 we have f(O, 0, u) f(0, 0, u); for
u 0 this holds because f is then a pullback, and for u 0 this holds by continuity.
So we can write

f (O, r, u) f (O, O, u) + rO(O, r, u). (5.2)

Since

O _j,(cosO 0
sin 0_)Oyl Or r

since f is an extension of J*o, and since (5.2) holds, we have

J
Oq) O(r)
* cos 0 sin 0 (5.3)
Oy Or O0

on j-1 (3 \ {0}) The right hand side of (5.3) provides a smooth extension of J* 3y

to all of S x N x . By a similar argument J* and J* also extend to functionsOy Oy3

in C(S x N x N).
We have shown that all the first partials, J* extend to smooth functions onOyi

S x N x N. The lemma follows by a successive application of this argument to the
partial derivatives of q).

LEMMA 5.4. Suppose that o is a continuousfunction on N which is twice contin-
uously differentiable on N3

\ {0}. Suppose that thefirst andsecondpartial derivatives
of o extend to continuous functions on I3. Then q) is continuously differentiable at
the origin.

Proof. Let gi C(N3) be the continuous extension of N We need to show
Yi

that the partial derivative exists at the origin and is equal to gi (0). By restrictingOYi
attention to the appropriate line in N the problem becomes one dimensional.

An easy estimate shows that a function q9 in C(N) N C2(N \ {0}) whose first
derivative extends to a continuous function on N and whose second derivative is
bounded near 0 is continuously differentiable at zero.

LEMMA 5.5. Suppose that p is a continuous function on N3
\ {0} and that its

pullback J*o extends to a continuous function on the cylinder S N . Then
extends to a continuousfunction on 3.
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Proofi Let f C0(S >( ]1 )< ) be the continuous extension of J*o. For all 0
we have

f (0, 0, u) f(0, 0, u) (5.4)

for all u - 0, because f is then a pullback. By continuity (5.4) also holds when
u 0. Hence f is constant on the level sets of J and descends to a function on 3.
This function coincides with q9 on 3 \ 0.. It is continuous on/t because the map J
is proper. I--1

ProofofProposition 5.2. By Lemma 5.3, for every multi-index ot the pullback
j. 0_ extends to a smooth function on S . Therefore, by Lemma 5.5 ally
partial derivatives -Le extend to continuous functions on 3 In particular, the first19yO,

and second partial derivatives of 99 extend to continuous functions on 3. Hence, by
Lemma 5.4, 6 C(3).

This proves that if 6 C(3) C( {0}) and J* C(S x x ),
C(3).
Now consider a first partial, We know that it is in C (3 {0}) C (3) and

Yi
that J*(Oyi 13 10) extends to a smooth function on S x x (hence, by continuity,

J*g C(S x x ).) Therefore, by the above argument, is in cl(3).
argument proceeds by induction on the length of the multi-index in the

partial derivative Oy

This completes the proof of Proposition 5.1 and hence the proof of part of
Theorem 4. Let us now prove part 2 of the theorem. As before, suppose that
M su(2)* is a proper moment map for a Hamiltonian action of SU(2)

on a symplectic manifold (M, co). Let

z -! (0)

be the zero level set of the moment map. Every SU(2)-fixed point must lie on Z,
because the moment map is equivariant. We assume that Z is nonempty and coincides
with the set of fixed points.

The normal bundle of Z in M is a symplectic vector bundle, hence can be given
the structure of a complex Hermitian vector bundle. The key to the proof is that
the representation of SU (2) on a fiber of this normal bundle must be the standard
representation of SU (2) on C2.

By the equivariant symplectic embedding theorem (see [AG] or [M]) there exists
an SU(2)-equivariant diffeomorphism from a neighborhood of the zero section in the
normal bundle to a neighborhood of Z in M such that on a fiber of the normal bundle,
the pull-back of the moment map coincides with the moment map for the linear action
of SU(2) on that fiber.

Recall that for every non-negative integer rn there exists exactly one irreducible
representation of SU (2) of complex dimension rn + 1. The moment map for the
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representation of SU (2) on Cm+l as a map from Cm+l into C x su(2)*, can be
easily computed to be

lgO bl Obl + "ll bl 2 -Jl" .ql.. bl blm

rn m- 2 -m

lu012 -t-
2 lu112 "-’’" + Tlum 12 )"

If rn is greater than one then the zero level set of this moment map contains the
vector v (1,0 0, 1), which is not fixed by the action of SU (2). Therefore,
in the representation of SU(2) on the fibers of the normal bundle of Z in M, all
the irreducible components are the standard representation on C2. Moreover, this
representation can occur only once: on C2 @ C2, the moment map is

((uo, ul), (oo, p)) + fi-Ul +v, luol2 lull2 + lpol2

and its zero level sets contains a vector, ((1,0), (0, 1)), which is not fixed by SU (2).
We have shown that the representation of SU (2) on the fibers of the normal bundle

of Z in M is the irreducible representation on C2 with the moment map

(uo, u) "u, luol2

Notethatllll=(i-ff-6u12+1/4(luolZ lul i:z)2)/2 2 12 2(luol / lu )= llull. Since
the square of the norm on a Hermitian vector bundle is a smooth function, the function

I111 is smooth on a neighborhood of Z in M. In particular, its Hamiltonian vector
field is well defined. We will show that this vector field is tangent to the SU (2)-orbits,
that it generates a circle action on M which commutes with the action of SU (2), and
that these actions fit together to an effective action of SU (2) z2 S U (2).

At points of Z itself, dllll 0, so the Hamiltonian vector field of I111 vanishes.
Hence it is sufficient to prove the required properties on the complement, M \ Z.

Since the function I111 is SU(2)-invariant, its Hamiltonian flow preserves . In
particular, it preserves the cross section,- (e), where e is an open ray in su (2)* 3
emanating from the origin. On the cross section, the function II 11 coincides with the
Hamiltonian generator of the action of the circle subgroup which stabilizes the ray .
Hence, along the cross section, the Hamiltonian flow of the function I111 coincides
with the action of this circle subgroup. The intersection of all these circles is the
center, Z2, of SU (2). Hence the action of SU(2) S descends to an effective action
of SU (2) z2 S U (2).

To prove that the centralizer of the invariants consists of the U (2)-collective func-
tions we need, by Theorem 1, to prove that C(M) *C(u(2)*). Note that the
image under of the normal bundle of Z in M coincides with the image of one fiber,
and that the level sets of the SU(2)-moment map, , coincide with the level sets of
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the U(2)-moment map, . Hence it is sufficient to show that the U (2) moment map
on C2,

F" C2 C X ]12 (t/0 Ul) (-’Ul lU012 lull2)
has the division property, i.e., that it satisfies

CX (C2) F F*C (C ]2). (5.5)

The functions in CCX(C2) F are exactly the S-invariant functions on C2. The coordi-
nates of F generate the ring of S-invariant polynomials on C2. Schwarz’s theorem
[Sch] then gives (5.5). This completes the proof of Theorem 4.

Appendix A. Local normal form for the moment map and implications

In this section we describe a version ofthe Marle-Guillemin-Sternberg normal form
of the moment map (Theorems 5 and 6, Corollary A.2) and some of its implications
(Lemmas A.4 and A.5, Remark A.6) which were use in the proofs of Theorems
and 2. This version of the Marle-Guillemin-Sternberg normal form describes the
moment map for a Hamiltonian action of a compact Lie group G on a symplectic
manifold (M, co) in terms of nice "coordinates" on a neighborhood of an orbit, G .x, in
M. The construction of this normal form is carried out in two steps: the construction
of the symplectic cross-section (Theorem 5 and Corollary A.2), and the construction
of the normal form near an isotropic orbit (Theorem 6).

THOEREM 5 (The symplectic cross-section). Let : M * be a moment

map associated to a Hamiltonian action of a compact Lie group G on a symplectic
manifold (M, co). Let ot be a point in * and let G denote its stabilizer under the
coadjoint action.

Thenfor a sufficiently small slice S at orfor the coadjoint action ofG, the preimage
R := - (S) is a symplectic G-invariant submanifold of M. Moreover, the action

ofG on R is Hamiltonian and the restriction of the moment map to R followed
by the natural projection * is a corresponding moment map.

Proof Theorem 26.7 in [GS5]. I-1

Remark A. 1. The submanifold R is called a symplectic cross-section.

Since S is a slice, the open invariant neighborhood G S C t* of the coadjoint
orbit of ot is equivariantly diffeomorphic to the associated bundle G x6 S. Since the
moment map is equivariant, G R is an open invariant subset of the manifold M
and it is equivariantly diffeomorphic to the associated bundle G x6 R. Up to these
identifications, the moment map : G R G S is the equivariant bundle map
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G x6 R ----+ G x6 S, [g, r] - [g, (I)R(r)], where R is the restriction of to the
cross-section R, and [g, r] and [g, R(r)] denote the G-orbits of (g, r) 6 G x R
and (g, (r)) 6 G x S respectively. If the slice S is sufficiently small or, more
generally, is well-chosen, then the restriction to S of the projection t* is a
diffeomorphism onto the image. This proves the following:

COROLLARY A.2. Let : M * be as in Theorem 5, x be a point in M,
ot (x), S a small slice at ot and R -l (S) the corresponding cross-section.
Then, up to composition with diffeomorphisms, the moment map in an invariant
neighborhood ofx is a bundle map

G x6 R G x6 S, [g, r] - [g, g(r)],

where d is the G moment map (up to a composition with a diffeomorphism).

Remark A.3. Since the point ct is fixed by the action of G, the G-orbit through
any point x 6 -l(o) is isotropic in the symplectic cross-section, R. Since the
orbit G x is isotropic, the tangent space Tx(G x) is contained in its symplectic
perpendicular Tx(G x)R. Hence the quotient V Tx(G x)/Tx(G x) is a
symplectic vector space. It is called the symplectic slice at x. Note that V is a natural
symplectic representation of the isotropy group Gx of x.

THEOREM 6 [Local normal form near an isotropic orbit]. Let q: N I* be
a moment map associated to a Hamiltonian action of a compact Lie group H on a
symplectic manifold (N, or). Suppose the orbit H. x is isotropic in N. Let Hx denote
the stabilizer of x in H let 0 denote the annihilator of its Lie algebra in I* and letX

H Sp(V) denote the symplectic slice representation.
Given an H-equivariant embedding, i" I* 19", there exists an H-invariant

closed two-form, co,, on the manifold Y H x Hx (19 x V), such that

1. the form coy is nondegenerate near the zero section of the bundle Y H/Hx,
2. a neighborhood U of the orbit of x in N is equivariantly symplectomorphic to

a neighborhood of the zero section in Y, and
3. the action of H on (Y, cot) is Hamiltonian with a moment map ,: Y

given by

r([g, O, v]) Adt (g) (rl + i(v(V)))

where Ad is the coadjoint action, and v" V i* is the moment map for
the slice representation of H.

Consequently, the equivariant embedding t: Ux Y intertwines the two moment
maps, up to translation: [t:x (I)r o + q(x).
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Proof. Theorem 5 is essentially an equivariant version of Weinstein’s isotropic
embedding theorem. See [GS4] or [GS5].

One easy consequence of the local normal form is the following technical lemma,
which was used in the proof of Theorem 1.

LEMMA A.4. Let do: M * be a moment map associated to a Hamiltonian
action ofa compact Lie group, G, on a symplectic manifold, (M, to). Then any two

points in a connected component of a level set of do can be joined by a piecewise
smooth curve that lies in the level set.

Proof. It is sufficient to prove the theorem for a neighborhood of a point x in M.
By Theorem 5, Corollary A.2, and Remark A.3 we may assume that the orbit G x
is isotropic. By Theorem 5 it is sufficient to prove the lemma for the zero level set of
the map dot of the local model. This level set is G x ({0} x doll (0)). The moment
map on the symplectic vector space V is homogeneous, therefore do (0) is a cone
in V. Since any point in the cone can be connected to the vertex by a straight line,
any two points in the level set can be connected by a piece-wise smooth curve. [21

A non-trivial consequence of the local normal form theorem are the following
lemma and remark, which were used in the proof of Theorem 2. They essentially
say that the image under the moment map of a small invariant neighborhood of an
orbit G x does not change as x varies along a connected component of the level set- (,(x)):

LEMMA A.5. Let do: M * be a moment map associated to an action ofa
compact connected Lie group G on a connected symplectic manifold (M, to). Let x
be a point in M.

Let T be a maximal torus of the isotropy group of do(x) (hence of G), t its Lie
algebra, identified with its dual t* and embedded in g* via a choice ofan Ad-invariant
inner product, and let t*+ C t* be the Weyl chamber containing do (x).

There exists a rational polyhedral cone Cx in t* with vertex at do(x), such that
for every G-invariant neighborhood U ofx in M there exists an Ad (G)-invariant
neighborhood )2 of do(x) in * such that dO(U) N t*+ contains Cx fq )2. Hence do(U f)

do- (;)) fq t*+ Cx )2. Moreover, if the neighborhood U is sufficiently small then
for any point y in U f) do- (do(x)), the cone Cy is equal to the cone Cx.

If the group G is abelian, the result is easy. The general case is due to Sjamaar
[Sj]. Lerman, Meinrenken, Tolman, and Woodward later found a more "elementary"
proof: the lemma follows from the proofs of Theorems 6.1 and 6.2 of [LMTW].

Remark A.6. If do (x) 0, the cone Cx is dot (Y) f3 t_ where Y is the local model
described in Theorem 5.
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