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HANKEL OPERATORS
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1. Introduction

Generally speaking, it may be said that a significant part of the analysis of (holo-
morphic) Bergman spaces on a bounded domain D

_
Cn can be understood by the

device of restricting to D the corresponding holomorphic Hardy spaces on a suitable
domain in Cn+.

These ideas have been used in several papers, including Forelli [FOR], Rudin
[RUD], Coifman, Rochberg and Weiss [CRW], Beatrous and Burbea [BEB], Ligocka
[LIG], and references therein. The main point of the present paper is to give several
examples which develop this point of view. Our aim will be to extend these ideas
to the real Hardy spaces so that we may obtain related results on the "real Bergman
spaces" L(D) by using known results on real Hardy spaces.

Historically, the "real variable" theory of Hardy spaces has proved important in
the development of harmonic analysis. A secondary purpose of the present paper is
to suggest one possible way to think about real variable Bergman spaces, and to prove
some basic results about them.

The paper is organized as follows: In Section 2, we prove several preliminary
results on a particular restriction operator R and a corresponding extension operator
E. As an application we have a factorization theorem for the Bergman space A l(D)
and a characterization of the boundedness of the small Hankel operator hf by using
the results in [KL ]. In Section 3, we begin to study the ’real Bergman’ space, which
is closely related to the space obtained by restricting a real Hardy space. We next
combine the machinery and results in [KL2-3] to obtain some new results as well
as some of the known results from [BLI], [LIH], and [LUL] on the boundedness
and compactness of Hankel operators with non-holomorphic symbols on Bergman
spaces. We conclude, in Section 4, with some remarks that look ahead to future work.

It is worth noting that the Bergman spaces that we consider in this paper are
defined with a weighted measure that will be specified below. These Bergman spaces
are clearly equivalent to the classical ones that are defined with respect to Euclidean
volume measure. The connection between the two different Bergman projections is
less obvious, and is explored in the paper [JAN]. A similar set of remarks applies to
the Hankel operators being considered here.
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2. Preliminaries

Let D be a bounded domain in Cn with C boundary, and let r(z) be a C function
on , r(z) > 0 on D, r(z) 0 on O D, Vr :/: 0 on O D. If D is C2, then we may
choose the function r so that IVr(z)[ on OD. Now we define an extension domain
De in Cn+, based on D, as follows:

12De= {(z Z,,+l) C’’+ Z D, Izn+l <r(z)}. (2.1)

We define two mappings as follows:
(a) Let p be the Euclidean orthogonal projection from C"+1 to C"; i.e., p (z, z,+)

z for z 6 C" and Z,+l 6 C. Then we define a linear operator E from L (D) to
functions on 0 De as follows"

E(f)(z, Zn+) f o tp(z, Zn+)

(b) Let R be a linear operator defined on L(De) as follows:

(R(g)(z) - g z, /-ei dO

We shall prove the following simple and fundamental proposition.

(2.2)

(2.3)

PROPOSITION 2.1. Thefollowing two statements hold:
(i) For all g L t(O De), we have

f g dr fo R(g)(z)w(z)dv(z). (2.4)
De

(ii) For any f L (D), we have

D,, D

Here w(z) n’v/4r(z) + [Vr(z)l 2.

Proof Let us first prove (i). We may write 0 De as the image of a map X: D
[0, 2at) -- 0 De defined by X (z, O) (z, ei). Thus we have the following
formula for the surface measure on 0 De:

v/4r(z + ]Vr(z)12 dv(z)dOdot(z, Zn+l) --- w(z)dv(z) dO.

As a result,

f )g dr g z, x/-ei w(z) dv(z) dO
De 2r
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g z, /ei dO o)(z) dr(z)

j R(g)(z) dr(z).

So (2.4) holds, and the proof of part (i) is complete. Next we prove (ii).
When D is the unit ball in Cn, the above formula in (ii) is due to Forelli [FOR].

Applying the conclusion of part (i), we have

E(f) dcr fo R(E(f))(z)oo(z) dv(z).
De

Let us calculate R(E(f))(z). By definition, we have

(e(fl(zl e(f z,e o f(zlO f(z.

Therefore (2.5) holds, and so does (ii), and the proof of the proposition is complete.

Let P(D) denote the usual holomohic Hardy space on De with norm

De(t)

where De(t) {(z, Zn+l): [Zn+! 12 r(z) + < 0} for > 0 small. A calculation
shows that, if f P(De), then

(2.7) llfll,, Iflpd
D

where we use the symbol f to denote the boundary trace of f on 0D. Let f
2(De). We may write

f (z, z+ A(zz+.
k=0

Thus

If(z, z,,+)ledcr(z, z,,+)
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For each nonnegative integer k, we let dvk r(z)kco(z)dv, and let L(D) be
the weighted Lebesgue space with respect to the measure dvk. Let A(D) be
the weighted Bergman space with respect to the measure dvk. Let us consider
the mapping Pk" LZ(D) --> A(D), the Bergman projection with Bergman ker-
nel K(z, w). Let S" LZ(ODe) 7-[2(ODe) be the Szeg6 projection with the Szegi3
kernel S((z, zn+), (w, Wn+)). The following formula is due to Ligocka [LIG]:

S((z Zn+l), (w Wn+l) 2 Kk(Z --W)Zn+l Wn+l.
k=0

From this formula, we have that

S((z, 0), (w, 0)) Ko(z, w),

where K0(z, w) is the weighted Bergman kernel with dvo zroo(z)dv(z) for D.
Since o(z) - 1, we may see that, for each 0 < p < o, the relation between the
Bergman space AP (D) and the Hardy space 7-(p (De) is

AP(D) {f (z, 0)" f E 7-P(De)}.

In fact the relation

___
is clear and the relation

___
follows from the subharmonicity

of fl p on vertical slices.
The following simple proposition now holds"

PROPOSITION2.2. Let < p < ocz. If the SzegO projection S: LP(ODe)--+
(De) is bounded, then the Bergman projection P" L(D) -- a(D) is bounded,

k=0,1

Proof This is a standard result; we include the proof for completeness.
Without loss of generality, we shall treat the case k 0; that for k > 0 follows

similarly. Let f E L’(D); it is clear that E(f) LP(ODe). Let z(w) K(z, w).
Now

Po(f)(z) .f, Ko(z, w)f(w)n’odv(w)

E(K)E(f)dcr
De

I S((Z, 0), (w, Wn+l))E(f)(w, tOn+l)dr(w,
De

S(E(f))(z, O)

R(S(E(f))(z).

From the above identity and Proposition 2.1, we conclude that P0: LP(D) -- AP(D)
is bounded. 121
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We next prove a preliminary result on the operators R and E.

PROPOSITION 2.3. With the notation above, thefollowing statements hold:

(a) For 0 < p < cxz, we have that R 7-[P(De) -’+ A(D) is a surjective
contraction.

(b) The operator E" L(D) LP(ODe) (E A(D) 7-[P(De)) is an isometry.
(c) If f LZ(ODe) 3 7-(2(ODe), then R(f) L(D) 0 A(D), where 7-[2(ODe)

is the space ofboundary valuefunctions in 7-/2(De).

Proof. By definition we have that, for each f 6 P(De),

R(f)(z) f (z, 0), z D.

It is easy to see, using Proposition 2.1, that

lf(z, 0)1 p co(z)dr(z) <_ fo f[ p dr.
De

The proof of (a) follows.
With the same reasoning (see Proposition 2.1), we have (b).
Now we prove (c). Let f L2(ODe) 7-/2(D). For any g Ag(D), we have

o
R(f)(z)-(z) co(z) dr(z)

folf02r( )f Z, x/eiO dO -(z) co(z) dr(z)

[ f(z, Zn+l)E(g)(z, Zn+l) da(z, Zn+l)
De

=0

since E(g) 7-/2(De). Hence (c) follows. Therefore the proof of Proposition 2.2 is
complete.

Let 2(ODe) {7: f L2(ODe) ( ’]-[2(De)}, and let P(ODe) be the closure of
2(ODe) in LP(ODe) with norm 11. [[LP(OOe for <_ p < 2.

Let/22(D) {f: f Lg(D) 3 A(D)}; for each _< p < o, we let .P(D)
denote the closure of L(D) N 122(D) in L(D). It is easy to see that Z; (D) can be
identified with the space of complex conjugates of functions in closure of AZ(D) -t-

under L (D) norm.

COROLLARY 2.4. For 0 < p < cx, we have

(i) Lg(D)= LP(D)= R(LP(ODe));
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(ii) A(D)= AP(D) R(7-[P(De);
(iii) P(D) R(P(ODe)) when < p < 2.

Proof It is easy to see that (i) and (ii) are direct consequence of Proposition 2.1.
Part (iii) follows from Propositions 2.1, 2.2 and 2.3; we leave the details to the reader.

Next we give some applications of the properties of the operators E and R.

THEOREM 2.5. Let D be a smoothly bounded strictly pseudoconvex domain in
Cn. Let f A(D). Then there are a sequence ofpositive numbers {2.j} and two
sequence offunctions fn }, gn C A D such that

(i) I1 IIA2 Ilgj IIA2 1,
(ii) f Zj=I j fJ gj;
(iii) Ej=l "j "’ Ilflla’oCO)"

j=l,2

Proof The proof of this theorem is a direct consequence of the analogous results
for Hardy space given in Section 5 of [KL and of Proposition 2.1. V1

As usual, we let hf(u) S(f-ff) denote the small Hankel operator on the Hardy
space, and we let h.f Po(f’ff) denote the small Hankel operator on the Bergman
space, respectively. First we prove"

THEOREM 2.6. Let D be either a smoothly bounded strictly pseudoconvex do-
main or a convex domain offinite type in Cn. Then, for < p < oo, we have
that if f 7-2(ODe) and hf" 7"P()De) -+ LP(ODe) is bounded (compact), then

h(f) A(D) --+ L(D) is bounded (compact).

Remark. The reader will note that some results in this paper are not asserted (or
proved) for finite type domains in C2. This may seem surprising because the "regular"
domains that we discuss below certainly include the finite type domains in C2. The
problem is that the extension/restriction results treated in the present paper would
require us to know something about finite type domains in C3, and that is largely
unexplored territory.

Proof. Let p’ be the conjugate index of p with < p < cx. Under the hypotheses
we have the expected duality between 7-[p (0 De) and 7-[p’ (0 De) (see [NRSW], [MS]).
Let g A2(D). We know that E(g) 7"(2(ODe). Thus

fo lh(.r) (g)(z)lPdvo(z)
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fo IPo(R(f)-)(z)IPdvo(z)

fo IS(E(R(f)) E(g))(z, O)lPdvo(z)

< fo IS(E(R(f)) ())lPdcr
De

<CpsuPlf S(E(R(f))E(g))-6dr "I) ET-P’(ODe)’III)IIp,--I]
De

--Cpsup{f E(R(f) E(g)-6dr "I) E7-P’(De)’I]I),]p,--1}
De

--Cpsup{lf E(R(f) E(g)E(R(v))dcr
De

Cp sup { f0 fE(g)E(R(v))da
De

< Cp fo IS(f E(g))lPdcr
De

Cp fo Ihf(E(g))lPda"
De

Therefore hR(f) is bounded (compact) on A(D) if hf is bounded (compact) on
7-[p (De). The proof is complete.

THOEREM 2.7. Let D be a bounded domain in Cn and let 0 < p < . If
f A2(D) and hE(f) Sp(7-[2(De), L2(De)), then h Sp(A2(D), L2(D)).

Proof This follows directly from the fact that for each n the nth singular value of
h} is no bigger than the nth singular value of h E(f). This fact is a direct consequence
of the interpretation of the singular values as approximation numbers and the identity

hEf)(E(u))(z Zn+l) hef)(E(u))(z, O) h (u)(z)

for all u 6 A2(D). I--1

3. Real variable analysis

Let D be either a smoothly bounded strictly pseudoconvex domain in Cn or a
smoothly bounded convex domain of finite type in Cn. It is easy to check that if
D is a smoothly bounded strictly pseudoconvex domain in C (convex domain of
finite type) then De is a smoothly bounded strictly pseudoconvex domain in C
(convex of finite type in Cn+.). We shall describe a homogeneous structure with
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respect to a quasimetric d which is related to the complex structure, and the Lebesgue
surface measure over ODe defined in [KL1,2]. We let BMO(ODe), VMO(ODe), and
the real variable Hardy space Hp (0 De) be defined with respect to that structure of
homogeneous type (see [KL2] for definitions.)

Next we show that a quasimetric on 0De can be defined in terms of the quasimetric
on OD.

Let do be a quasimetric on 0 D. We extend do from 0D to D in a natural way by
letting

do(z, to) do(rr(z), zr(w)) / Ir(z) r(w)l

when r(z, w) Ir(z)l + Ir(w)l + Iz wl < 80; if r(z, w) > 480, then we let
do(z, w) Iz wl, where 80 is a fixed positive number depending only on D. We
shall define a function d 0De ODe + based on do as follows:

d((z, Zn+l), (1/), Wn+l) do(z, w) + [Zn+l Wn+l[2 -t" ]"n+l(Zn+l Wn+l)l (3.1)

We may arrange the definition of do(z, w) when r(z, w) (80,480) so that d is well
defined on ODe De and is a quasimetric on ODe ODe. We shall require the
following proposition.

PROPOSITION 3.1. Let D be either a smoothly bounded strictly pseudoconvex
domain in Cn or a convex domain offinite type in Cn. Then the quasimetric d on 0 De
defined as above is comparable to the oneformulated in [KL1,2].

Proof The proof is a straightforward calculation. We omit the details.

Following the notation in [BL1 ], we let z0 6 0 D; the Carleson region Cr(Zo) is
defined as follows:

Cr(zo) C(z0, r) {z D :r(z) < r, rr.(z) B(zo, r) COD}.

The notation BMO(D) was used to denote the function space of all L I(D) with

f IIBMO(D) sup /
Cr(ZO) ICr(zo)l Jc,.(zo)

f(w) fc f(z)dv(z)
Cr(ZO) r(ZO)

dr(z) < .
Further, VMO(D) denotes the function space consisting of functions with vanishing
mean oscillation with respect the above family of Carleson regions. It was also shown
in [BL1] that, BMO(D) (VMO(D)) is equivalent to the function space BMO (VMO)
with respect to the tents, or with respect to hyperbolic balls. In [LUL], L(D) spaces
are introduced as subspaces of L(D) consisting of all functions

U .jaj,
j--I

(3.2)
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where {,j }j__l ( e ()j >_ 0), and aj are function with support in some hyperbolic
ball B(zj) B(zj, er(zj)) with fD aj(z)dvo(z) 0 and lajl _< Injl -. The norm
of u is defined as follows:

It is obvious that

u L inf j
j=l

Moreover,

and

u )Ljaj
j=l

(Lb(D))* BMO(D), VMO(D)* Lb(D). (3.3)

E(Lb(D)) C Hi(ODe) (3.4)

R(BMO(ODe) C BMO(D), E(BMO(D) fq C(D)) C BMO(ODe). (3.5)

Let H2(ODe) be the atomic Hardy space on ODe. In [KL3], Krantz and Li gave
a factorization theorem for functions in HI(ODe) f"l/I(0De) which played a useful
role when applied to the study of the Corona problem in several complex variables
(refer to line (2.1) for the definition of De). The purpose of this section is to give the
analogous Bergman space version of the theorem in Section 4 of [KL3]. Indeed, we
shall decompose a function f L;I(D) f3 L(D) as an infinite sum of the products
of (i) functions in AP(D) with (ii) functions in .P’ (D) where 1/p + 1/p’ 1. In
other words, we shall prove the following theorem:

THEOREM 3.2. Let D be a smoothly bounded strictly pseudoconvex domain in
Cn. Let f L;I(D) f3 Ll(D). Then there are a sequence ofpositive numbers {)j},
a sequence offunctions {J} C Ap (D), and a sequence offunctions {gj} C P’ (D),
such that

(i) (i)IlfjllA, IlgjllL/ 1,
(ii) f Yj=I )JJgJ;
(iii) -jl J " IIf lILLcD)"

j=l,2

Proof. We note that a variant ofTheorem 3.2 was proved in [LUL]; that references
considers a different Bergman projection. Here we present a new proof by using the
idea of restriction.

Let f 6 L(D) N/21(D). It is sufficient to decompose an atom into a sum of the
above products with at most a fixed number of terms. Let a be an atom with support
on B,(zo). Then, by (3.4), we have that E(a) HI(ODe) is an atom. By the proof
of theorems in Section 4 in [KL3], we have

M

(E(a) --fi(E(a)) gjhj, Ilgjllpllhjllp’ 1,
j=l
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where M is a fixed number depending only on De, gj E "]-[,P (8 De) and gi # 0. (In
fact, the gj are each some power of the Levi polynomial), and hj gf Hj where

nj ll(ODe).
Now we let

(z) g(z, o) g(g)(z) # o, (z) i,j - R(Hj).

The same argument shows that

II?,ll"(o)llll,,’O) <-- C.

Then
M M

E(a)--fi(E(a)) E Hj EJJ
j=l j=l

and
M

a -P-o(a) Ej[’lj
j=l

and, since f 6/21 (D), we have

f E.jaj
j=l

E )j(aj Po(al)
j=l

x M

j=l

To complete the proof of Theorem 3.2, we need the following theorem.

THEOREM 3.3. Let < p < and let pl be its conjugate exponent. Let D be a

regulardomain. Let f AP(D)oand g EP’(D). Then fg L(D) fqEI(D).

We let Ht (I S)S and HOg (I Po)MPo denote the big Hankel operators
on the Hardy and Bergman spaces, respectively.

With the same proof as in [KL3], we have that Theorem 3.3 is a corollary of the
following theorem.

THEOREM 3.4. Let D be either a bounded strictly pseudoconvex or convexfinite
type domain in Cn with smooth boundary. If f BMO(D) fq Lp (D), then the big
Hankel operator H. (I Po)MyPo is bounded on LP(D).
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The above theorem was proved in [BL1 (for strictly pseudoconvex domains in
Cn and finite type domains in C2) and in [LIH] (in the strictly pseudoconvex case)
independently. We shall now see how to use the idea of restriction and the results
on Hardy spaces in [KL2] to give a new proof of the above theorem. To achieve this
goal, we need the following lemma.

LEMMA 3.5. Let D be as in Theorem 3.4. Thenfor any f BMO(D) C) LP(D)
and any c > 0 there is an fo C(D) A BMO(D) such that

IIf0IIL,’ + IlfollMoCo) <_ C, IIE(fo)IIMOaD <_ C[IfIIaMOCD),

the multiplication operator Mf_fo is bounded on Ap (D) and

IlMf_foPollop <_ Cp.

Proof. Let

fo(z) f(w)dvo(w).ICr(z)(Z)[
Then by Lemmas (2.1) and (2.16) in [BL1 ], we have

IIf011,, + IlfolIA4O(D) C, and IIMf-foPollop Cp.

By (3.5), we have

[[E(fo)IIBMO(De) < CIIfllBMO(D)
and the proof of the lemma is complete. !-i

LEMMA 3.6. Let D be either a smoothly bounded strictly pseudoconvex domain
or convex domain offinite type in Cn. Thenfor < p < cxz, we have f L2(D) and

if HE(f)" 7-[P(Oe) ZP(OOe) is bounded (compact), then H" A(D) Lg(D)
is bounded (compact).

Proof. Let g 6 A2 (D). We know that E (g) 6 7-12 (0 De). Thus

lH Pd.f (g)(z)l vo(z)

fo-I(fg Po(f g)(z)lPdvo(z)

[(fS(E(g))(z, O) S(E(f) E(g))(z, O)[Pdvo(z)

f I(E(f)S(E(g))(z, z,,+l) S(E(f) E(g))(z, zn+)lP&r(z, Zn+l).
De

Therefore H is bounded (compact) on Ag(D) if He(f) is bounded (compact) onf
7-[P(De). So the proof of (b) is complete. Thus the theorem is proved.
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Now we are ready to prove Theorem 3.4.

ProofofTheorem 3.4.
with

Thus

By Lemma 3.6, we have that H is bounded on A(D)

liB/011 CpllfllMO(O).

and the proof of Theorem 3.4 is complete.

IIH. < C(11Mf-fo Po + Hfoil) CpllfllBMo(O)

COROLLARY 3.7. Let D be a smoothly bounded strictly pseudoconvex domain in
Cn and let f E Lp (D). Then H is boundedfrom AP (D) to Lp (D) if and only if
(I Po)f BMO(D) fq LP (D) for all < p < o.

Note. This is the main theorem (Theorem 3.3) in [LUL].

Proof. Since H 0Hf_po(f), we have that if f Po(f) BMO(D) fq LP(D),
then H" AP (D) ---> LP (D) is bounded for all < p < cx.

Conversely, suppose that H is bounded on A(D). Then, for any u 6 A(D) and

go 6 LP’ (D), we have

I(H(u), g)l 1(Tu Po(Tu), g)l

I((u(- Po(g)), f)l
I((u(- Po(g)), (1 P0)f)l

By the Factorization Theorem 3.2, and (I P0)f 6 :1 (D) fq LP (D) we have
(I Po)f Lb(D)) BMO(D) fq (D) since Lb(D)* BMO(D). Therefore
(I eo)f ,P(D) f’) BMO(D), and the proof is complete. Ci

THEOREM 3.8. Let D be either a smoothly bounded strictly pseudoconvex or
convex finite type domain in Cn and let 0 < p < o. Let f TI2(ODe). If
nf Sp(-2(Oe), t2(OOe)), then HR(f) Sp(A(D), L(D)).

Proof These assertions follow similarly as the proof of Theorem 2.7.

4. Final remarks

It seems natural to consider function spaces R(HI(ODe)) and R(BMO(ODe)).
From the preceding sections, we see that

Lb(D) C R(n(OOe), R(BMO(ODe)) C BMO(D).
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One may use these containments to prove that

R(H (ODe))* R(BMO(ODe))

Further, one may obtain the following result that is similar to the theorem in
Section 2 of [KL3].

THOEREM 4.1. Let D be either a smoothly bounded strictly pseudoconvex or
convex domain offinite type in Cn Then we have thefollowing consequences:

(a) If f Ll(D) and f > O, then f R(HI(ODe) if and only if flog+ f
LI(D);

(b) For any f LI(D), there are g R(BMO(ODe)) and h R(HI(ODe) such
that f g h and Ilfll’(o IlgllR(aMO(OD))llhlllog.

This theorem is similar to one that appeared in Section 2 of [KL3]; now it may be
proved using the restriction method. We leave the details to the interested reader.
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