# ANALYSIS OF SOME FUNCTION SPACES ASSOCIATED TO HANKEL OPERATORS 

Steven G. Krantz, Song-Ying Li and Richard Rochberg

## 1. Introduction

Generally speaking, it may be said that a significant part of the analysis of (holomorphic) Bergman spaces on a bounded domain $D \subseteq \mathbb{C}^{n}$ can be understood by the device of restricting to $D$ the corresponding holomorphic Hardy spaces on a suitable domain in $\mathbb{C}^{n+1}$.

These ideas have been used in several papers, including Forelli [FOR], Rudin [RUD], Coifman, Rochberg and Weiss [CRW], Beatrous and Burbea [BEB], Ligocka [LIG], and references therein. The main point of the present paper is to give several examples which develop this point of view. Our aim will be to extend these ideas to the real Hardy spaces so that we may obtain related results on the "real Bergman spaces" $L_{b}^{p}(D)$ by using known results on real Hardy spaces.

Historically, the "real variable" theory of Hardy spaces has proved important in the development of harmonic analysis. A secondary purpose of the present paper is to suggest one possible way to think about real variable Bergman spaces, and to prove some basic results about them.

The paper is organized as follows: In Section 2, we prove several preliminary results on a particular restriction operator $R$ and a corresponding extension operator $E$. As an application we have a factorization theorem for the Bergman space $A^{1}(D)$ and a characterization of the boundedness of the small Hankel operator $h_{f}$ by using the results in [KL1]. In Section 3, we begin to study the 'real Bergman' space, which is closely related to the space obtained by restricting a real Hardy space. We next combine the machinery and results in [KL2-3] to obtain some new results as well as some of the known results from [BL1], [LIH], and [LUL] on the boundedness and compactness of Hankel operators with non-holomorphic symbols on Bergman spaces. We conclude, in Section 4, with some remarks that look ahead to future work.

It is worth noting that the Bergman spaces that we consider in this paper are defined with a weighted measure that will be specified below. These Bergman spaces are clearly equivalent to the classical ones that are defined with respect to Euclidean volume measure. The connection between the two different Bergman projections is less obvious, and is explored in the paper [JAN]. A similar set of remarks applies to the Hankel operators being considered here.

[^0]
## 2. Preliminaries

Let $D$ be a bounded domain in $\mathbb{C}^{n}$ with $C^{1}$ boundary, and let $r(z)$ be a $C^{1}$ function on $\bar{D}, r(z)>0$ on $D, r(z)=0$ on $\partial D, \nabla r \neq 0$ on $\partial D$. If $D$ is $C^{2}$, then we may choose the function $r$ so that $|\nabla r(z)|=1$ on $\partial D$. Now we define an extension domain $D_{e}$ in $\mathbb{C}^{n+1}$, based on $D$, as follows:

$$
\begin{equation*}
D_{e}=\left\{\left(z, z_{n+1}\right) \in \mathbb{C}^{n+1}: z \in D,\left|z_{n+1}\right|^{2}<r(z)\right\} \tag{2.1}
\end{equation*}
$$

We define two mappings as follows:
(a) Let $\phi$ be the Euclidean orthogonal projection from $\mathbb{C}^{n+1}$ to $\mathbb{C}^{n}$; i.e., $\phi\left(z, z_{n+1}\right)=$ $z$ for $z \in \mathbb{C}^{n}$ and $z_{n+1} \in \mathbb{C}$. Then we define a linear operator $E$ from $L^{1}(D)$ to functions on $\partial D_{e}$ as follows:

$$
\begin{equation*}
E(f)\left(z, z_{n+1}\right)=f \circ \phi\left(z, z_{n+1}\right) \tag{2.2}
\end{equation*}
$$

(b) Let $R$ be a linear operator defined on $L^{1}\left(\partial D_{e}\right)$ as follows:

$$
\begin{equation*}
R(g)(z)=\frac{1}{2 \pi} \int_{0}^{2 \pi} g\left(z, \sqrt{r(z)} e^{i \theta}\right) d \theta \tag{2.3}
\end{equation*}
$$

We shall prove the following simple and fundamental proposition.
Proposition 2.1. The following two statements hold:
(i) For all $g \in L^{1}\left(\partial D_{e}\right)$, we have

$$
\begin{equation*}
\int_{\partial D_{e}} g d \sigma=\int_{D} R(g)(z) \omega(z) d v(z) \tag{2.4}
\end{equation*}
$$

(ii) For any $f \in L^{1}(D)$, we have

$$
\begin{equation*}
\int_{\partial D_{e}} E(f) d \sigma=\int_{\partial D_{e}}(f \circ \phi) d \sigma=\int_{D} f(w) \omega(w) d v(w) . \tag{2.5}
\end{equation*}
$$

Here $\omega(z)=\pi \sqrt{4 r(z)+|\nabla r(z)|^{2}}$.
Proof. Let us first prove (i). We may write $\partial D_{e}$ as the image of a map $X: D \times$ $[0,2 \pi) \rightarrow \partial D_{e}$ defined by $X(z, \theta)=\left(z, \sqrt{r(z)} e^{i \theta}\right)$. Thus we have the following formula for the surface measure on $\partial D_{e}$ :

$$
d \sigma\left(z, z_{n+1}\right)=\frac{1}{2} \sqrt{4 r(z)+|\nabla r(z)|^{2}} d v(z) d \theta=\frac{1}{2 \pi} \omega(z) d v(z) d \theta
$$

As a result,

$$
\int_{\partial D_{e}} g d \sigma=\frac{1}{2 \pi} \int_{D} \int_{0}^{2 \pi} g\left(z, \sqrt{r(z)} e^{i \theta}\right) \omega(z) d v(z) d \theta
$$

$$
\begin{aligned}
& =\int_{D} \frac{1}{2 \pi} \int_{0}^{2 \pi} g\left(z, \sqrt{r(z)} e^{i \theta}\right) d \theta \omega(z) d v(z) \\
& =\int_{D} R(g)(z) \omega(z) d v(z)
\end{aligned}
$$

So (2.4) holds, and the proof of part (i) is complete. Next we prove (ii).
When $D$ is the unit ball in $\mathbb{C}^{n}$, the above formula in (ii) is due to Forelli [FOR]. Applying the conclusion of part (i), we have

$$
\int_{\partial D_{e}} E(f) d \sigma=\int_{D} R(E(f))(z) \omega(z) d v(z)
$$

Let us calculate $R(E(f))(z)$. By definition, we have

$$
R(E(f))(z)=\frac{1}{2 \pi} \int_{0}^{2 \pi} E(f)\left(z, \sqrt{r(z)} e^{i \theta}\right) d \theta=\frac{1}{2 \pi} \int_{0}^{2 \pi} f(z) d \theta=f(z)
$$

Therefore (2.5) holds, and so does (ii), and the proof of the proposition is complete.

Let $\mathcal{H}^{p}\left(D_{e}\right)$ denote the usual holomorphic Hardy space on $D_{e}$ with norm

$$
\begin{equation*}
\|f\|_{\mathcal{H}^{p}}^{p}=\sup _{t}\left\{\int_{\partial D_{e}(t)}\left|f\left(z, z_{n+1}\right)\right|^{p} d \sigma\left(z, z_{n+1}\right)\right\} \tag{2.6}
\end{equation*}
$$

where $D_{e}(t)=\left\{\left(z, z_{n+1}\right):\left|z_{n+1}\right|^{2}-r(z)+t<0\right\}$ for $t>0$ small. A calculation shows that, if $f \in \mathcal{H}^{p}\left(D_{e}\right)$, then

$$
\begin{equation*}
\|f\|_{\mathcal{H}^{p}}=\left(\int_{\partial D_{e}}|f|^{p} d \sigma\right)^{1 / p} \tag{2.7}
\end{equation*}
$$

where we use the symbol $f$ to denote the boundary trace of $f$ on $\partial D_{\epsilon}$. Let $f \in$ $\mathcal{H}^{2}\left(D_{e}\right)$. We may write

$$
f\left(z, z_{n+1}\right)=\sum_{k=0}^{\infty} f_{k}(z) z_{n+1}^{k}
$$

Thus

$$
\begin{aligned}
& \int_{\partial D_{e}}\left|f\left(z, z_{n+1}\right)\right|^{2} d \sigma\left(z, z_{n+1}\right) \\
&=\sum_{k=0}^{\infty} \int_{\partial D_{e}}\left|f_{k}(z)\right|^{2}\left|z_{n+1}\right|^{2 k} d \sigma\left(z, z_{n+1}\right) \\
&=\frac{1}{2 \pi} \sum_{k=0}^{\infty} \int_{D}\left|f_{k}(z)\right|^{2} \int_{0}^{2 \pi}(\sqrt{r(z)})^{2 k} d \theta \omega(z) d v(z) \\
&=\sum_{k=0}^{\infty} \int_{D}\left|f_{k}(z)\right|^{2} r(z)^{k} \omega(z) d v(z)
\end{aligned}
$$

For each nonnegative integer $k$, we let $d v_{k}=r(z)^{k} \omega(z) d v$, and let $L_{k}^{p}(D)$ be the weighted Lebesgue space with respect to the measure $d v_{k}$. Let $A_{k}^{p}(D)$ be the weighted Bergman space with respect to the measure $d v_{k}$. Let us consider the mapping $P_{k}: L_{k}^{2}(D) \rightarrow A_{k}^{2}(D)$, the Bergman projection with Bergman kernel $K_{k}(z, w)$. Let $S: L^{2}\left(\partial D_{e}\right) \rightarrow \mathcal{H}^{2}\left(\partial D_{e}\right)$ be the Szegö projection with the Szegö kernel $S\left(\left(z, z_{n+1}\right),\left(w, w_{n+1}\right)\right)$. The following formula is due to Ligocka [LIG]:

$$
S\left(\left(z, z_{n+1}\right),\left(w, w_{n+1}\right)\right)=\sum_{k=0}^{\infty} K_{k}(z, w) z_{n+1}^{k} \bar{w}_{n+1}^{k}
$$

From this formula, we have that

$$
S((z, 0),(w, 0))=K_{0}(z, w)
$$

where $K_{0}(z, w)$ is the weighted Bergman kernel with $d v_{0}=\pi \omega(z) d v(z)$ for $D$. Since $\omega(z) \approx 1$, we may see that, for each $0<p<\infty$, the relation between the Bergman space $A^{p}(D)$ and the Hardy space $\mathcal{H}^{p}\left(D_{e}\right)$ is

$$
A^{p}(D)=\left\{f(z, 0): f \in \mathcal{H}^{p}\left(D_{e}\right)\right\}
$$

In fact the relation $\subseteq$ is clear and the relation $\supseteq$ follows from the subharmonicity of $|f|^{p}$ on vertical slices.

The following simple proposition now holds:
Proposition 2.2. Let $1<p<\infty$. If the Szegö projection $S: L^{p}\left(\partial D_{e}\right) \rightarrow$ $\mathcal{H}^{p}\left(D_{e}\right)$ is bounded, then the Bergman projection $P_{k}: L_{k}^{p}(D) \rightarrow A_{k}^{p}(D)$ is bounded, $k=0,1, \ldots$

Proof. This is a standard result; we include the proof for completeness.
Without loss of generality, we shall treat the case $k=0$; that for $k>0$ follows similarly. Let $f \in L_{k}^{p}(D)$; it is clear that $E(f) \in L^{p}\left(\partial D_{e}\right)$. Let $\bar{K}_{z}(w)=K(z, w)$. Now

$$
\begin{aligned}
P_{0}(f)(z) & =\int_{D} K_{0}(z, w) f(w) \pi \omega d v(w) \\
& =\int_{\partial D_{e}} E(\bar{K}) E(f) d \sigma \\
& =\int_{\partial D_{e}} S\left((z, 0),\left(w, w_{n+1}\right)\right) E(f)\left(w, w_{n+1}\right) d \sigma\left(w, w_{n+1}\right) \\
& =S(E(f))(z, 0) \\
& =R(S(E(f))(z)
\end{aligned}
$$

From the above identity and Proposition 2.1, we conclude that $P_{0}: L^{p}(D) \rightarrow A^{p}(D)$ is bounded.

We next prove a preliminary result on the operators $R$ and $E$.
Proposition 2.3. With the notation above, the following statements hold:
(a) For $0<p \leq \infty$, we have that $R: \mathcal{H}^{p}\left(D_{e}\right) \rightarrow A_{0}^{p}(D)$ is a surjective contraction.
(b) The operator $E: L_{0}^{p}(D) \rightarrow L^{p}\left(\partial D_{e}\right)\left(E: A_{0}^{p}(D) \rightarrow \mathcal{H}^{p}\left(D_{e}\right)\right)$ is an isometry.
(c) If $f \in L^{2}\left(\partial D_{e}\right) \ominus \mathcal{H}^{2}\left(\partial D_{e}\right)$, then $R(f) \in L_{0}^{2}(D) \ominus A_{0}^{2}(D)$, where $\mathcal{H}^{2}\left(\partial D_{e}\right)$ is the space of boundary value functions in $\mathcal{H}^{2}\left(D_{e}\right)$.

Proof. By definition we have that, for each $f \in \mathcal{H}^{p}\left(D_{e}\right)$,

$$
R(f)(z)=f(z, 0), \quad z \in D
$$

It is easy to see, using Proposition 2.1, that

$$
\int_{D}|f(z, 0)|^{p} \omega(z) d v(z) \leq \int_{\partial D_{e}}|f|^{p} d \sigma
$$

The proof of (a) follows.
With the same reasoning (see Proposition 2.1), we have (b).
Now we prove (c). Let $f \in L^{2}\left(\partial D_{e}\right) \ominus \mathcal{H}^{2}(D)$. For any $g \in A_{0}^{2}(D)$, we have

$$
\begin{array}{rl}
\int_{D} R & R(f)(z) \bar{g}(z) \omega(z) d v(z) \\
& =\int_{D} \frac{1}{2 \pi} \int_{0}^{2 \pi} f\left(z, \sqrt{r(z)} e^{i \theta}\right) d \theta \bar{g}(z) \omega(z) d v(z) \\
& =\int_{\partial D_{e}} f\left(z, z_{n+1}\right) \overline{E(g)}\left(z, z_{n+1}\right) d \sigma\left(z, z_{n+1}\right) \\
& =0
\end{array}
$$

since $E(g) \in \mathcal{H}^{2}\left(D_{e}\right)$. Hence (c) follows. Therefore the proof of Proposition 2.2 is complete.

Let $\mathcal{L}^{2}\left(\partial D_{e}\right)=\left\{\bar{f}: f \in L^{2}\left(\partial D_{e}\right) \ominus \mathcal{H}^{2}\left(D_{e}\right)\right\}$, and let $\mathcal{L}^{p}\left(\partial D_{e}\right)$ be the closure of $\mathcal{L}^{2}\left(\partial D_{e}\right)$ in $L^{p}\left(\partial D_{e}\right)$ with norm $\|\cdot\|_{L^{p}\left(\partial D_{e}\right)}$ for $1 \leq p \leq 2$.

Let $\mathcal{L}^{2}(D)=\left\{\bar{f}: f \in L_{0}^{2}(D) \ominus A_{0}^{2}(D)\right\}$, for each $1 \leq p<\infty$, we let $\mathcal{L}^{p}(D)$ denote the closure of $L_{0}^{p}(D) \cap \mathcal{L}^{2}(D)$ in $L_{0}^{p}(D)$. It is easy to see that $\mathcal{L}^{1}(D)$ can be identified with the space of complex conjugates of functions in closure of $A^{2}(D)^{\perp}$ under $L^{1}(D)$ norm.

Corollary 2.4. For $0<p<\infty$, we have
(i) $L_{0}^{p}(D)=L^{p}(D)=R\left(L^{p}\left(\partial D_{e}\right)\right)$;
(ii) $A_{0}^{p}(D)=A^{p}(D)=R\left(\mathcal{H}^{p}\left(D_{e}\right)\right.$;
(iii) $\mathcal{L}^{p}(D)=R\left(\mathcal{L}^{p}\left(\partial D_{e}\right)\right)$ when $1 \leq p \leq 2$.

Proof. It is easy to see that (i) and (ii) are direct consequence of Proposition 2.1. Part (iii) follows from Propositions 2.1, 2.2 and 2.3; we leave the details to the reader.

Next we give some applications of the properties of the operators $E$ and $R$.
THEOREM 2.5. Let $D$ be a smoothly bounded strictly pseudoconvex domain in $\mathbb{C}^{n}$. Let $f \in A_{0}^{1}(D)$. Then there are a sequence of positive numbers $\left\{\lambda_{j}\right\}$ and two sequence of functions $\left\{f_{n}\right\},\left\{g_{n}\right\} \subset A_{0}^{2}(D)$ such that
(i) $\left\|f_{j}\right\|_{A^{2}}\left\|g_{j}\right\|_{A^{2}} \approx 1, \quad j=1,2, \ldots$;
(ii) $f=\sum_{j=1} \lambda_{j} f_{j} g_{j}$;
(iii) $\sum_{j=1}^{\infty} \lambda_{j} \approx\|f\|_{A_{0}^{\prime}(D)}$.

Proof. The proof of this theorem is a direct consequence of the analogous results for Hardy space given in Section 5 of [KL1] and of Proposition 2.1.

As usual, we let $h_{f}(u)=S(f \bar{u})$ denote the small Hankel operator on the Hardy space, and we let $h_{f}^{0}=P_{0}(f \bar{u})$ denote the small Hankel operator on the Bergman space, respectively. First we prove:

THEOREM 2.6. Let $D$ be either a smoothly bounded strictly pseudoconvex domain or a convex domain of finite type in $\mathbb{C}^{n}$. Then, for $1<p<\infty$, we have that if $f \in \mathcal{H}^{2}\left(\partial D_{e}\right)$ and $h_{f}: \mathcal{H}^{p}\left(\partial D_{e}\right) \rightarrow L^{p}\left(\partial D_{e}\right)$ is bounded (compact), then $h_{R(f)}^{0}: A_{0}^{p}(D) \rightarrow L_{0}^{p}(D)$ is bounded (compact).

Remark. The reader will note that some results in this paper are not asserted (or proved) for finite type domains in $\mathbb{C}^{2}$. This may seem surprising because the "regular" domains that we discuss below certainly include the finite type domains in $\mathbb{C}^{2}$. The problem is that the extension/restriction results treated in the present paper would require us to know something about finite type domains in $\mathbb{C}^{3}$, and that is largely unexplored territory.

Proof. Let $p^{\prime}$ be the conjugate index of $p$ with $1<p<\infty$. Under the hypotheses we have the expected duality between $\mathcal{H}^{p}\left(\partial D_{e}\right)$ and $\mathcal{H}^{p^{\prime}}\left(\partial D_{e}\right)$ (see [NRSW], [MS]). Let $g \in A^{2}(D)$. We know that $E(g) \in \mathcal{H}^{2}\left(\partial D_{e}\right)$. Thus

$$
\int_{D}\left|h_{R(f)}^{0}(g)(z)\right|^{p} d v_{0}(z)
$$

$$
\begin{aligned}
& =\int_{D}\left|P_{0}(R(f) \bar{g})(z)\right|^{p} d v_{0}(z) \\
& =\int_{D}|S(E(R(f)) \overline{E(g)})(z, 0)|^{p} d v_{0}(z) \\
& \leq \int_{\partial D_{e}}|S(E(R(f)) \overline{E(g)})|^{p} d \sigma \\
& \leq C_{p} \sup \left\{\left|\int_{\partial D_{e}} S(E(R(f)) \overline{E(g)}) \bar{v} d \sigma\right|: v \in \mathcal{H}^{p^{\prime}}\left(\partial D_{e}\right):\|v\|_{p^{\prime}}=1\right\} \\
& =C_{p} \sup \left\{\mid \int_{\partial D_{e}} E\left(R(f) \overline{E(g)} \bar{v} d \sigma \mid: v \in \mathcal{H}^{p^{\prime}}\left(\partial D_{e}\right):\|v\|_{p^{\prime}}=1\right\}\right. \\
& =C_{p} \sup \left\{\mid \int_{\partial D_{e}} E\left(R(f) \overline{E(g) E(R(v))} d \sigma \mid: v \in \mathcal{H}^{p^{\prime}}\left(\partial D_{e}\right):\|v\|_{p^{\prime}}=1\right\}\right. \\
& =C_{p} \sup \left\{\left|\int_{\partial D_{e}} f \overline{E(g) E(R(v))} d \sigma\right|: v \in \mathcal{H}^{p^{\prime}}\left(\partial D_{e}\right):\|v\|_{p^{\prime}}=1\right\} \\
& \leq C_{p} \int_{\partial D_{e}}|S(f \overline{E(g)})|^{p} d \sigma \\
& =C_{p} \int_{\partial D_{e}}\left|h_{f}(E(g))\right|^{p} d \sigma .
\end{aligned}
$$

Therefore $\mathrm{h}_{R(f)}$ is bounded (compact) on $A_{0}^{p}(D)$ if $h_{f}$ is bounded (compact) on $\mathcal{H}^{p}\left(D_{e}\right)$. The proof is complete.

Thoerem 2.7. Let $D$ be a bounded domain in $\mathbb{C}^{n}$ and let $0<p<\infty$. If $f \in A^{2}(D)$ and $h_{E(f)} \in S_{p}\left(\mathcal{H}^{2}\left(\partial D_{e}\right), L^{2}\left(\partial D_{e}\right)\right)$, then $h_{f}^{0} \in S_{p}\left(A^{2}(D), L^{2}(D)\right)$.

Proof. This follows directly from the fact that for each $n$ the $n$th singular value of $h_{f}^{0}$ is no bigger than the $n$th singular value of $h_{E(f)}$. This fact is a direct consequence of the interpretation of the singular values as approximation numbers and the identity

$$
h_{E(f)}(E(u))\left(z, z_{n+1}\right)=h_{E(f)}(E(u))(z, 0)=h_{f}^{0}(u)(z)
$$

for all $u \in A^{2}(D)$.

## 3. Real variable analysis

Let $D$ be either a smoothly bounded strictly pseudoconvex domain in $\mathbb{C}^{n}$ or a smoothly bounded convex domain of finite type in $\mathbb{C}^{n}$. It is easy to check that if $D$ is a smoothly bounded strictly pseudoconvex domain in $\mathbb{C}^{n}$ (convex domain of finite type) then $D_{e}$ is a smoothly bounded strictly pseudoconvex domain in $\mathbb{C}^{n+1}$ (convex of finite type in $\mathbb{C}^{n+1}$.). We shall describe a homogeneous structure with
respect to a quasimetric $d$ which is related to the complex structure, and the Lebesgue surface measure over $\partial D_{e}$ defined in [KL1,2]. We let $B M O\left(\partial D_{e}\right), \operatorname{VMO}\left(\partial D_{e}\right)$, and the real variable Hardy space $H^{p}\left(\partial D_{e}\right)$ be defined with respect to that structure of homogeneous type (see [KL2] for definitions.)

Next we show that a quasimetric on $\partial D_{e}$ can be defined in terms of the quasimetric on $\partial D$.

Let $d_{0}$ be a quasimetric on $\partial D$. We extend $d_{0}$ from $\partial D$ to $D$ in a natural way by letting

$$
d_{0}(z, w)=d_{0}(\pi(z), \pi(w))+|r(z)-r(w)|
$$

when $r(z, w)=|r(z)|+|r(w)|+|z-w| \leq \delta_{0}$; if $r(z, w)>4 \delta_{0}$, then we let $d_{0}(z, w)=|z-w|$, where $\delta_{0}$ is a fixed positive number depending only on $D$. We shall define a function $d: \partial D_{e} \times \partial D_{e} \rightarrow \mathbb{R}_{+}$based on $d_{0}$ as follows:

$$
\begin{equation*}
d\left(\left(z, z_{n+1}\right),\left(w, w_{n+1}\right)\right)=d_{0}(z, w)+\left|z_{n+1}-w_{n+1}\right|^{2}+\left|\bar{w}_{n+1}\left(z_{n+1}-w_{n+1}\right)\right| \tag{3.1}
\end{equation*}
$$

We may arrange the definition of $d_{0}(z, w)$ when $r(z, w) \in\left(\delta_{0}, 4 \delta_{0}\right)$ so that $d$ is well defined on $\partial D_{e} \times D_{e}$ and is a quasimetric on $\partial D_{e} \times \partial D_{e}$. We shall require the following proposition.

Proposition 3.1. Let $D$ be either a smoothly bounded strictly pseudoconvex domain in $\mathbb{C}^{n}$ or a convex domain of finite type in $\mathbb{C}^{n}$. Then the quasimetric d on $\partial D_{e}$ defined as above is comparable to the one formulated in $[\mathrm{KL1}, 2]$.

Proof. The proof is a straightforward calculation. We omit the details.
Following the notation in [BL1], we let $z_{0} \in \partial D$; the Carleson region $C_{r}\left(z_{0}\right)$ is defined as follows:

$$
C_{r}\left(z_{0}\right)=C\left(z_{0}, r\right)=\left\{z \in D: r(z) \leq r, \pi(z) \in B\left(z_{0}, r\right) \subset \partial D\right\}
$$

The notation $B M O(D)$ was used to denote the function space of all $L^{1}(D)$ with

$$
\|f\|_{B M O(D)}=\sup _{C_{r}\left(z_{0}\right)} \frac{1}{\left|C_{r}\left(z_{0}\right)\right|} \int_{C_{r}\left(z_{0}\right)}\left|f(w)-\frac{1}{C_{r}\left(z_{0}\right)} \int_{C_{r}\left(z_{0}\right)} f(z) d v(z)\right| d v(z)<\infty
$$

Further, $\operatorname{VMO}(D)$ denotes the function space consisting of functions with vanishing mean oscillation with respect the above family of Carleson regions. It was also shown in [BL1] that, $B M O(D)(V M O(D))$ is equivalent to the function space $B M O(V M O)$ with respect to the tents, or with respect to hyperbolic balls. In [LUL], $L_{b}^{1}(D)$ spaces are introduced as subspaces of $L_{0}^{1}(D)$ consisting of all functions

$$
\begin{equation*}
u=\sum_{j=1}^{\infty} \lambda_{j} a_{j} \tag{3.2}
\end{equation*}
$$

where $\left\{\lambda_{j}\right\}_{j=1}^{\infty} \in \ell^{1}\left(\lambda_{j} \geq 0\right)$, and $a_{j}$ are function with support in some hyperbolic ball $B_{\epsilon}\left(z_{j}\right)=B\left(z_{j}, \epsilon r\left(z_{j}\right)\right)$ with $\int_{D} a_{j}(z) d v_{0}(z)=0$ and $\left|a_{j}\right| \leq\left|B_{j}\right|^{-1}$. The norm of $u$ is defined as follows:

$$
\|u\|_{L_{b}^{\prime}}=\inf \left\{\sum_{j=1}^{\infty} \lambda_{j}: u=\sum_{j=1}^{\infty} \lambda_{j} a_{j}\right\}
$$

It is obvious that

$$
\begin{equation*}
\left(L_{b}^{1}(D)\right)^{*}=B M O(D), \quad V M O(D)^{*}=L_{b}^{1}(D) \tag{3.3}
\end{equation*}
$$

Moreover,

$$
\begin{equation*}
E\left(L_{b}^{1}(D)\right) \subset H^{1}\left(\partial D_{e}\right) \tag{3.4}
\end{equation*}
$$

and

$$
\begin{equation*}
R\left(B M O\left(\partial D_{e}\right) \subset B M O(D), \quad E(B M O(D) \cap C(D)) \subset B M O\left(\partial D_{e}\right)\right. \tag{3.5}
\end{equation*}
$$

Let $H^{2}\left(\partial D_{e}\right)$ be the atomic Hardy space on $\partial D_{e}$. In [KL3], Krantz and Li gave a factorization theorem for functions in $H^{1}\left(\partial D_{e}\right) \cap \mathcal{L}^{1}\left(\partial D_{e}\right)$ which played a useful role when applied to the study of the Corona problem in several complex variables (refer to line (2.1) for the definition of $D_{e}$ ). The purpose of this section is to give the analogous Bergman space version of the theorem in Section 4 of [KL3]. Indeed, we shall decompose a function $f \in \mathcal{L}^{1}(D) \cap L_{b}^{1}(D)$ as an infinite sum of the products of (i) functions in $A^{p}(D)$ with (ii) functions in $\mathcal{L}^{p^{\prime}}(D)$ where $1 / p+1 / p^{\prime}=1$. In other words, we shall prove the following theorem:

THEOREM 3.2. Let $D$ be a smoothly bounded strictly pseudoconvex domain in $\mathbb{C}^{n}$. Let $f \in \mathcal{L}^{1}(D) \cap L_{b}^{1}(D)$. Then there are a sequence of positive numbers $\left\{\lambda_{j}\right\}$, a sequence of functions $\left\{f_{j}\right\} \subset A^{p}(D)$, and a sequence of functions $\left\{g_{j}\right\} \subset \mathcal{L}^{p^{\prime}}(D)$, such that
(i) $(i)\left\|f_{j}\right\|_{A^{p}}\left\|g_{j}\right\|_{L^{p^{\prime}}} \approx 1, \quad j=1,2, \ldots$;
(ii) $f=\sum_{j=1} \lambda_{j} f_{j} g_{j}$;
(iii) $\sum_{j=1}^{\infty} \lambda_{j} \approx\|f\|_{L_{b}^{\prime}(D)}$.

Proof. We note that a variant of Theorem 3.2 was proved in [LUL]; that references considers a different Bergman projection. Here we present a new proof by using the idea of restriction.

Let $f \in L_{b}^{1}(D) \cap \mathcal{L}^{1}(D)$. It is sufficient to decompose an atom into a sum of the above products with at most a fixed number of terms. Let $a$ be an atom with support on $B_{\epsilon}\left(z_{0}\right)$. Then, by (3.4), we have that $E(a) \in H^{1}\left(\partial D_{e}\right)$ is an atom. By the proof of theorems in Section 4 in [KL3], we have

$$
\left(E(a)-\bar{P}(E(a))=\sum_{j=1}^{M} g_{j} h_{j}, \quad\left\|g_{j}\right\|_{p}\left\|h_{j}\right\|_{p^{\prime}} \approx 1\right.
$$

where $M$ is a fixed number depending only on $D_{e}, g_{j} \in \mathcal{H}^{p}\left(\partial D_{e}\right)$ and $g_{j} \neq 0$. (In fact, the $g_{j}$ are each some power of the Levi polynomial), and $h_{j}=g_{j}^{-1} H_{j}$ where $H_{j} \in \mathcal{L}^{1}\left(\partial D_{e}\right)$.

Now we let

$$
\tilde{g}_{j}(z)=g_{j}(z, 0)=R\left(g_{j}\right)(z) \neq 0, \quad \tilde{h_{j}}(z)=\tilde{g}_{j}^{-1} R\left(H_{j}\right) .
$$

The same argument shows that

$$
\|\tilde{g}\|_{L^{p}(D)}\left\|\tilde{h}_{j}\right\|_{L^{p^{\prime}(D)}} \leq C
$$

Then

$$
E(a)-\bar{P}(E(a))=\sum_{j=1}^{M} H_{j}=\sum_{j=1}^{M} \tilde{g}_{j} \tilde{h}_{j}
$$

and

$$
a-\overline{P_{0}}(a)=\sum_{j=1}^{M} \tilde{g}_{j} \tilde{h}_{j}
$$

and, since $f \in \mathcal{L}^{1}(D)$, we have

$$
\begin{aligned}
f & =\sum_{j=1}^{\infty} \lambda_{j} a_{j} \\
& =\sum_{j=1}^{\infty} \lambda_{j}\left(a_{j}-P_{0}(a)\right) \\
& =\sum_{j=1}^{\infty} \lambda_{j} \sum_{\ell=1}^{M} \tilde{g}_{\ell} \tilde{h}_{\ell j}
\end{aligned}
$$

To complete the proof of Theorem 3.2, we need the following theorem.
Theorem 3.3. Let $1<p<\infty$ and let $p^{\prime}$ be its conjugate exponent. Let $D$ be a regular domain. Let $f \in A^{p}(D)_{0}$ and $g \in \mathcal{L}^{p^{\prime}}(D)$. Then $f g \in L_{b}^{1}(D) \cap \mathcal{L}^{1}(D)$.

We let $H_{f}=(I-S) S$ and $H_{g}^{0}=\left(I-P_{0}\right) M_{\bar{g}} P_{0}$ denote the big Hankel operators on the Hardy and Bergman spaces, respectively.

With the same proof as in [KL3], we have that Theorem 3.3 is a corollary of the following theorem.

THEOREM 3.4. Let $D$ be either a bounded strictly pseudoconvex or convex finite type domain in $\mathbb{C}^{n}$ with smooth boundary. If $f \in B M O(D) \cap L^{p}(D)$, then the big Hankel operator $H_{f}^{0}=\left(I-P_{0}\right) M_{\bar{f}} P_{0}$ is bounded on $L^{p}(D)$.

The above theorem was proved in [BL1] (for strictly pseudoconvex domains in $\mathbb{C}^{n}$ and finite type domains in $\mathbb{C}^{2}$ ) and in [LIH] (in the strictly pseudoconvex case) independently. We shall now see how to use the idea of restriction and the results on Hardy spaces in [KL2] to give a new proof of the above theorem. To achieve this goal, we need the following lemma.

Lemma 3.5. Let $D$ be as in Theorem 3.4. Then for any $f \in B M O(D) \cap L^{p}(D)$ and any $c>0$ there is an $f_{0} \in C(D) \cap B M O(D)$ such that

$$
\left\|f_{0}\right\|_{L^{p}}+\left\|f_{0}\right\|_{B M O(D)} \leq C, \quad\left\|E\left(f_{0}\right)\right\|_{B M O\left(\partial D_{e}\right)} \leq C\|f\|_{B M O(D)},
$$

the multiplication operator $M_{f-f_{0}}$ is bounded on $A^{p}(D)$ and

$$
\left\|M_{f-f_{0}} P_{0}\right\|_{\mathrm{op}} \leq C_{p}
$$

Proof. Let

$$
f_{0}(z)=\frac{1}{\left|C_{r(z)}(z)\right|} f(w) d v_{0}(w) .
$$

Then by Lemmas (2.1) and (2.16) in [BL1], we have

$$
\left\|f_{0}\right\|_{L^{p}}+\left\|f_{0}\right\|_{B M O(D)} \leq C, \text { and }\left\|M_{f-f_{0}} P_{0}\right\|_{\text {op }} \leq C_{p}
$$

By (3.5), we have

$$
\left\|E\left(f_{0}\right)\right\|_{B M O\left(\partial D_{e}\right)} \leq C\|f\|_{B M O(D)}
$$

and the proof of the lemma is complete.
Lemma 3.6. Let $D$ be either a smoothly bounded strictly pseudoconvex domain or convex domain of finite type in $\mathbb{C}^{n}$. Then for $1<p<\infty$, we have $f \in L^{2}(D)$ and if $H_{E(f)}: \mathcal{H}^{p}\left(D_{e}\right) \rightarrow L^{p}\left(\partial D_{e}\right)$ is bounded (compact), then $H_{f}^{0}: A_{0}^{p}(D) \rightarrow L_{0}^{p}(D)$ is bounded (compact).

Proof. Let $g \in A^{2}(D)$. We know that $E(g) \in \mathcal{H}^{2}\left(\partial D_{e}\right)$. Thus

$$
\begin{aligned}
\int_{D} \mid & \left.H_{f}^{0}(g)(z)\right|^{p} d v_{0}(z) \\
& =\int_{D} \mid\left(\bar{f} g-\left.P_{0}(\bar{f} g)(z)\right|^{p} d v_{0}(z)\right. \\
& =\int_{D} \mid\left(\bar{f} S(E(g))(z, 0)-\left.S(\overline{E(f)} E(g))(z, 0)\right|^{p} d v_{0}(z)\right. \\
& =\int_{\partial D_{e}} \mid\left(\overline{E(f)} S(E(g))\left(z, z_{n+1}\right)-\left.S(\overline{E(f)} E(g))\left(z, z_{n+1}\right)\right|^{p} d \sigma\left(z, z_{n+1}\right)\right.
\end{aligned}
$$

Therefore $H_{f}^{0}$ is bounded (compact) on $A_{0}^{p}(D)$ if $H_{E(f)}$ is bounded (compact) on $\mathcal{H}^{p}\left(D_{e}\right)$. So the proof of $(\mathrm{b})$ is complete. Thus the theorem is proved.

Now we are ready to prove Theorem 3.4.
Proof of Theorem 3.4. By Lemma 3.6, we have that $H_{f_{0}}^{0}$ is bounded on $A_{0}^{p}(D)$, with

$$
\left\|H_{f_{0}}^{0}\right\| \leq C_{p}\|f\|_{B M O(D)}
$$

Thus

$$
\left\|H_{f}^{0}\right\| \leq C\left(\left\|M_{f-f_{0}} P_{0}\right\|+\left\|H_{f_{0}}^{0}\right\|\right) \leq C_{p}\|f\|_{B M O(D)}
$$

and the proof of Theorem 3.4 is complete.
Corollary 3.7. Let $D$ be a smoothly bounded strictly pseudoconvex domain in $\mathbb{C}^{n}$ and let $f \in L^{p}(D)$. Then $H_{f}^{0}$ is bounded from $A^{p}(D)$ to $L^{p}(D)$ if and only if $\left(I-P_{0}\right) f \in B M O(D) \cap L^{p}(D)$ for all $1<p<\infty$.

Note. This is the main theorem (Theorem 3.3) in [LUL].
Proof. Since $H_{f}^{0}=H_{f-P_{0}(f)}^{0}$, we have that if $f-P_{0}(f) \in B M O(D) \cap L^{p}(D)$, then $H_{f}^{0}: A^{p}(D) \rightarrow L^{p}(D)$ is bounded for all $1<p<\infty$.

Conversely, suppose that $H_{f}^{0}$ is bounded on $A_{0}^{p}(D)$. Then, for any $u \in A_{0}^{p}(D)$ and $g_{0} \in L^{p^{\prime}}(D)$, we have

$$
\begin{aligned}
\left|\left\langle H_{f}^{0}(u), g\right\rangle\right| & =\left|\left\langle\bar{f} u-P_{0}(\bar{f} u), g\right\rangle\right| \\
& =\mid\left(\left\langle u\left(\bar{g}-\overline{\left.P_{0}(g)\right)}, f\right\rangle\right|\right. \\
& =\mid\left(\left\langle u\left(\bar{g}-\overline{\left.P_{0}(g)\right)},\left(I-P_{0}\right) f\right\rangle\right|\right.
\end{aligned}
$$

By the Factorization Theorem 3.2, and $\left(I-P_{0}\right) f \in \mathcal{L}^{1}(D) \cap L^{p}(D)$ we have $\left.\left(I-P_{0}\right) f \in L_{b}^{1}(D)\right)^{*}=B M O(D) \cap \mathcal{L}^{1}(D)$ since $L_{b}^{1}(D)^{*}=B M O(D)$. Therefore $\left(I-P_{0}\right) f \in \mathcal{L}^{p}(D) \cap B M O(D)$, and the proof is complete.

Theorem 3.8. Let $D$ be either a smoothly bounded strictly pseudoconvex or convex finite type domain in $\mathbb{C}^{n}$ and let $0<p<\infty$. Let $f \in \mathcal{H}^{2}\left(\partial D_{e}\right)$. If $H_{f} \in S_{p}\left(\mathcal{H}^{2}\left(D_{e}\right), L^{2}\left(\partial D_{e}\right)\right)$, then $H_{R(f)}^{0} \in S_{p}\left(A_{0}^{2}(D), L_{0}^{2}(D)\right)$.

Proof. These assertions follow similarly as the proof of Theorem 2.7.

## 4. Final remarks

It seems natural to consider function spaces $R\left(H^{1}\left(\partial D_{e}\right)\right)$ and $R\left(B M O\left(\partial D_{e}\right)\right)$. From the preceding sections, we see that

$$
L_{b}^{1}(D) \subset R\left(H^{1}\left(\partial D_{e}\right), \quad R\left(B M O\left(\partial D_{e}\right)\right) \subset B M O(D)\right.
$$

One may use these containments to prove that

$$
R\left(H^{1}\left(\partial D_{e}\right)\right)^{*}=R\left(B M O\left(\partial D_{e}\right)\right)
$$

Further, one may obtain the following result that is similar to the theorem in Section 2 of [KL3].

Thoerem 4.1. Let $D$ be either a smoothly bounded strictly pseudoconvex or convex domain of finite type in $\mathbb{C}^{n}$. Then we have the following consequences:
(a) If $f \in L^{1}(D)$ and $f \geq 0$, then $f \in R\left(H^{1}\left(\partial D_{e}\right)\right.$ if and only if $f \log ^{+} f \in$ $L^{1}(D)$;
(b) For any $f \in L^{1}(D)$, there are $g \in R\left(B M O\left(\partial D_{e}\right)\right)$ and $h \in R\left(H^{1}\left(\partial D_{e}\right)\right.$ such that $f=g h$ and $\|f\|_{L^{\prime}(D)} \approx\|g\|_{R\left(B M O\left(\partial D_{e}\right)\right)}\|h\|_{L \log L}$.

This theorem is similar to one that appeared in Section 2 of [KL3]; now it may be proved using the restriction method. We leave the details to the interested reader.

## REFERENCES

[BeB] F. Beatrous and J. Burbea, Positive-definiteness and its applications to interpolation problems for holomorphic functions, Trans. A.M.S. 284 (1984), 247-270.
[BCZ] D. Békollè, C. Berger, L. Coburn and K. Zhu, BMO and the Bergman metric on bounded symmetric domains, J. Funct. Anal. 93 (1990), 310-350.
[BL1] F. Beatrous and S-Y. Li, On the boundedness and compactness of operators of Hankel type, J. Funct. Anal. 111 (1993), 350-379.
[CKS] D. C. Chang, S. G. Krantz and E. M. Stein, Hardy spaces and elliptic boundary value problems, J. Funct. Anal. 114 (1993), 286-347.
[CR] R. Coifman and R. Rochberg, Another characterization of BMO, Proc. A.M.S. 79 (1980), 249254.
[CRW] R. Coifman, R. Rochberg and G. Weiss, Factorization theorems for Hardy spaces in several variables, Ann. Math. 103 (1976), 611-635.
[CW] R. Coifman and G. Weiss, Extensions of Hardy spaces and their use in analysis, Bull. A.M.S. 83 (1977), 569-643.
[FEF] C. Fefferman, The Bergman kernel and biholomorphic mappings of pseudoconvex domains, Invent. Math. 26 (1974), 1-65.
[FOR] F. Forelli, Measure whose Poisson integrals are pluriharmonic, Illinois J. Math. 18 (1974), 373-388.
[JAN] S. Janson, Hankel operators on Bergman spaces with change of weight, Math. Scand. 71 (1992), 267-276.
[KRA] S. G. Krantz, Function theory of several complex variables, 2nd. ed., Wadsworth, Belmont, 1992.
[KL1] S. G. Krantz and S-Y. Li, On decomposition theorems for hardy spaces on domains in $\mathbb{C}^{n}$ and applications, J. Fourier Analysis and Application, 2 (1995), 65-107.
[KL2] , Hardy classes, integral operators, and duality on spaces of homogeneous type, preprint, 1994.
[KL3] , Factorization theorems for functions in some subspaces of $L^{1}$ and application to the Corona problem, Indiana Univ. Math. J. 45 (1995), 83-102.
[LIH] H. Li, BMO, VMO, and Hankel operators on Bergman space of strongly pseudoconvex domains, J. Funct. Anal. 106 (1992), 375-408 .
[LUL] $\frac{\mathrm{H}}{\mathrm{H}} \mathrm{Li}$ and D. Luecking, BMO on strongly pseudoconvex domains: Hankel operators, duality and $\bar{\partial}$-estimates, Trans. A.M.S. 36 (1994), 661-691.
[LIG] E. Ligocka, On the Forelli-Rudin construction and weighted Bergman projections, Studia Math. 94 (1989), 257-272.
[NRSW] A. Nagel, J. P. Rosay, E. M. Stein and S. Wainger, Estimates for the Bergman and Szegö kernels in $\mathbb{C}^{2}$, Ann. Math. 129 (1989), 113-149.
[MS] J. McNeal and E. M. Stein, Mapping properties of the Bergman projection on convex domains of finite type, Duke Math. J. 73 (1994), 177-199.
[RUD] W. Rudin, Function theory in the unit ball in $\mathbb{C}^{n}$, Springer-Verlag, New York, 1980.
[ST1] E. M. Stein, Note on the class $L \log L$, Studia Math. 32 (1969), 305-310.

Steven G. Krantz, Department of Mathematics, Washington University, St. Louis, MO 63130
sk@math.wustl.edu
Song-Ying Li, Department of Mathematics, University of California, Irvine, CA 92697
sli@math.uci.edu
Richard Rochberg, Department of Mathematics, Washington University, St. Louis, MO 63130
rr@math.wustl.edu


[^0]:    Received April 6, 1996.
    1991 Mathematics Subject Classification. Primary 47B35, 47G05, 45P05, 47A25.
    Authors supported in part by grants from the National Science Foundation.

