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A CHAIN OF CONTROLLABLE PARTITIONS OF UNITY
ON THE CUBE AND THE APPROXIMATION
OF HOLDER CONTINUOUS FUNCTIONS

CHRISTIAN RICHTER

ABSTRACT. Controllable partitions of unity in C (X) are partitions of unity whose supports fulfil a unifor-
mity condition depending on the entropy numbers of the compact metric space X. We construct a chain
of such partitions in C([0, 2] such that the span of any partition is a proper subspace of the span of the
following one. This chain gives rise to approximation quantities for functions from C([0, 2Ira) as well as
for C([0, 21m)-valued operators and to corresponding Jackson type inequalities. Inverse inequalities are
presented for HOlder continuous functions and operators.

I. Introduction

Let (X, d) be a compact metric space. C(X) is to denote the Banach space of real-
valued continuous functions on X equipped with the usual norm f sup{ If (x)l
x X}. Let us recall that a finite system {p, P2 Pk} c_ C(X) is said to be
a partition of unity if

0<oi(x) < forxX,l <i <k (l)

and
k

pi(x)
i=1

for x 6 X. (2)

In her paper [Ste], I. Stephani introduced the class of controllable partitions of unity
which are defined by a uniformity condition for the size of the supports

supp(cpi) {x X’cpi(x) 0}

of the single functions. The condition refers to the concept of metric entropy in the
space X. The k-th entropy number of a subset S _c X is given by

ek (S) inf [ e > 0 there exist points x, x_ x

in X such that S U B(xi, )
i=1
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where B(xi, e) denotes the closed ball of radius e > 0 centered in xi (cf. [Ca/Ste],
p. 7). A partition of unity {tp, 2 k} of cardinality k >_ 2 is called
controllable if

el(supp(qgi)) < ek_(X) for _< _< k. (3)

In [Ste] it is shown that controllable partitions of unity are peaked, i.e. the partition
functions are of norm 1. This notion goes back to E. Michael and A. Petczyfiski. In
their paper [Mi/Pe they prove that for any infinite compact space (X, d) there exists a
sequence (,,),,= of peaked partitions of unity n, card(,,) n, such that the spans
form an increasing sequence, i.e. span() C span(2) C span(3) C and the
union ,, span(n) is dense in C(X). ("C" denotes the proper inclusion.) One
would welcome a similar result for controllable partitions, since these can successfully
be used in approximation theory (cf. [Ste], [Ri/Ste], [Ri2]). Indeed, an increasing
sequence (span(n)),,= of controllable partition subspaces can be employed for a
successive process of approximation of continuous functions, as will be shown in
Proposition 1. In contrast with that the result of E. Michael and A. Petczyriski having
far leading consequences for C(X) spaces does not give quantitative results for the
approximation of continuous functions comparable with the classical Jackson type
theorems, which give estimates for approximation quantities of functions f 6 C(X)
by the modulus of continuity o(f, ) sup{lf(x)-f(y)l’d(x, y) < }. However,
one has to pay for quantitative results. The theorem from [Mi/Pe can not be true in all
details in the case of controllable partitions, since the property of controllability is so
sharp as to imply that controllable partitions of unity exist for the cardinalities n with
En(X < En_ (X) only (c. [Ste]). These indices n are the values of Kolmogoroff’s
entropy function N(X, e) (cf. [Ko/Ti]). For instance, the controllable partitions on
the cube ([0, 2]m dmax) are of cardinality km, for

ek,,,([0, 2]m) ek,,,+([0, 2]") e(k+) ([0, 2]m) (4)
k

for k 1,2, 3 (cf. [Ba/Pi], [B6/Ri]). The paper [Ste] closes with the adequate
weaker question for the existence of chains of controllable partitions of unity in
C(X). A chain is meant to be a sequence of partitions n, n 1,2, 3 such that
span((1)) C span((I)2) C span(3) C....

PROPOSITION 1. Let (n)n= be a chain of controllable partitions of unity in
C(X). Then ,, span() is dense in C(X). In particular: Ifcard(n) kn then
there existpositive operators An (C(X)) with An(C(X)) c_ span(n), IIAnll 1,
and llf-anfll < w(f, ek,,_(X))for f C(X),suchthatlimn Ilf -a, fll =0.

(n) (n) (n)Proof We follow an idea from [Ste]. Let ,, Itp q92 k,, }. According
to the controllability of n (cf. (3)) there exist points x (n) n) xn)X2 k,, 6 X such
that

supp (qg:")) c- B (xn) )ek,,-I (X) for _< < kn. (5)
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We define An by

k

i=1

for f e C(X).

Clearly, An /(C(X)), An(C(X)) C_ span(n) and [IAnll 1, for Anlx Ix.
An is positive with [IAn _< 1, since the values of An f are convex combinations of
f(xn)), < < k,,. Inclusion (5) implies that

kn

i=1

k.
-"(x o (f, (x)

i=1

for x s X, and hence f An f o (f, ,,_ (x)).
Moreover we have limn--, ek,,- (X) 0, since limn._, kn o, for span() C

span(2) C span(3) C ..., and limk._, e(X) 0 according to the compactness
of X. Consequently,

0 < lim IIf Anfll < lim w (f, e,,_ (X)) 0,

which completes the proof. I-1

In the following section we shall construct a chain of controllable partitions of
unity on the cube [0, 2]m equipped with the maximum metrics dmax, i.e.

dmax((Xl, x2 Xm), (y, Y2 Ym)) max Ixj Yjl.
<j<m

Corresponding approximation quantities for continuous functions on [0, 2]m as well
as for C([0, 2]m)-valued operators are defined and discussed in the third and fourth
sections. Jackson type inequalities arise as a simple consequence of Proposition 1.
The estimates will find an appropriate counterpart in inverse inequalities for Htilder
continuous functions and operators.

Finally, we shall construct a related approximation scheme E

_
E2 c_ E3 c_

in C([0, 2]m) consisting of subspaces En spanned by peaked partitions of unity
fin of cardinality n such that the asymptotics of the corresponding approximation
quantities of any Htilder continuous function f or operator T represents the modulus
of continuity of f or T, respectively.

2. A chain of controllable partitions of unity

The essential step to a chain ofcontrollable partitions ofunity on the m-dimensional
cube [0, 2]m is the construction of a chain for the one-dimensional case. Thus we
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begin with the consideration of the interval I [0, 2]. Before defining the functions
let us infer a necessary condition for the structure of the partition functions, which
will justify the following rather complicated construction. According to [Mi/Pel],
Example 4.5, a chain ofpeaked partitions of unity in C(I) can not be chosen such that
all partition functions have a continuous derivative on (0, 2). However, E. Michael
and A. Petczyfiski do not use the controllability property, which gives rise to much
harder restrictions for the partition functions, as will be shown in Proposition 2. Recall
that the metric space I has the entropy numbers

ek (I) for k 1,2, 3 (6)
k

Of course, the first entropy number of a subinterval of I is half of its length.

PROPOSITION 2. Let (dO,,) be a chain of controllable partitions of unity inn=0
C[0, 2]. Then, for any no > O, there exists a subset Dno c_ [0, 2] of Lebesgue
measure v(Dm,) 2 such that Dno -Jz I is a countable union ofintervals I and
anyfunctionfrom ,o is constant on any interval I, E Z.

(n) (n) (n)Proof. Every partition . {qg q92 qgk, gives rise to an open covering

C,, {cl" ’" """-2 ......k, by the suppoas C") supp(")). We consider the

points 2t-)
6 I, < < k. Clearly, any point is covered by at least one set C")

C(n)However, each set
_

contains at most one of the marked points, since

2

according to the controllability of ,,, whereas the distance ofany two marked points is
2at least ,-7-" Consequently, any covering set contains exactly one of the distinguished

points. We can assume that 20-1..) E C,) for < < k, Thus.

() (2i-2) 2i-1)) for <i<k,inf Cn) 6 k,,- k,,-

sup (C.)) 6 (2(i-I) 2i ) for l<i<k.k,,-i k,,-I

We define intervals

I’) [0, inf (Cn))],
In) [sup (cn),),inf(C),)] for <i <kn,
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The above inclusions show that these are pairwise disjoint intervals of positive length
in)and, moreover, that any interval I is disjoint with C’’) for j -y: i, whereas I,(’’) c_

C For the partition functions this means that

for i, j il,2 k,,}.

For all n > no, any function oi(,’,’’,) ,,,, is a linear combination of the functions
ltn)o9

(n) according to the chain condition. Therefore it is constant on any interval -i,rj
<i <k,.Weset

D,,,, I n > no, < < k,,

It remains to show that v(D,,,,) 2. On that account we give the following estimate
for n >_ no:

i=1

inf(C(2n)) +k (inf["’t")
=4 + (--sup (C))) +k (inf (C)n)) -sup (C")))

i=2

+ (inf [C’’) 2)
,.-,/,\*" 2 2
z..., \ k,,- k,,-

Letting n --, cx we obtain v(D,,,,) 2, which is the desired conclusion. IZI

The construction of a chain ),=0 of controllable partitions of unity in C(1)
starts by defining a sequence (C,,),,0 ofopen coverings whose covering sets C)

(n) in)serve as the supports supp(.oi of the single functions o ,. Accordingly, the
(n)covering sets C C,, have to fulfil the controllability condition (3). Moreover,

any open set from Cn has to be the union of sets from C,+, since any function from
n is a linear combination of functions from ,+l in accordance with span(,) C
span(+).

Let

H(n) 2 2-4i. (7)
j=n+l
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C(")’i 2, 24’’} n > 0, byWe define open coverings C,, {-i

[0, 2.2-4’’ + H(n)) for

Ci’’) (2(i 1). 2-4" H(n), 2i. 2-4" + H(n)) for

(2 (24" 1). 2-4" H(n), 2] for

i--l,

<i <24",

i=24’’"
(8)

PROPOSITION 3. (a) Any of the open coverings Cn, n > 0, is controllable in the
sense offormula (3), i.e.,

el (Cn)) <624._1(1) for 1,2 24’’.

(b) (Cn)=ofulfils thefollowing chain condition"

i--l,

<i <24"

i__24""

Proof. With the help of the fact that

H(n + 1) < 2-4‘"+’’ for n 0, 1,2 (9)

and of equation (6), a simple calculation shows that

( )_ 2-4" .2-4.,+1el C n) < 2-4"+ H(n) < + 3 <
24’’-

e24"_ (I).

Part (b) is obvious in accordance with (8). 151

Now let n > 0 be fixed. The covering Cn gives rise to a decomposition of I for
any 6 {1,2 24"}

UCR
LIn) UCLIn)UM{n)UCRn)U Rn) if

l(n) L(n) U (n) if24,, U C 24 24,,

i--l,

1<i<

24"

Li(n) and Rn) are to denote the subintervals left beside and right beside Ci("). The
"critical parts" CLIn) and CR") are the intersections of Cn) with C_), and C),,
respectively. The "middle part" Me") consists of that points which are covered by
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(n)Li i t(i n

Figure 1. General structure of

165

C)n) only (cf. Fig. 1). Consequently,

Li(n) [0,2(i- 1).2-4"-H(n)],
C-(n) (2(i- 1). 2-4"- H(n), 2(i- 1) 2-4"+ H(n))L

[0, 2.2-4’’ H(n)],
M") [2(i- 1).2-4"+ H(n),2i.2-4"- H(n)],

[2 (24" 1). 2-4"+ H(n), 2],
(n) (2i 2-4’’ 2-4"CR H(n) 2i -t- H(n)),

Ri(n) [2i.2-4"+H(n),2],

<i <24",

<i <24",
i=1,

<i <24’’,
24"

24’’1<i<

<i <24’’.

(10)

We want to construct a partition of unity @,, {qg)") 1,2 24" such that
(n) (n)

supp.i C Hence we have to define

L R M

(") Rn) t() if 24" Thewhere L U has to be replaced by R(") if and by ._24,,
---(n)crucial point is the construction in the critical regions CL and CR"). We first shall

give the definition on dense subsets ’i-l"") -c CLI") and D") _c CR"). This requires
some additional concepts.

{-1, 1}* is meant to be the set of all finite words over the alphabet {-1, 1}, i.e.
{-1, 1}* {e,-1, 1, (-1,-1), (-1, 1), (1,-1), (1, 1) where e stands for the
empty word. The length k of a word w (l, 12 lk) is denoted by Iwl; in
particular, lel 0. Let

k

h(w, n) h((ll, 12 lk), n) Z 21j 2-4’’’+j’

j=l

(12)



166 CHRISTIAN RICHTER

Figure 2. Inorder of words w with Iwl < 3

()

for w (l t, 12 1,) 6 {- 1, }*, in particular h (e, n) 0. Now let

(n) [ + H(n + [w[ 4- 1),I (to) 2i 2-4" -+- h(w n) 2.2-4(’’+1’’)+)

2i 2-4" 2-4(’’+l’q+) ]+ h(w, n) + 2 H(n + Iwl-4- 1) (13)

2#’for < < Inequality (9) ensures that 1,5") (w) is an interval of positive length.
For different words to and w’ there is a natural ordering between the intervals

(’) (w) andI I (w’). It can be described by the so-called inorder in {- 1,, }*, which
is an irreflexive ordering defined as follows (cf. e.g. [Gel, p. 446): (l l, 12 l,) -<
(1’, 1_ l’z) ifand only ifone ofthefollowing three statements is true:

(i)
(ii)
(iii)

k <k’andl, =1I,t2=1: 1=1’kandl’k+ I.
k > k’ andl! l’l, t2 l lk, lk andlk,+! -l.
There exists m {l, 2 min{k, k’}} such that Ii l’l,
12=l lm- =l’m_andlm =-l,l I.

(14)

Figure 2 shows the binary tree consisting of the words to of length Iwl < 3. The word
"inorder" is due to the fact that any word to is greater than the words from the subtree
left below w and less than the words from the subtree right below to. This means for
example for the empty word e that e is greater than any word with first letter and less
than any word with first letter 1. Consequently, the words from Figure 2 are ordered
"from the left to the right", that is (- 1, 1, 1) -< (- 1, 1) -< (- 1, 1, 1) -< -<
(--1, 1,--1) -< (--1, 1) -< (--1, 1, 1) -< e - (1,--1,-1) - (1,--1) - (1,--1, 1) --< (l, l, l) -< (l, l) -< (l, l, l). An equivalent definition can easily be verified:

(l, 12 1,) -< (l’, l l,) iff
k k’

Z lj 2-j < Z I 2-J.
j=l j--I

(15)

(n)The proof of the following proposition on the ordering of the intervals I (w) can
be carried out by discussing the three cases from (14) with the help of (7), (9), (12)
and (13).
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PROPOSITION 4. Let w, w’ c {- 1, 1" such that w -< w’. Then sup(l’) (w)) <
(" w w {- }* are pairwise disjoint.inf(I" w’) ). In particular, the intervals I

Now let
(’) (J (’) 24"D I (w) for <i < (16)

w6{-I.I}*

(n) (n) (" I (n)PROPOSITION 5. The set D is a dense subset ofthe interval CR "-"-’i+1"

(n)Proof. It can easily be checked that any interval I (w), w {- 1, }*, is con-

tained in CR"’. Consequently, D’
_

CRy"’.
(n)We prove the density of D) in CR by showing the equality of the Lebesgue

(n)measures of D") and CR In fact, Proposition 4 and formulas (7), (10) and (13)
yield

k--0 .,e{-I.I}*
Iwl=k

Z card({w "lwl k}).2 (2.2-4’’’+’+’’ H(, +k + 1))
k=0

22k(H(n+k)-2H(n+k+l))
k=0

2 2kH(n+k) Z2H(n+k)
k=0 k=

2H(n)=v(CRn)).
--(,) D,) CR")We define the function qg") on D_) c_ (jL and c_ to be constant on

each interval "(’) (’)
i-! (w) and I (w), w (11,12 lk) 6 {- 1, }*; namely

qg") ,,,,, = - y lj 2-j
i_(t,i2 tk) 2

j=l

(17)

(cf. Fig. 3) and

t’"’ ---- lj 2-j (18)

respectively. (Note that qg") has a kind of self-similar structure as the well-known
Lebesgue singularfunction (cf. e.g. [Se], p. 23).)
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(n)

(n)’-il(’n) l}n)l(),
CL

_01) (n)Figure 3. Behaviour of o on CL

PROPOSITION 6. For any n > 0 andany E 1,2 24" there exists a uniquely
(n)determined continuousfunction o C (I) subject to the definitions (11), (17) and

(18).

Proof The above definitions fix of’’) on a dense subset of I. Thus the uniqueness
is obvious.

(n) (n) (n) (n)By (ll), i is already defined on L M and R Hence is suffices to

show that (17) admits a continuous extension of9n to CLI" which fits continuously
_(,) _o) Of course, (n) (n)together with i ],,,, and % ],,,,. Pi can similarly be treated on CR;

") according to (17). Indeed,Observe that 0") is monotonically increasing on vi_

let x, y ...;_m") such that x < y Then there exist w (I1,12, Ik) w’
.in) (w) and y t(’l) (w’). If w w’ then we(l’, l; l,,) {-1, 1}* with x "i- "i-

have 9n)(x) o) (y). If w -76 w’ then w -< w’ in accordance with Proposition 4.
The equivalence (15)yields= lj. 2-j < -’=, l. 2-J. Thus we obtain 9’)(x) <

tp) (y) by (17).
Moreover, the image of 9)IDI,_,, is a dense subset of [0, 1]. Consequently,

there exists a continuous extension o’) __,,,, which fits continuously together with

0, since

lim
--(n)

x--infCLi
of"’] __,,,,(x)c,, inf (f"’ Io’"’,;_ (D"__),))=0,

with since
M

lim
--(n)x’-supCLi

q9 CL’"’ (X) sup 0 n’"’ ’i--I
i-i

This is our claim. El
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(n) 24.PROPOSITION 7. For any n > 0 the system ,, Iq9 2, }forms
a controllable partition of unity in C (I).

Proof We have

o’) ( )(1)=[0,1] and supp qg") =C

according to the above definitions. This proves (1) and the controllability (3) by
Proposition 3 (a). The second partition property (2) can be verified by considering
points x from the dense subset

fill(n) U r(n) U M(n)(n) U O(2n) U U ,..24,._1 "-"24’’MI/’/) u D(|F/) u M2 24
C I.

(n)If x E M7 then {i x E suppl,qgi {i0 and, by (1 1),

24’’

i=1

" i.e. x l) (w) with a suitable w 6 {-1, 1}* ThenOtherwise we have x 6 Di,
{i x 6 supp(qg")) {i0, i0 + and, by (17) and (18),

24’!

(n)+ (x)
i=1

This completes the proof. [2]

Next we have to verify the chain condition span(,) C span(,+). Figure 4
illustrates how a function o") can be represented as a linear combination of functions

from + on the critical region CR").

PROPOSITION 8. For any n > 0 we have span(n) C span(@,,+). In particular,

(n) +1) + ga2 + -- 23.4’1-11 n _(n+l) _(n+l) + W23"4’’ + 23"4" +1

) [ (n+) + _(n+)n) { (n+l) _(n+l) + (i-I).23"4’’+2 (i-I).23"4’’+3u-.2.4" + u-.2.4"+

) [ (n+l) _(n+l) )_(n+l) _(n+l) W i.23.4,, + < < 24’’+ i.23’4’’ --2 + i.23"4" i.23"4’’ +l

(2 -I).23"4’’ -I).23’4’’+1
_(n+l) )(n+l) + + 241’’+1)

(""+ + (24’, ).2,.4,,+3+ (24"-I)-23"4’’ +2
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!) (n+
i,2 3"4n i,23’4n +1

(11)Figure 4. o’1) on CR as a linear combination

Proof. Let io {2, 3 24" 1} be fixed. (The cases io and io 24"

admit a similar treatment.) Proposition 3 (b) shows that the supports of rio and of
the function from the right-hand side (r.h.s.) of the asserted equation coincide. Hence
we can restict our considerations to points x from the set D(n)i,,_ U Mn)i,, U D!n),o which

is dense in C!’1),,, supp(qg,’l)).
We start with x M’1) According to equations (7), (8) and (10) we obtainio

24o+

U c; )i=io.23.4

and thus

[i’x supp (0n+’)) c_ {(io-1)" 23"4"-+-2, (i0-1)" 23"4n--3 io" 23"4"--

Consequently,

i0"23’4n 24(n+l

E E -(n+l) (n)r.h.s.(x) on+) (x) Pi (x) o,, (x)
i=(io- ).23"4n -I-2 i=

by Proposition 7 and by (11).
Now let x Dn)

i,,-. Then there exists a word w (/, 12 It) {- 1, }* such
tt,1) (w). We treat the three cases w e, w -< e and e -< w separately.that x 6 "io-I

If w e, i.e x 6 I.) (e), then we observe that
1o--

,n) (e) I \ ((i0--1)’20"4’1--116--
i=1

(n+l)C; U
2401+

(n+l)C
i--(io- ).23.4" +2
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(cf. (13) and (8)) and hence

This shows that

in accordance with Proposition 7 and with definition (17).
Now let us assume that w -< e, i.e., and to (- 1,/2, 13 Ik). In the

same manner as above we can see that

/

I n) (io-i).2ti
’4’’ -2

i,,_(w) C_ I \ (n+C U
240+

)i--(io-- ).23.4" -t-

and

1/" x E supp (qgn+") } 1(/0- 1)" 23.4"- 1, (i0- 1). 23"4"}.
Thus the right-hand side of the asserted equation reduces to

_,+1) (x)r.h.s.(x) (/.)(i0_1).23.4,, (19)

Moreover, combining (13) with (12) yields

I n) (w)= I t’’) I ’’+) (12 13 lk).x E i,,_ io-(-l, 12, 13 lk) (io_1).23.4,,_1

Hence, by (17), equation (19) can be continued to

r.h.s.(x) . + /J+" 2_
k

J== =+ .=
/J’Z-J =%o (x).

Similarly, if e -< w, i.e., l 1, then we obtain

(io-o"z"i,,- (w) l \
\ i=

Ci U
24(.+

(n+ !)
Ci

).23.4" +3

hence

{i x supp {(i0 1). 234"+ 1, (io 1). 23.4"
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and thus

_(n+l)
(9

(/l’+’l) (X) + -34 (X).r.h.s.(x) (i0--1)’23"4n -"1 /(/0-- )’2" +2

Moreover, we get
<") I <") I <"+) (12 Is,.. Ik).x Ii,,-I (w) i,,-I (1,12, 13 lk) (i0_!).23.4,,+1

-+) and (17) to -+)Applying (18) to ,,,_ ).2.4,, + ,,_).2.4,’ +2 we can rewrite (20) as

r.h.s.(x) -lj+,.2-j + + lj+, 2-j

j= j=

(20)

(n)This completes the considerations for points x Dio_ .
(n) (n)The remaining proof for x Dio runs as for x Dio_ H

Propositions 7 and 8 show that (n)=0 is a chain of controllable partitions of unity
in C(1). Thus the consideration of the one-dimensional case is complete. Finally,
we obtain a chain (Pn) of partitions of unity in C([0, 2]m) by puttingn=0

{l,.tn) "il,i2 imE{l 2 24" ] withkiln w(i.i2; ira)
(21)

lit
n, (X, X2 Xm) )(XI)gi(;’(X2) gi(,,’(Xm)(i.i2 i,,,)

The typical graph of a function iq .i2) on [0, 2]2 is displayed in Figure 5.

THEOREM 1. qn n__o is a chain ofcontrollablepartitions ofunity on ([0, 2]m, dmax).

Proof It remains to verify the controllability of P,, which means that

e supp \’i,.i2 i,,,) < e(24")"’-I([0’ 2]m)
24"

according to (3), since card(q6,) (24")m and to (4). We obtain the required estimate
by

e (supp [t,

l<j<m \\’// 24"-

(Note that we use the same symbol ek(.) for entropy numbers with respect to the
different metric spaces [0, 2] and I.) This completes the proof.
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Figure 5 Graph of a function iq ,i2)

3. Approximation properties

Obviously, the linear spaces span(qJ,,), n > 0, can serve as an approximation
scheme on the Banach space C([0, 2]’"). The corresponding approximation numbers
of a function f 6 C([0, 2]’") are given by

E (f, span(q,,)) inf{ f span(q,,) for n >0

(cf. e.g. [Bu/Sch], p. 50). We apply Proposition to the chain (P,,),,=0 and obtain

Ilf- A,,fll <_ co(f, 4,,_), where A,,.f span(q,,). This gives a theorem of Jackson
type.

THEOREM 2. Let f C([0, 2]m) and n > O. Then

E(f, span(q,,)) <o9 f,
24"-

A related concept for approximating linear operators T 6 (E, C([0, 2Ira)) from
a Banach space E into C([0, 2]m) is based on the approximation quantities

E(T, span(tP,,)) inf{ liT All" A 6 Z2(E, C([0, 2]m)), A(E) C_ span(,,)

for n > 0. Let us recall that the modulus of continuity co(T, .) of the operator T is
given by

og(T, 6) sup og(Tz, 6)
Ilzll_<l
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(cf. [Ca/Ste], p. 174). Similarly, as above, we obtain liT AnTII <_ co(T, 24’-p-_) by
Proposition 1. This in particular shows that T limno An T if T is compact, since
compactness of T is equivalent to lim+0 co(T, 3) 0.

THEOREM 3. Let T (E, C([0, 2]m)) be an operatorfrom a Banach space E
into C([0, 2]") and let n > O. Then

E(T, span(q,,)) < co T,
24,_

Inverse theorems refer to the concept of H61der continuity. A function f 6

C([0, 2]m) is-called H61der continuous of type or, 0 < c < 1, if

Ifl= sup
>0

co(f, $)

Analogously, one can define the value IT I and the concept of H61der continuity of
an operator T E(E, C([0, 2]m)) (cf. [Ca/Ste], p. 196). The goal of this section is
the proof of the following results.

THEOREM 4. Let f C([0, 2]m) be non-constant and H61der continuous oftype
O < ot < 1. Then

lim inf
E (f, span(qn))

THEOREM 5. Let E be a Banach space and let T (E, C([0, 2]m)) be H6lder
continuous of type , 0 < ct < 1, such that the image T (E) does not consist of
constantfunctions only. Then

lim inf
E(T, span(,))

The above estimates depend essentially on the definition of the partition functions
(n)from ,,, n > 0, in the regions CRn) and CL We start the considerations with a

(n)proposition on the distance between intervals I (w) which form the dense subsets

Di
’)

_
CRin) CL+.n) Later on, when approximating a H61der continuous function

f, the numbers k appering in Proposition 9 will be chosen in dependence on the
coefficient c of H61der continuity.
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PROPOSITION 9. Letk > and let w w2 W2 w {- 1, }* wl <
24"k} such that w -.< w2 -< -< w2k_ . Then,for any n > 0 and any < <

min (l(i")(w,)) max (Mn)) 2H(n + k),

min (ln)(wt)) max (ln)(wt_,)) 2H(n + k) for l<t < 2k,

[,
/ai+,! max Ili’")(w2,_,)! 2H(n +min k).
\ ! \ !

Proof. Clearly, w (- 1, 1) and w2,-l (1, 1) with wl
Iw2,-l k 1. (In particular, w w2,_l e if k 1.) One easily obtains the
first and the third equation from (10) and (13).

So let < < 2k. We consider the word Wt-l (l, 12 /Iw,_l). The ordering
of the words with respect to -< (cf. (14)) implies the following: If Iwt-l < k
then wt (l, 12 /Iw,-.I, 1,- 1,- -1) with wtl k 1. Otherwise, if
Iwt-i k then wt must contain at least one letter 1, since wt- -< w2,_

and Iwt-II Iw2,-1. Thus we have wt- (l, 12 ls-l, 1, 1, 1) where
s max{ < r < Iwt-ll lr }. This gives wt (l, 12 l._l).
Now it is a simple calculation to infer the asserted equation from (13). rl

The following two propositions are the central statements for the proof of Theo-
rems 4 and 5. Let us remark that we do not demand that the right-hand sides of the
considered estimates be non-negative for all f, n, k or T, n, k, respectively.

PROPOSITION 10. Let f C([0, 2]m) and n, k {0, 1,2 }. Then

2k
E(f, span(,)) >_

2(2k + 1) o9(f’ 2 (2-4’’- H(n)))--2(2k / 1)
o9 (f, 2H(n + k))

Proof. There exist points x0 (xl,, x, X(m’), x, (xl", x2
(’, X(m,)

[0, 2]m such that

o9(f, 2(2-4" H(n))) If(xo) f(x,)l,
dmax(Xo, x) _< 2 (2-4" H(n)). (22)

We have [0, 2]m (MIn) to CRIn) v M(2n) to CR(2n) t.J tO M(n)-24./" and, by (10),

diam(M")) > 2(2-4" H(n)). Hence, for any < j < m, there exists an index

M(’) tO CR. tO M(n) Consequently,rj 6 {1,2 24" 1} such that x) x) ’)
r. r.+,"

XO and x belong to the following subspace Y

_
X:

XO, Xl -.
\--r

tO r 1Vlr+l )<... X , r,,, r,,,+l Y" (23)

Figure 6 illustrates the situation for rn 2.
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Figure 6. The subspace Y

Let 6 span(q*,) be fixed arbitrarily. We shall show that

IIf-Pll >
2(2k + 1)

2k
oo (f, 2 (2-4’’ H(n)))- 2(2# + 1)

We have

oo (f 2H(n + k)) (24)

l/f E )k’(il,i2, ,i,,,)" ,i: i,,,) (25)
(i,,i2 i,,,)G{ 1,2 24" }’"

---(n)where supp(lp(il,i2 i,,,))- supp(q97)) x supp((p)) x...x supp(q9, )) according to
(21). We consider the following set Iv of indices:

Iy I(i, i2 im) {12 24"}m supp(+i’ )Y + l,i2 im)

{(rl -+- sl, r2 -+- s2 rm 2t- Sm) S1,$2 Sm G {0,

,t, (’) (i i2,.. im) Iy} is a partition of unity on YAccordingly, {r(i.,i2 im)lY ’and Plv is a linear combination of this partition with the coefficients ,k(i,,2 i,,,),
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(i, i2 im) E It. Hence #t(x) is a convex combination of these numbers for any
x E Y. We choose extremal coefficients such that

for x e Y (26)

with fixed uj, vj e {0, 1}. Without loss of generality we assume uj <_ vj for <

j _< m. (If uj > vj then the j-th coordinate xj has to be replaced by 2 xj, which

is nothing but a reflection of the cube [0, 2]m.) We define Y0 (I), 0) (m0))
and #, (#I 1), #2’),..., #m)) by

.0)
/ -(n) )\Mrj+umax

(1)
J /. n)min M+)

if Uj Uj,

if uj # vj (i.e. Uj- O, Uj 1).

(27)

(28)

.(n)
X M(n) M(n) and (n) -(n)Thusweobtain0 6 M;,+u, r2+u2 X...X r,,,+u,,, Mr+v XMr2+v X...X

M(") and, therefore, #t(0) )(r,+u, r2+u2 r,,+u.,) and() ,kCr,+v, r+v r,,,+o,,)r,,, +v,,,
by (25). With the help of (22), (23) and (26), this yields

laP(.o) aP(X’)l I.(r,+.,.rz+u= r,,,+u,,,)- )(r,+v,,r2+v2 r,,,+o,,,)l
max p (x) min p (x)
xY xY

>_ Iq(xo) q(x)l

> If(xo) f(x)l- If(xo) P(xo)l- IP(xt) f(Xl)l

>_ to (f, 2 (2-4" H(n))) 21If PlI. (29)

Moreover, (27) and (28) together with (10) give

dmax(-o,-#1)
<_m Xj

max M(n)< (min ( rjA- ) max
l<j<m

2H(n).

Accordingly, by (29),

co(f, 2H(n)) > If(o)- f()l

> laP(o) ()1- Ir(o) f(o)l- If()

> to (f, 2 (2-4" H(n)))
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This yields

ill ii

_
(f, 2 (2-4" H(n))) - to (f, 2H(n)),

which is our claim (24) if k 0.
Now let k > 1. We consider the set {w, 1/32 W2k_l} {W 6 {--1, 1}*

Wl < k} with w -< w2 -< -< w2_! as in Proposition 9. We define points
Y0, Y! y2k_ and z , z2 Z2 where

Yo 20 and Z2 2. (30)

(t) (t)The j-th coordinates of the remaining points yt (Y Y2 y(mt)) and zt
(Z (!t)(t) -(t) 2kZ2 ’m ), _< < are given as follows (cf. Figure 7)"
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7(t) =(0)Ifuj vj then we puty’) _j =xj for all < < 2k We havey)
0) ~() -(2k) by (28). Thus we obtain-x

1")zj -yj --O<_2H(n+k) for t 2k, (31)

9 z --9 for t <2 9span(*)

Otherwise, if u # v, i.e., uj 0 and v 1, then we define

(32)

Zj \ r, yj max (wt)
\ rl

for <t <2k.

Any function from span(n) is constant on the intervals I (w). Thus we obtain

(j,)) (y)t))q0 z q) for < < 2k, q) 6 span(n). (33)

Definitions (30), (27) and (28) give

=(0) ((n))_(2Xj max Mr. ,j

Thus we can apply Proposition 9 and get

(’)
zj yj 2H(n + k)

From (31) and (34) it follows that

/. (n) )2) 1) min Mrj+!

for <t <2k., (34)

dmax(Zt, y,-) < 2H(n + k) for <t <2k. (35)

Formulas (32) and (33) show that P(n)(z,) P(n)(y,) for any < < 2 and any
function p() q by (21). Thus, by (25),

(z,) P (y,) for < < 2k.

On account of (30) we conclude that

IPOT0) P(7)I IP(yo)- P(ze,)l
2

_< (IP(y,-) P(z,)l / IP(z,) P(y,)I) -4-I(y2-) (z2)l
t=l

2- I(Y,-) (z,)l.
t=l

Hence there exists an index to 6 1,2 2k such that
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From this and formulas (35) and (29) we obtain

o9(f, 2n(n + k)) > If(Y,,,-)- f(Zto)l
> IP(Y,o-1) (zt0)l- laP(yto-1) f(Yt,,-)l- If(z,,,)

>_ 2 I(0) ()1- 2llf ll
2

2 (f, 2 (2-4"- n(n))) IIf 11- 21If 11

2 (f, 2 (2-4’’- H(n)))-
2(2k + 1)

2k f II.

Consequently,

2k
IIf Pll >_

2(2k / 1)
o (f, 2 (2-4’’ n(n))) 2(2 / 1)

o9 (f, 2H(n + k))

This is our claim (24). Ul

PROPOSITION 11.
{0, 1,2 }. Then

Let E be a Banach space, T
_
(E, C([O, 2]m)) and n, k

2’E(T, span(n)) _>
2(2 + 1)

o9 (T, 2 (2-4’’ H(n)))- 2(2 + 1)
o9 (T, 2H(n + k))

Proof. According to Proposition 10 we can estimate the norm T A for any
A .(E, C([0, 2]m)) with A(E) C_C_ span(n) as follows"

liT All sup IITz- Azll sup E(Tz, span(q,))

( 2k )> sup 2(2t,’+,) o9 (Tz, 2 (2-4" H(n))) 2(2,+1) o9 (Tz, 2H(n + k))
Ilzll_<l

sup co (Tzi, 2 (2-4" 2k> 2(2k+I) H(n))) 2(2+1) sup o9 (Tz2, 2H(n + k))
Ilzll_<l Ilzzll_<l

2a’+) o (T, 2 (2.4’’ H(n))) a’+ o (r, en(n +

Passing to the infimum over all operators A completes the proof. U!

Next we need a statement on the behaviour of the modulus of continuity of H61der
continuous functions and operators, respectively. We shall prove this fact for the wider
class of metrically convex compact metric spaces X instead of X [0, 2] A space
(X, d) is called metrically convex if for any two points x, y 6 X and any 6 (0, 1)
there exists apoint z 6 X such that d(x, z) )d(x, y)and d(z, y) (1-,k)d(x, y).
This concept is due to K. Menger (cf. [Me]). The modulus of continuity co(f, .) of
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a function f C(X) has the property of subadditivity if X is metrically convex,
i.e., co(f, g + g2) < co(f, g) + co(f, g2) for g, g2 > 0 (cf. [Go]). In particular,
co(f, kg) < k co(f, g) for k 6 1,2, 3 }, g > 0. Clearly, if T is an operator from a
Banach space into C(X) then co(T, .) has the same property.

PROPOSITION 12. Let (X, d) be a metrically convex compact metric space, 0 <
ot <_ l, and let co(.) be the modulus of continuity of a function f C(X) or of an
operator T (E, C(X)) mapping a Banach space E into C(X), such that f or T
is HiIder continuous oftype or, respectively. Suppose that f is non-constant and that
T (E) does not consist of constantfunctions only, respectively.

Then, for any functions g, g2 (0, 0) (0, OC)) with g o(g2) as g --+ -t-0
and lim+o g2(g) O, we have

co(g (g))
lim
+0 co (g2 (g))

Proof. We assume co (.) co(f, .). (The same proof works if f is replaced by T.)
Note that co(gz(g)) > 0, since f is non-constant. According to the H61der continuity
there exists g0 > 0 such that

(o) ()
>- sup go 21fl"g 2 >0

Let g > 0 be fixed. We can assume that g is sufficiently small so that g2(g)
Then there exists > 0 such that

2zg2(g) _< g0 < 2I+ g2(g).

This implies that

co(gl (g)) co(g (g)) 2 co(g0) Ifl (g (g)) 2 co(2I+g2(g))
co(gz(g)) co(gz(g))I/1 g)’ co(gz(g)) I/1

4 go
< 2

(g (g))’ 21+ co(gz(g)) 4 21 (gl (g))’ < (g
o(g:()) g:()

Passing to the limit as g -- +0 gives our claim, for g o(g2). [-1

Now a lower estimate for the approximation quantities, even slightly sharper than
Theorems 4 and 5, can be given.

PROPOSITION 13. Let f C([O, 2]m) be non-constant and H61der continuous of
type or, 0 < ot <_ 1, and let k > 0 be chosen such that 4-(’+) < ot < 1. Then

E(f, span(q%))
lim inf >
,--,oo co (f, 2 (2-4’’ H(n))) 2(2’ + 1)
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Moreover, i[E is a Banach space and the operator T /2(E, C([0, 2]’")) is HiJlder
continuous oftype ot such that the image T E) does not consist ofconstantfunctions
only, then

E(T, span(q6,))
lim inf >
"--’ w (T, 2 (2-4’’ H(n))) 2(2 + 1)

Proof. Proposition 10 gives

E(f, span(q6,))
lim inf
,,- co (f, 2 (2-4’’ H(n)))

2

2(2 + 1) 2(2 + 1)
a)(f, 2H(n + k))

lim sup
,,-+oo o)(f, 2 (2-4’’ H(n)))

(36)

Now we consider the functions G(n) 2H(n + k) and G2(n) 2(2-4" H(n)).
Clearly, lim,,_c Gz(n) 0. Moreover, G]’ o(G2) as n -+ oo. Indeed, defini-
tion (7) and estimate (9) yield

(G(n))
lim
,,400 Gz(n)

lim
(2(2.2-4’"++" + H(n + k + 1)))’*

,,+oo 2(2-4"- 2-2-4’"+’’-H(n+ 1))

< lim
(2 (3 2-4’"++"))c

,,---,oo 2 (2-4"- 3" 2-4’’’+’’)
6 2-#"+a+l

< lira, 2-4"
lim 6 2-4’’(4+’’-I) O,

for ot 4(+) > 0. Hence we can apply Proposition 12 and obtain

o(f, 2H(n + k)) (f, G,(n))
lira lira O.

,,--,oo co (f, 2 (2-4" H(n))) ,,-,oc (.o(f, G2(/’/))

Combining this with (36) gives the desired estimate.
The estimate for the operator T can similarly be obtained from Proposition 11.

Proofof Theorems 4 and 5. Let oe and f be as in Theorem 4. We choose k > 0
such that 4-(k+!) < ot _< 4-k. Then Proposition 13 yields

E(f, span(*,,))
lim inf > >
,,oo o9(f, 2(2-4"-H(n))) 2(2k+ 1) 2 or-5 +l

(37)
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On the other hand, 2 (2-4’’ H(n)) > for n > 1, since

(-4,, ,)
_

(-4,,- . -4,,,+,, , + ,)
(-4,,- . -4,,,+,,)_ (’- . -.4,,)

24’’

2(1- 3.2-3"4) 5

24" ’24’’
>

24"-

by (7) and (9). Consequently,

E(f, span(q,,))
lira inf
n---, oo

O.)

Combining this with (37) completes the proof of Theorem 4.
Obviously, the same proof works for Theorem 5.

E (f, span(q,,))
> lim inf

,,oo co (f, 2 (2.4" H(n)))"

183

4. A completed approximation scheme

Although Theorems 2-5 give pleasant error estimates, the above approximation
scheme has the essential disadvantage that the dimensions dim(span(qn)) 2m’4’’

increase rapidly. In the sequel we shall complete the scheme such that we obtain a
chain (n)= ofpeaked partitions of unity n on [0, 2] ofcardinality card(n) n

with similar approximation properties. Of course, the partitions will not be
controllable in general.
We begin with the definition of a chain (,4,) of partitions of unity 4,/=0

[14’ 4’ 4’
2 q4, on the interval I [0, 2]. We shall use the partitions ,,

n > 1, constructed in the second section in order to preserve the approximation
properties for the new scheme. Besides that, we try to choose the additional partitions
as simple as possible, such that a function qS4’) is closely related to the characteristic

function of the interval [2(i- 1).4-t, 2i .4-t]
_

I. Clearly, ()4"- {q(11) {110,21}.
For any > we introduce the corresponding exponent e(1) {0, 1,2 }by

4el/ 24e" 24"11+4 +1 -1 (38)

If 4 24""> then we let 4, dPe(l), i.e., we use the partitions introduced in the
second section. In particular,

q41) q3e(l)) for < < 4.
24e/)If 4 > then we define 4, {qS(l4’), q"}(41)2 41:(41) by
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Proposition 8 implies that these formulas remain valid if 4’ 24’’’’.

,1 <i <4’,

PROPOSITION 14. ((I041)/=0 is a chain of peaked partitions of unity on I with

card(4,) 4’, such that 24,, ,, for n > 1. Moreover, the partition functions
fulfil the uniformity condition

7 4-’81 (supp (q#)))__<
for < < 4I.

Pro@ We have to show that )4 span(4,+,) for >_ O. Clearly, this is true
for O. So let > 1. If e(1) e(1 + 1) then the above definition gives

q#4 ~(4I+ (4t+ (41+ (4t+
q)4i-3 -- (4i-2 -- q4i-I -- q4i

If e(1) < e(1 + 1), i.e. e(1 + 1) e(1)+ 1, then we have 4’+ 24’’’+’’, since 4’+

must be the smallest integral power of 4 in {24""1+ 24’"+ -t- 24e+2 1} by
(38). Consequently, 41+, e0)+ and therefore 41

___
span(4,+,)again by the

above formulas.
The second part of Proposition 14 is trivial if 0. If > then we observe

1)that supp(q34’)) is the union of the supports C)e(’)+) of certain functions 0e’)+ We
obtain

[0, 2.4-’ + H(e(1))), 1,

(q34’)) (2(i-1)-4-’-H(e(1)), 2i.4-’+H(e(1))), <i<4’,supp

(2(4’ 1). 4-I H(e(1)), 2], 4l,

in accordance with (8). This yields

e, (supp (q’4/))) < 4-’+ ,(e(,,).

On the other hand we can give the estimate

4-’ > 4.2-4""+’ for > 1.

(39)

(40)
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24"(/+ .4e(t)+ < .4e(t)+Indeed, (38) implies that 22/ 4’ < hence < 7 7
.4,,,+ 2_4,,,+and therefore 4-’ > 4- +1 4

Finally, (39), (7), (9) and (40) amount to

’1 (supp (q4’))) < 4-’+3 2-4’’t’+’ 4-’ 3.4-’-- 7-4-t<

which is our claim. !-I

Now we can introduce the chain (q,,)= of peaked partitions of unity on the
cube [0, 2]m. If n 4m! for some > 0 then we define 4,,,, by the aid of the
one-dimensional functions from (4 as in the second section, that is,

/4,,,/ ’r(4’’’/) "i i2, imE{1 2, 4’}] with’t" (i1,i2 ira)

(4 q4/) (4/)(X) (X2)/r(4 (X X2 Xm) i, (Xm)."t" (i ,i2 i,,,) I,

(41)

(Note that ./4,,,t klle(l) if 4’ 24e"’.) The remaining peaked partitions , of
cardinality card(,) n 5 4m! have to be chosen such that the chain condition
span(l) c_ span(2)

___
span(3)

_
remains valid. The existence of such

partitions (or, in other words, the existence of suitable intermediate spaces being
isometrically isomorphic to l) is based on Lemma 3.2 from [Mi/Pe2]" Ifthe subspace
E ofl is isometrically isomorphic to lr (r < s), then there is a subspace F E of
1 which is isometrically isomorphic to l

Corresponding approximation quantities can be defined as in the last section. We
obtain the following estimates from above.

THEOREM 6. Thereexistpositiveoperatorsn (C([0, 2]m)),n > 1,mapping
C([0, 2]m) into span(,) such that:
(a) For any f C ([0, 2]m),

(b) For any Banach space E and any operator T _.(E, C([0, 2]m)),

E (Z, span (lln)) lit- nZll 7o)(Z, 6n([0, 2]m)).

Proof. Let n be fixed. We choose > 0 such that 4m’ _< n < 4m(’+l). Proposi-
tion 14 and definition (41) show that

s, (supp (,7 4’’’> )) max s, (supp (+,.4/>)) <7.4
for (i, i2 im) 6 1,2 41}m. Hence there exist points x<+,.; +,,,) such that

(,Tr (4’’’t) ) C B (x{i,,i, i,,,) 7.4-<’+)) (42)supp ke(i,i i,,,) .......
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Let
IAml7t,,f f (x(i, i i,,,)) a,"’r(i I,i2 i,,,

(i ,i2 i,,, )E{ !,2 4 }’"

for f C([0, 2]’). Clearly, n is a positive operator with An(C([0, 2]m))
span(4,,,,) _c span(n). As in Proposition we obtain

f _/7,,f < co (f, 7.4-0+’))

by (42). The subadditivi’ty of co(f, .) and formula (4) give

Ili ;.III-< 4-(1+1))- 7co(f, t4,,,,,+l, ([0, 2]m)) < 7co(f, en([0, 2]m)).

This is the desired estimate. Part (b) is a simple conclusion.

Again we can prove inverse estimates for H61der continuous functions and opera-
tors, respectively.

THEOREM 7. (a) Let f C([0, 2]m) be non-constant and H61der continuous of
type oe, 0 < oe <_ 1. Then

lim inf
E(f, span())

>
co (f, e([O, 2]m)) 16 2oe-5 +

(b) Let E be a Banach space and let T L;(E, C([0, 2]m)) be H61der continuous of
type oe, 0 < oe < 1, such that the image T(E) does not consist of constantfunctions
only. Then

s ao (<))
lim inf >
--, co(T, e([O, 21m)) 16 2oe- +

Although the main ideas coincide with those of the last section, we present the main
steps of the proof of Theorem 7. As the analogue of Propositions 10 and we obtain
the following.

PROPOSITION 15. (a) Let f C([O, 2]m), > and k > O. Then

E (f, span (k/4,,,,)) > 2(2k + 1)co (f, 2 (4-’- H(e(/))))
2k

co (f, 2H(e(1) + k)).
2(2k + 1)
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(b) Let E be a Banach space, T L;(E, C([0, 2]"’)), > and k > O. Then

( ()) (T, 2 (4-’E T, span /4’"’ > 60 -H(e(1))))
2(2k + 1)

2k
co(T, 2H(e(1)+k)).

2(2k + 1)

187

Proof We decompose the support of the function q4’) G (iozlt into the middle part

C" (4/) C--(41) _01)4’) and the critical parts L and R as we did with the functions

in the second section. According to the definition of q54’) we obtain

dt(4t)(inf (sHpp ((/9(e(l)+ -2t))sup(Supp{(e(l)-t-’)q)(i_ ).24,,1/1+ _2/+(i-- 1).24e(/)+. )))
C-" (4t) (e(I))for < < 4t. We observe that L is nothing but a translate of CLj

(e(/)+l) andCet)) admits a similar representation with 0(j_1).23.4,,1/I< j < 24e", since CLj

o(e(/)+l) because of Proposition 8 Moreover, the graph (),(the restriction of)
(j ).23 4e(/)

(4/) (e(1)) (e(1))
to dt coincides with the graph of the restriction of q)j to CLj since

(1/2 (e(I)+,) ) (D(e(1)+’) )1[ (e(I)-I-I) -t- (/9(i .24e1/)+1_21+ -" 1).24et1+1 L411q’@41 Idg:4/) ,(’/9(i ,.24"’/’+ 1-2/ -1) (i- -/+2

and

( ) _(e(/)+l)_(e(I)) [ (e(/)+l) (e(/)+l)

_
(D(j-I) "2’4’1/)(Dj ]CL ’e’/), 5 (/9(j_1).23.4,"1’ + (/9(j_l).Z34e’l’+l q-2 CL

Of course, the situation is analogous for C-R (4/)
4< < Hence we can define

C--- (4/) dE(4/)
intervals (4/)(1/)) /i i+!’ W 6 {--1, 1}*, such that q4/) behaves on

and !41’(t0) as @Je(,,, on /j(2(I’)(l/))and l)e(l"(ll)), respectively (cf. (17),

8)). In particular, Proposition 9 applies to the intervals/74’) (w) asfar as H (n + k)
is replaced by H (e(1) + k).

The intervals/f/4’). on which the value of 4’). is 1, are

[0, 2.4-’ H(e(1))],
/]J/4/) [2(i 1). 4-t + H(e(1)), 2i. 4-t H(e(l))],

[2(4- 1). 4- + H(e(1)), 2],

iml,

1<i<4t,
4t.
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We note that

’diam (/1)4’’) > 2 (4-’- ,(e(1)))

for < < 4t.
Using these observations we can follow the proof of Proposition l0 when re-

placing n M") CLI") CR") and I"’(.)by e(1) /4’), C-L and (.),
respectively.

Part (b) of Proposit!on 15 can be inferred from part (a) as Proposition 11 from
Proposition 10.

PROPOSITION 16. Let f C([0, 2]m) be non-constant and HOlder continuous of
type or, 0 < ot <_ 1, and let k > be chosen such that 4-k < ot < 1. Then

E (f, span (4,,,,))
lira inf >,-, co (f, 2 (4-’ H(e(1)))) 2(2k + 1)

Moreover, if E is a Banach space and the operator T (E, C([0, 2]m)) is HOlder
continuous oftype ot such that the image T (E) does not consist ofconstantfunctions
only, then

E (T, span (4,,,,))
lim inf >
,--, co (T, 2 (4-t H(e(1)))) 2(2k + 1)

Pro@ We consider the functions Gl(1) 2H(e(1) + k) and G2(1) 2(4-/

H(e(1))). One can show that G o(G2) as cx by formulas (7), (9) and (40).
Then the proof of Proposition 13 applies. I-1

ProofofTheorem 7.
4m(l+l). Obviously,

Let n be fixed. We choose > 0 such that 4ml < n <

E(f, span(n)) >_ E (f, span (4,,,,+,,))
Using formulas (7), (9) and (40) we get the estimate 2(4-(/+) H(e(l + 1))) >
2(4-(1+) 3 2-4’’+’+) > 2(4-(/+) 3.4-(/+)) 4-/and thus obtain

co(f, en([0, 2Ira)) < co (f, e4,,,,([0, 2]m)) co (f, 4-/)
4-/ (4-(/+)< 8CO (f, g" ) _< Sco(f, 2 H(e(l + 1)))).
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Now we choose k > such that 4-k < ot < 4-k+. Proposition 16 yields

lim inf
co(f, en([O, 2]m)) 8 I--, co(f, 2(4-(/+ ’) H(e(1 + 1))))

(+ ) - +

which is our claim.
Obviously, the same proof works for T instead of f.

Let us point out two simple conclusions from Theorems 6 and 7. The first one
summarizes the fact that the modulus of continuity o(., en([0, 2]m)) of any H61der
continuous function f 6 C([0, 2]m) or operator T (E, C([0, 2]m)) has the same
asymptotics as the approximation quantity E(., span(n)).

COROLLARY 1. (a) Let f C ([0, 2]m) be a H61der continuous function. Then
there exists a constant cf > 0 such that

cf.og(f, en([0, 2]m))_< E (f, span (n)) < 7 o(f, en([0, 2]m))

for all n > 1.
(b) Let E be a Banachspace and T (E, C([0, 2]m)) a H61dercontinuous operator.
Then there exists a constant cr > 0 such that

for all n > 1.

COROLLARY 2. (a) None of the functions f span(q,), n > 0, is H61der con-
tinuous sofar as it is non-constant.

(b) Let E be a Banach space and let T (E, C([0, 2]m)) be an operator with
T(E) c_ span(n) such that the image T(E) does not consist of constantfunctions
only. Then T is not H61der continuous.

Corollary 2 shows in particular that the partitions of unity b, do not contain H61der
continuous functions and that the operators given by Theorem 6 are not H61der con-
tinuous.

Finally, we note that the chain (q) gives similar results on any metric spacen=l
([0, 2]m, d) apart from controllability if the metrics d is equivalent to dmax, so that
Theorems 6 and 7 and Corollary admit obvious generalizations. Indeed, the prop-
erty of H61der continuity of functions and operators is not influenced by the change
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from dmax to d and, moreover, the entropy numbers of ([0, 2]’", d) have the same
asymptotics as the entropy numbers of ([0, 2]m, dmax). For instance, the above ap-
proximation scheme can be used on the cube [0, 2]m equipped with the Euclidean
metrics d2 or on the m-dimensional Euclidean ball with the Euclidean metrics, since
this metric space is isometric to a suitable space ([0, 2]m, d).

5. Concluding remarks

Let us conclude with’a remark on chains of controllable partitions of unity on arbi-
trary compact metric spaces (X, d). In [Ri/Ste] the related concept of a controllable
partition of X is introduced. This is a finite partition 79 of the set X into pairwise
disjoint subsets which fulfil the same uniformity condition (3) as the supports of con-
trollable partitions of unity. A chain (79,,)n0 of partitions of the space X is meant
to be a sequence of partitions such that any member 79,, is a proper refinement of the
preceding one. It is proved in [Ri| that any compact metric space (X, d) possesses a
chain of controllable partitions of X. For certain totally disconnected compact met-
ric spaces X, the characteristic functions of the partition sets from the controllable
partitions 79,, are continuous and, accordingly, form controllable partitions of unity.
Obviously, a chain of controllable partitions 79,, of that type gives rise to a chain of
controllable partitions of unity. In particular, I. Stephani has shown in this way that
there exist chains of controllable partitions of unity on the Cantor set 2 (private
communication).

As a first step to the general case, the author was able to prove the following fact by
methods from [Ril]: Any infinite compact metric space (X, d) possesses a sequence
(Cn) offinite open coverings such that any covering Cn is controllable in the sensen=l

of(3) and any open setfrom C, is a union ofsetsfrom C,+. Is it possible to use these
coverings as the systems of supports of a chain (,)= of contollable partitions of
unity in C(X)?

The author wishes to express his thanks to I. Stephani for suggesting the problem
and for many stimulating conversations.
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