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TOTAL CURVATURES OF CONVEX HYPERSURFACES
IN HYPERBOLIC SPACE

ALEXANDR A. BORISENKO AND VICENTE MIQUEL

ABSTRACT. We give sharp upper estimates for the difference circumradius minus inradius and for the
angle between the radial vector (respect to the center of an inball) and the normal to the boundary of a
compact h-convex domain in the hyperpolic space. We apply these estimates to get the limit at the infinity
for the quotients Volume/Area and (Total k-mean curvature)/Area of a family of h-convex domains which
expand over the whole space. The theorem for the first quotient gives an extension to arbitrary dimension
of a result of Santal6 and Yafiez for the hyperbolic plane.

1. Introduction

In 1972, in the course of the study of some problems of geometric probability in
IHI2, L. A. Santal6 and I. Yafiez [SY] proved the following result: Let {g2(t)}t+ be
a family of compact h-convex domains in H2 which expands over the whole space.
Then limt__, Area((t)) We shall explain some of the concepts involved inLength(0ft(t))

this theorem. A domain in the hyperbolic space Hn+ of sectional curvature -1 (and
dimension n + 1) is a closed subset of Hn+ with interior not empty. An h-convex
domain (or convex by horoballs in the terminology of [AC]) in the hyperbolic space
]HI’+1 of sectional curvature -1 (and dimension n + 1) is a domain f2 C If-If"+ with
boundary 0f2 such that, for every p 0, there is a horosphere 7/of H’+ through
p such that f2 is contained in the horoball of ]HI"+ bounded by 7-(. This 7-( is called a
supporting horosphere of f2 (and of Of2). We say that afamily ofdomains {C(t)}t/
in IHIn+ expands over the whole space (e.o.w.s. in abreviated notation) if for any
x H"+ there is a to such that, for every > to, x C(t).

The above Santal6-Yafiez Theorem is in hard contrast with the situation for convex
Area(ft(t)) c. Santal6 and Yafiezdomains in euclidean space, where lim,__, Length(0ft(t))

conjectured that their result will be still true for convex domains in H2. By showing
a counterexample, E. Gallego and A. Revent6s [GR] have proved, in 1985, that this
conjecture is not true.

No attempt to solve the problem in general dimension was made until very recently,
when A.M. Naveira and A. Tarrfo [NT] gave a version of the Santal6-Yafiez Theo-
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rem for n odd and families {92(t)}tR+ of h-convex regular (with smooth boundary)
domains which expand by parallels over the whole space.

Here we shall prove a general version of the Santal6-Yafiez Theorem for any family
of h-convex domains e.o.w.s., and for any value of n. We shall even allow 092 to
be non-smooth. Our approach will be completely different from that of Santal6,
Yafiez, Naveira and Tarrfo. In particular, we shall not use the isoperimetric nor the
Gauss-Bonnet formulae.

The key facts of our proof will be the first two theorems that we state now and
which have an independent interest. They give estimates of some metric invariants
of h-convex domains. To get these estimates we define some model domains with
two singular points (that we shall name the "worst h-convex domains" in Section 2).
These domains realize the bounds that we shall state in Theorems and 2, and will
be compared with general h-convex domains to get the theorems.
We need to recall some definitions.
Given any domain 92 C Hn+l, an inscribed ball (inball for short) is a ball in

H"+ contained in 92 with maximum radius. Its radius is called the inradius of 92. A
circumscribed ball (or circumball) is a ball in ]I-]In+l containing 92 and with minimum
radius. Its radius is called circumradius of 92. Our first theorem will be an estimate
for the difference between the circumradius and the inradius of a compact h-convex
domain.

Also recall that if 92 is a convex domain in Hn+l then 092 is a topological embedded
hypersurface, which is C2 except for a set of zero measure.

THEOREM 1. (a) Let 92 be a compact h-convex domain. Let o be the center ofan
inball of 92. Let r be the inradius of 92 and r tanh . Then the maximal distance
maxd(o, 092) between o and the points in 092 satisfies the inequality

maxd(o, 0f2) _< r + In
(1 + /-)2
l+r

< r+ln2.

In particular, if R is the circumradius of 92, then

R- r < In
(1 + /’-)2

< In2.
l+r

Moreover this bound is sharp.
(b) If {92 (t)}t+ is afamily ofh-convex domains expanding over the whole space,

o(t) is the center of an inball of 92(t), and r(t) and R(t) are the inradius and the
circumradius of 92(t), respectively, then

lim (maxd(o(t), 092(t)) r(t)) lim (R(t)) r(t)) ln2.

This theorem will be the basic fact for the next estimate, that we shall state after
recalling another definition. Given an h-convex domain 92 and a point p 6 092, a
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vector N TpH"+ is said to be normal to Oft at p if it is normal to a supporting
horosphere of ft at p. When Oft is smooth at point p, then N is normal to Oft if and
only if it is normal to TvOft.

THEOREM 2. Let ft be a compact h-convex domain. Let o be the center of an
inball offt. Let r be the inradius offt and r tanh . Let us denote by the distance
to o and by Oe its gradient (in Hn+). Then, at every p Oft andfor every unit vector
N normal to Oft at p, one has

tanh2 (p) + r 2
I(N, Oe)(p)l > >

tanh 7(p)(l + r) + r

Moreover this bound is sharp.

The estimate given by this theorem is the unique specific property of h-convex
bodies that we shall use in the proof of the generalized Santal6-Yafiez Theorem. Our
next theorems will be true for any family of compact convex domains e.o.w.s, and
satisfying the estimate given by Theorem 2. This is philosophically similar to the idea
in [GR] of getting sufficient conditions on the support functions of convex domains
e.o.w.s, to have a positive answer to the Santal6’s conjecture in the hyperbolic plane.
The generalization of the theorems of Santal6-Yafiez and Naveira-Tarrfo that we shall
prove is the following:

THEOREM 3. Let {ft (t)}t+ be afamily ofh-convex domains expanding over the
whole space. Then

volume(ft (t))
lim
t volume(0ft (t)) n

The next estimate is a natural continuation ofthe above research. It gives a bound on
the quotient of the total k-mean curvature of an h-convex hypersurface by its volume.
Again, this in contrast with the analog situation in the euclidean space: the limit
for this quotient for a family e.o.w.s, is 0 for convex hypersurfaces in the euclidean
space and for h-convex hypersurfaces in/HI"+ We shall state the theorem for not
necessarily smooth h-convex hypersurfaces Oft, for which the concept of total k-mean
curvature Mk still makes sense, generalizing the definitions for convex hypersurfaces
in n+l, as we shall detail in Section 6. Now we will only say that when Oft is
smooth,

Mk (Oft) H/x, with H

where S is the k-th elementary symmetric function on the principal curvatures of Oft
and g is the volume element of Oft.

To prove the theorem we again use Theorem 2 and some special laplacians intro-
duced by Reilly in [Re I]. The statement of the theorem is:
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THEOREM 4. (a) Let f2 be a compact h-convex domain. Let r be the inradius of
Thenand r tanh 7"

4r Mk (Of2)
< cothk + In

+ r(1 + r)2
cthk r <

volume(O) 2/-(
r

Moreover this bound is sharp.
(b) If{f2 (t) }t+ is afamily ofh-convex domains expanding over the whole space,

then

Mk(Of2(t))
lim
t- volume(Of2 (t))

In the definition of h-convexity, we may substitute the supporting horosphere by
a supporting equidistant hypersurface of constant normal curvature ,k. Then we have
a ,k-convex domain in the hyperbolic space Hn+l, where 0 < ,k < 1. For ,k 0 we
get the usual convexity in Hn+l, and ,k gives the h-convexity. For ,k-convexity
(,k - 0), it is possible to generalize Theorem 2 and give some estimates (only for one
side) for Theorems 3 and 4.

Although we have stated all our theorems for boundaries of convex domains, and
then for embedded convex hypersurfaces, recent results on immersions which are h-
convex made possible to state the theorems in a more general form. In fact, J. Currier
(in [Cu]) has shown that h-convex immersions of smooth compact hypersurfaces are
embedded spheres. This result has been generalized to immersions of non smooth
manifolds by the first author and Vlasenko, which proved the following.

THEOREM [BV]. Let F be a topological manifold of dimension n > 2, and let
f: F - "+ be a topological immersion satisfying thefollowing conditions:

(a) It is locally convex at any point.
(b) It has a locally supporting horosphere at any point.
(c) F is complete with the metric induced by f

Then f is an embedding and f(F) is the boundary of an h-convex body f2 in
II’’+ Moreover, either O f(F) is compact and homeomorphic to the sphere S
or Of f(F) is a standard horosphere.

Furthermore, suppose the immersion f satisfies thefollowing condition:

(d) At some point Of f(F) has a strong locally supporting horosphere.

Then O f F) is also compact.

Then we have:
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COROLLARY. Let F be a topological manifold of dimension n > 2, and let
f: F ---, H"+ be a topological immersion satisfying the conditions (a) to (d) ofthe
above theorem. Then f(M) is compact and the boundary ofan h-convex domain f2,
and the inequalities of Theorems 1, 2 and 4 are satisfied.

The plan of the paper will be the following: In Section 2 we give some necessary
background, we establish the model of IHIn+ we shall work with, and will define
and give some properties of the "worst h-convex domains". Sections 3 to 6 will be
devoted to the proof of Theorems to 4. In Section 7, bounds using the intrinsic
distance in 092 will be discussed.

Acknowledgements. This work was done while the first author was Visiting Pro-
fessor at the University of Valencia in the first semester of 1997, supported by a
"Subvenci6n para estancias de investigadores extranjeros en r6gimen de afio sabitico
en Espafia". He wants to thank that university and its Department of Geometry and
Topology for the facilities they provided. Both authors want to thank A. M. Naveira
by some talks that they had about the subject of this paper.

2. The "worst" h-convex domains

In this section we describe the h-convex domains generated by two points in ]HIn+

First, we recall some concepts and state some notation. A horosphere of IH[2 is called
a horocycle. Let p, q 6 ]HIn+l and let ]HI2 be any 2-dimensional complete totally
geodesic subspace of ]HI"+ containing p and q. There are only two horocycles in
H2 passing through p and q. The set {p, q} divides each one of these horocyles into
three connected components. The bounded one is called a horocycle segment from
p to q (or betwen p and q). It is known that a domain g2 of ]HI+ is h-convex if and
only if for every p,q g2 all the horocycle segments from p to q are contained in

In this paper, we use for Hn+l the model of a ball/3 in IR+ with center at 0 and
radius 2 endowed with the metric (cf. [dC, p. 179])

I(X12
__

_+_ 2 (dx2 +"" + dx2.,+’ )"
(1 a Xn+l ))2

In this model, the horospheres are the spheres contained in /3 and tangent to its
boundary, the straight lines through 0 are geodesics in I[-]I"+ and the identity map on
/3 preserves the angles corresponding to the hyperbolic and euclidean metrics on/3.

Given two points p, q in ]I-]I"+ we denote by h(p, q) the h-convex domain gen-
erated by {p, q}, that is, the minimum h-convex domain containing {p, q}. Then
h(p, q) is the convex domain having as boundary all the horocycle segments from p
to q. If we take the center 0 for/3 to be the midpoint o between p and q, h(p, q)
is the body enclosed by the revolution surface Oh(p, q), around the axis joining p
and q, generated by the smallest arc of circle between p and q of a circle tangent to
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Figure Figure 2

the boundary of/3 and passing through p and q (see Fig. 1). When we work with
this model, by euclidean radius, euclidean distance we mean the corresponding
radius, distance in/3 with the euclidean metric. The distance in the hyperbolic
space will be denoted by "dist", and the euclidean distance will be denoted by ,,,4

,-*e

In this section we shall give some properties of the domains h(p, q). Given two
points p, q Hn+ pq will denote one of the horocycle segments between p and q,
and by p--- we denote the geodesic segment from p to q.

PROPOSITION 2.1. Let p, q IIn+l, and let o be the midpoint of-ff. Ifs denotes
the arclength of-pff such that -ff(O) p, we shall denote by Ys the geodesic segment
from -ff to pq and orthogonal to -ff, and by o(s) the angle between Ys and pq at
the intersection point. Then we have"

(a) 99(dist(p, o)) zr/2 and and o(s) rc/2 for every s 5 dist(p, o).
(b) Thefunction l: [0, dist(p, q)] + defined by l(s) length(E) has one and

only one maximum at dist(p, o) (which corresponds to the geodesic ’dist(p,o)
startingfrom o).

(c) The inball ofh (p, q) is unique and has its center at o.

Proof. Let H2 be the totally geodesic plane containing and pq. For any
s e [0, dist(p, o)[, the geodesic segment YL is in a circle with center RL at the axis
y 0 which intersects the boundary of the model ball at point p. Let S be the center
of the circle containing the horocycle segment pq and let Q. be the intersection point
of E and pq. Then tp(s) is equal to the supplement of the interior angle 0 at Q of the
triangle S Q., R.. We observe that the triangles S Q.R and op R, satisfy de (P., R)

de(Qs, Rs), de(Ps, o) 2 > de(Qs, S), de(o, Rs) < de(S, Rs). Then 0 is greater
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than the interior angle at p of the triangle opRL, namely zr/2, so o(s) < n/2. A
similar argument shows that qo(s) > zr/2 for s 6] dist(p, o), dist(p, q)]. On the other
hand, is obvious that o(dist(p, o)) r/2, which finish the proof of part (a).

From the first variation formula it follows that
d
--l(s) cos go(s),
ds

and part (b) follows from (a).
From the symmetry of h (p, q) in the model, it follows that the points at maximal

distance from 0h (p, q) are on the geodesic segment -’-. Among these, it also follows
from (a) and the formula above, that the maximal distance between p- and Oh(p, q) is
given by/(dist(o, p)) dist(o, adist(o,p)), where we follow the notation in the proof
of (a). Since the geodesics through o are the straight lines through o, the distance
from o to any other point in Oh(p, q) is larger than/(dist(o, p)). Then the ball with
center o and radius dist(o, Qdist(o,p)) is the unique inball of h(p, q). []

PROPOSITION 2.2. Let o be the midpoint of-ff. Let us take the model ball 13 (of
]HIn+l with center at o. If R and r are the circumradius and the inradius ofh (p, q),
respectively, and 2r is the euclidean radius of the inball, then de(o, p) 2/’,
r tanh 7, and

R-r=ln
l+r

Proof. If IHI2 is any totally geodesic surface of JHIn+ containing p and q, then
h (p, q) f3 JHI2 is the h-convex domain generated by p and q in ]I-]I2, that is, the set of
points in the interior of the set bounded by the two horocycle segments in ]HI2 between
p and q. The inball B2 has center at o and its boundary 0 B2 is tangent to the above
horocycle segments at (0, 2r) and (0,-2r). Then the horocycle of ]HI2 tangent
to 0 B2 at (0, 2r) has center (0, r 1) and euclidean radius + r (see Fig. 3). The
intersection of 7-( with the axis x consists of the points (4-24%, 0), the coordinates of
the points p and q. Then

l+rIn
l-rf02r ds

IS2
r dist(o (0, 2r))

and
2/-( ds +R dist(o, p) s2

In
4%-"a0 -From these expressions we get the formula of the proposition. 121

Given a ball B in ]Hn+l with center o at the center of the model ball/3, and with
euclidean radius 2r, a worst h-convex domain generated by B is any one of the h-
convex domains h(p, q) generated by two different points p and q on a geodesic
through o and at euclidean distance 24’ from o. Then B is the inball of this h (p, q).
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Figure 3

From now until Section 6, given any convex domain , a unit vector N normal to
0f2 will be chosen pointing outward. With this choice, for 0e as in Theorem 2, we
have I(0e, N)I (0e, N).

PROPOSITION 2.3. Let o, p, q and r be as in Proposition 2.2. Let m Oh(p, q),
N(m be a unit vector normal to Oh(p, q) at m, and Oe be the gradient ofthefunction
e(m) dist(m, o). Then

<N(m),Oe(m))
(m) + r 2c’tanh2 g >

tanh-(m)(l + r) + r

and this bound is the limit of <N(m), Oe(m)) when m goes to p or q.

Proof. In the model, we have Iml d,, (o, m), and 0e (m) is in the direction of m.
Moreover, if p m =/= q, then N is in the direction from the center of the horocycle
7-( through p, m and q to m (see Fig. 3). In the plane containing p, q and m we
will have the coordinates p (2/-, 0), q (-24%, 0), and (0, -1 + r) for the
center of 7-/. Since the radius of 7-( is + r, we have Im (0, + r)l + r and

Iml2 / (-1 + r)2 2<m, (0,-1 + r)> (1 + r)2. Then

(2.3.1)
m m-(0,-l+r) ) [m[2+4r

(N(m),Oe(m))=
Iml’ Im-(0,-l+r)l 2lml(l+r)

flmlThis proves the equality, because (m) ao (1/(1 1/4sZ))ds 2tanh , so
-t2+4rIml 2tanh e(’--2) The function f() 2,+r’i’ is decreasing in g if g 5 2f,

2_4rbecause f () 2+i) 0. Then, since Iml 2, the minimum value of

(N(m), Oe(m)) is that given in (2.3.1) for Iml 2, and this proves the inequality.
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3. Proof of Theorem I

Let B be the inball with center o and radius r. Let p’ e 0g2 such that maxd(o, Oft)
dist(o, p’) Let us suppose that dist(o, p’) > r + In t+vq)2 Let tr be the geodesicl+r
line through o and p’, and let p be the point in cr between o and p’ and at distance

r + In (!/47)2 from o Let q be the point ( p) in cr such that dist(o, p) dist(o q)l+r
(see Fig. 4). From Proposition 2.2, B is also an inball of h(p, q). Let H" be the
totally geodesic hypersurface through o orthogonal to tr. Let D B t3 ]I-]I". It follows
from Proposition 2.3 that the horocycle segments from p to 0D are orthogonal to the
geodesics starting from o. The horocycle segments/3 from p’ to 0D belong to ft
(since it is h-convex), and they lie outside h(p, q) (because, if q’ is the intersection--
different from p’mof the horocycle containing/3 with the geodesic r, then h (p’, q’)
is an h-convex domain containing p and 0 D, and so contains all the horocycle seg-
ments between p and 0 D). Then the angles at points Q e 0D between the horocycle
segments and the geodesics starting from o are greater than zr/2. Therefore, it
follows from Proposition 2.1 that the inradius r’ of h (p’, q’) is greater than r. From
the h-convexity of ft, it follows that the part h+ (p’, q’) of h(p’, q’), which lies in the
side bounded by ]HI which contains p and p’, is contained in ft. From Proposition
2.1 it follows that the center o’ of the inball B’ of h (p’, q’) lies in cr between o and p’
(and is different from o), so o’

From the description of the inball B’ of h(p’, q’) given in Section 2, we see that
all the points in h(p’, q’) at distance r’ from o’ are in the geodesics starting from o’
and orthogonal to or. Then distance r0 := dist(o’, 0 D) > r’, because the geodesic
from o’ to any Q 6 0D is not orthogonal to

Let Q be a point in the boundary S_ of B_ B h+(p’, q’). The geodesic
triangle with vertices oo’Q has an interior angle at o greater than zr/2. Then, from
the cosinus law,

cosh(dist(o’, Q)) > cosh(dist(o, o’)) coshr coshr0, (3.1)

where the last equality follows again from the cosinus law applied to the triangle
o’oP, with P D S_, which has interior angle at o equal to zr/2. From the
inequality (3.1)we have dist(o’, Q) > r0 > r’. Then B’ C B_ tO h+(p’, q’) C ft,
but the radius of B’ is larger than the inradius of ft, which is a contradiction. This
finishes the proof of Theorem 1.1 (a).

To prove part (b) we shall need the following result.

LEMMA 3.2. Let ft(t) be a family of h-convex domains e.o.w.s., and let r(t) be
the inradius off2(t). Then,for every r0 > 0, there is a to > 0 such that r(t) > rofor
every >_ to.

Proof. Given r0 > 0, let B0 be a ball with center o and radius r0 in ]HI’’+ Let
h(p, q) be a worst h-convex domain generated by B0. Since {f2(t)} e.o.w.s., there is
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N(p’)

\ i(p)

Figure 4 Figure 5

a to 6 + such that p, q 6 g2 (t) for every > to. But, since the g2 (t) are h-convex,
we have B0 C h(p, q) C (t). Then r(t) > ro for every > to. I-1

From this lemma we have

(1 + x/’)2

lira (R(t) r(t)) lira (R(t) r(t)) <_ lim In In 2,
t-- oo )--+ cx: ql.. T

and this is the best bound, which is attained, among others, at the family {h(p(t),
q(t))},+, where p(t) (24-, 0), q(t) (-2/, 0) and r tanh(t/2).

4. Proof of Theorem 2

Given p 6 Of2, let 7-/be a horosphere which is orthogonal to N(p) at p and
bounds a horoball which contains f2. Let 7-(2 be the horocycle intersection of 7-/and
the totally geodesic hyperbolic plane ]I-]I2 through p .tangent to Oe(p) and N(p) (see
Fig. 5). (If N(p) and Oe(p) have the same direction, we take as H2 any of the totally
geodesic hyperbolic planes through p tangent to Oe(p).) Obviously, H2 contains the
geodesic through p tangent to Oe(p). Then it contains o. If h dist(o, 7-(2), then

r < h < (p) <_ maxd(o, 02) < r + In
(1 + V/--)2

l+r

Let K (r) be a worst h-convex domain in H2 generated by the disk Br of center
o and radius r. From Proposition 2.2, the function on OK(r) takes values in

[r, r + In +,q)2], so there is a p’ in OK(r) such that e(p’) e(p). Also, let usI+r
denote by N(p’) the unit vector normal to OK(r) at p’ and pointing outward. Then
we have:

PROPOSITION 4.1. (N(p’), Oe(p’)) < (N(p), Oe(p)).
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Proof. Let us denote by Ip[and IP’I the euclidean distances from p and p’ to o.
Then e(p) e(p’) implies IPl IP’I. Let 2 be the euclidean distance between o
and 2. Since p is in the horosphere of center (0, -1 + ) and radius + , then
Ip-(0,-1 +)1 +, and, from this, we get-(p, (0,-1 +)) (4- Ipl2)/2.
Then

p p (0, -1 -+- ) \ [p12 + 4
(N(p), Oe(p))= ]-p-, IP- (0,-1-+-)l ] 2lpl(l-+-)"

And, since pl p’l, similar computations give the same expression for (N(p’), 0e (p’))
It’l.2+4t its derivative is given bybut with ? replaced by r. But, if f(t) 2]pl(l+t),

f’(t) 21pl(l+t)24-lp12 > 0 (since Ipl < 2), and, since - > r (because h > r) we
have f() > f(r). I-I

Now Theorem 2 follows from Proposition 4.1 by applying Proposition 2.3 to
OK(r).

5. Proof of Theorem 3

Let 2 be a compact h-convex domain, and let o be the center of an inball of
Let us consider spherical geodesic coordinates of ]HIn+l with origin at o. In these
coordinates, the volume form 09 of f2 has the expression to sinhn (e)de/ v, where
e is the distance to o and v is the volume form of the unit sphere Sn in "+ (see, for
instance, [Gr2]). From the definition of v we have v(Oe 0. Then

v to, (de/x v) where t0, denotes the interior contraction with 0e. (5.1)

For any u in the unit sphere S" C TolHI+ let (u) be the length ofthe geodesic segment
from o to 0f2 tangent to u at o. Since f2 is h-convex, the map u - exPo l(u)u, from
S" to Of2, is a C’l homeomorphism, and it defines a system of spherical coordinates
for 0f2. In order to compute the expression in these coordinates of the volume form
of, we take an orthonormal basis el en of Tp2 at any point p 6 Og2 where
0f2 is C2. By (5.1), we get

v(e e,) (de A v)(0e, el en) (de A v)((Oe, N(p)).N(p), e en)
(e,N(p))

sinh" (e(p)) (de/x v)(N(p), el en)
sinh" (e(p))
(Oe, N(p))
sinh" (e(p))

because N(p), e en is an orthonormal basis of H"+l and sinh"(e)de/ v is the
volume form of Hn+ From the above formula and the fact that/z(el en) 1,
we get

sinh" e(p)
U v. (5.2)

(Oe, N(p))
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Then, from (5.2), the expression of the volume in these coordinates, and the estimate
of Theorem 2, we have

ft.) sinh" e de A v 2rvolume(Q) fs,, ao >
volume(Of2) fs,, sinh"<,,N______S_t,) V + r

f(l(u)) (5.3)

where

fs,, g(l(u)) sinhn l(u)v /’tu) sinh’.
f(l(u)) and g(l(u)) de.

fs,, sinhn l(u)v lao sinh" l(u)

Computing as above, but using (0e, N) < instead of Theorem 2, we have

volume(f2)
< f(l(u)).

volume(;9 f2)
(5.4)

But a straightforward computation gives

lim g(l(u))=-,
)---o ?l

and, from this, it is easy to check that

lim f(l(u)) (5.5)
t(u)o n

Now, it follows from Lemma 3.2 and formulas (5.3), (5.4) and (5.5) that if f2 (t) is a
family of h-convex domains e.o.w.s., then

volume(f2 (t))
> lim >-

n , volume(;gf2 (t)). n

This finishes the proof of Theorem 3.

6. Proof of Theorem 4

First we shall prove the theorem when ;9f2 is C. In this case we recall that the
k-th mean curvature Hk of ;9f2 at x 6 ;9f2 is defined by Sk ()Hk, where Sk is the
k-th symmetric function of the principal curvatures of ;9 f2 at x for a given orientation.
We shall use the -laplacian (the laplacian associated to a (1, l)-tensor over

;9f2 which is self-adjoint and has divergence zero). This laplacian (cf. [Re 1,2], [CY],
[Ro] and [Mi]) is defined by

([-I/f)(p) (lp(Vei grad f), ei), (6.1)
i=1
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where {el en is any orthonormal basis of TpOft, p . Og2 and grad is the gradient
in Oft. It satisfies

[=],p f lz --dtp(grad.f)ld and then f !--1, f# O, (6.)

where we recall that # is the volume form of Oft.
Let us denote by I the identity map on each tangent space of Oft, by L the Wein-

garten map of 0 ft associated to N, and let Tk be the (1, )-tensor defined inductively
by

Tk Sk I L o Tk_ and To I, (6.3)

or, more explicitely, Tk Sk I Sk_ L +... + (- l)k Lk. Then Tk is self-adjoint and
has divergence zero (see [Re 1,2] and [Ro]), and the following identities hold:

(k + l)Sk+ tr(L o Tk) and tr T, (n k)S,, (6.4)

We denote by 0ex the gradient of in Oft, which is the component of 0e tangent to
Oft. In general, for any vector X tangent to ]HIn+ at a point in Oft, Xq- will denote
the projection of X onto the tangent vector space to Oft at this point.

It is known that the Weingarten map S() of a geodesic sphere of radius in ]HI"+

is S() -coth()l (cf. [Gr2]). Then, if V and V are the covariant derivatives in
]I-]In+l and Oft respectively, we have

VeiO (’eiOe)-!- (ei (0e, N)N)-r -(S(e)(ei (el, Oe)Oe)) -r + (Oe, N)Lei
coth (ei (ei, Oe)Oir) + (0e, N) Lei,

and, from this formula, (6.1) and (6.4), we have

[--lT,e ’((Vei O, rkei)

-cothe {(ei, Tkei)- (ei, 0e)(0e-!-, Tkei)}- (0e, N)(Lei, Tkei)
i=1 i=1

cothe{(n k)S, (0-, Tt, Ove)}- (k + l)(0e, N)S,+. (6.5)

Since ft is convex, the eigenvalues of L have constant sign. Now we choose
the direction N in such a way that all of them are positive (this is just the opposite
direction of that used in the preceeding sections). With this choice, all the Sk are
positive, and it follows from the recurrence formulae (6.3) that all the eigenvalues hi
of T are positive. If {e e,, is an orthonormal basis of TpOft diagonalizing T
(or L,.cf. IRe 1,2]), we have

i=1 i=1

< ,kil0-I2 tr Tk 10-I2 (n k)S,IO-I2.
i=1

(6.6)
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On the other hand, by integration of (6.5) along 0f2, and using (6.2), we have

(-(n k)Sk + (TkOr, 0-)) cothe tx f (Oe, N)(k + l)Sk+/z.

But it follows from inequality (6.6) that

-(n- k)& + (TkO-, } < (n- k)Sk(-I + I0-12) O.

(6.7)

(6.8)

From this inequality and (6.7) we get

(n k)S{N, 0e) 2 cothe/z f (n k)Sk(-I -I-10e-Vl 2) cothg/z

< f (Of, N)(k + l)Sk+l Iz f (-(n -k)Sk + (TkO-, Oev))cothr/z

f((n -k)Sk -(TkO, 0eq-))cothe # < f(n -k)Sk coth e #, (6.9)

because the election of N makes (TkO-[, 0-) >_ O. If we write the quotient to be
bounded as

fo S+/z fo S+/z foa(Oe, N)(k + l)Sk+/z
volume(0) fa(0t, N)(k + l)&+ # volume(0f2)

from (6.9) and the expression (5.2) we get

sinh" i(u)fs,, St+ <o,,u> v foa(n k)S,(N, Oe) 2 coth #
fs,,(k + l)Sk+ sinh# l(u) v volume(Of2)

f0a Sk+ #

volume(O f2)
sinh" l(u)fs" Sk+ <Oe,U) V foa (n k)S, coth e/z

fs,,(k + l)St,+sinh l(u) v volume(O f2)

Taking into account that r < l(u), < maxd(o, 0if2), and using Theorem and the
2v7fact that, by Theorem 2, > -(N, 0e) > T-, we have

"r cothrn-k fonsk#
(1 + r)2 k + volume(Off2)

< f192 Sk+l#
volume(02)

l+rn-k ( (<
2%- k+l

coth r+ln 1+ + r volume(O2)
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When k 0 we get

4r fa.s,u l+r ( ( 2x/ ))(1 + r)’------n coth r < <ncoth r + In +volume(0ft) 2x/- + r

Then, by induction, we have

( 4r

(1 + r)2
(cthr)k < ff ()H #

volume(0ft)

<
2x/

coth r+ln 1+
l+r

This proves the inequalities of Theorem 4. If we have a family ft (t) of h-convex
domains e.o.w.s., taking r and r cx in the last inequalities we have

lim fa. Ht/z
1,

,--, volume(0ft)

which finishes the proof of Theorem 4 when Oft is C.
When Oft is not C, we first have to define Mt(0ft). The motivation for our

definition is similar to that in the euclidean space 11"+ (cf. [Sch, page 202], where
the total k-mean curvature is called the k-th generalized measure curvature). In "+1,
the volume of a hypersurface F, parallel to a convex hypersurface F at distance is
given by a polynomial in of the form

volume(Fr) Mi
i=0

and the coefficients Mi are the total i-th mean curvatures of F.
To give the analog definition for convex hypersurfaces F in Hn+ let us consider

the projective model (also called the Cayley-Klein or Beltrami model) for Hn+ (cf.
[Ba]). In this model, the geodesic segments in H"+ are straight line segments in a
ball of .+. Then convex domains in H+ are convex domains in R"+, and the
following results for compact convex domains in R"+ (cf. [BF] or [Sch]) are also
true for compact convex domains in Hn+:

(i) Given a convex hypersurface Oft in H"+, there is a sequence {0ftm of C
convex hypersurfaces which converges (in the Hausdorff distance on the space of
compact subsets in H"+) to Oft.

(ii) If rm and r are, respectively, the inradius of ftm and ft, then limm__, rm r.
(iii) Limm--, volume(0ft7) volume(0ftt).
It is known that for any C hypersurface {Oft"} in H"+l (see [Sa, page 321] and

[Grl, Th. 4.4]) we have

volume(0ftT’) M(Oftm) cosh"-k sinh t, (6.10)
k=0
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where

Mk(ig") f Hk #.

From (iii) and (6.10) it follows that

volume(Of2t) M(Of2)coshn- sinh t,
k=0

(6.11)

and we define the total k-th mean curvature of0 as the coefficient M(0) in (6.11).
It is obvious that M(82) limm. M,(Of2m) and M,(Of2) does not depend on the
sequence O-m converging to 0.

Now, let us suppose that is h-convex. Although the Of2m may not be h-convex,
since they converge to 892, the infimum{ (N, Oe)(Pm), Pm E 2m converges to the
infimum{(N, Oe)(P), P E Of2} 24%/(1 + r), and the estimates of part (a) of
Theorem 4 are still valid for O.-m if we substract 6m from the lower bound and add
6m to the upper bound, with 6m 0. This finishes the proof of Theorem 4 when Of
is only an h-convex hypersurface with no regularity condition.

7. Relations with the intrinsic diameter

All the bounds given in Theorems 1-4 are stated as functions of the inradius of the
h-convex domain f2. Here we relate this inradius (and also the circumradius) with
the intrinsic diameter of ;9f2.

PROPOSITION 7.1. Let 892 be a compact h-convex hypersurface ofHn+l and let
f2 be the h-convex domain bounded by f2. Let d be the intrinsic diameter ofOf2, and
r and r be as in the preceeding sections. Then

d<rsinh(r+ln(l+/)2)l+r

Proof. Let o be the center of an inball of . It follows from Theorem that f2
is contained in the geodesic ball B with center o and radius R0 r + In !+vq)2

l+r
The intrinsic diameter of the sphere B, the boundary of B, is zr sinh R0. For every
point x 6 0 B, the orthogonal projection of x onto 0f2 is the point x’ 6 O g2 such that
dist(x, 02) dist(x, x’). Given any rectifiable curve c in OB and its orthogonal
projection c’ in 0, it follows from the version for the hyperbolic space of the
Busemann-Feller Lemma (cf. [MI]) that length(c’) < length(c), and it follows from
this that d < r sinh R0, as we wanted to prove. IZI

For the relation between d and the circumradius R, we shall use:
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LEMMA ([De]). Let S be a compact domain in ]I-]I"+ with extrinsic diameter D
and circumradius R. Then

2n
sinh

D
n +

> sinh R.

With the help of this lemma we shall prove:

PROPOSITION 7.2. Let Of be a compact h-convex hypersurface of"+ and let
f2 be the h-convex domain bounded by 2. Let d be the intrinsic diameter ofOf2, and
let R be the circumradius of 2. Then

> sinh R.
2n d

n+12

Proof. Let D be the extrinsic diameter of O. Let p, q 6 8 such that
dist(p, q) D. From the h-convexity of f2, it follows that h(p, q) C f2. From an
argument using the version for the hyperbolic space of the Busemann-Feller Lemma
as in Proposition 7.1, we get that the intrinsic diameter do of Oh (p, q) satisfies do < d.
But do is equal to the length of a horocycle segment from p to q. A computation
using the model of the ball for Hn+l, and parametrizing the horocycle segment pq
by ((1 + r) sin t, + r + (1 + r) cos t) gives

arctan 2 + r) 4d0=2
2-(r2+ +(r2- l)cost)

dt=
l-r

And, using the fact that D dist(p, q) 2 dist(o, p), which is given in the proof of
Proposition 2.2, we have

v/d + 4 + do d2 + 4 + dD
In < In

2 2 2

and the result now follows from Dekster’s Lemma. I--I
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