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HILBERT POLYNOMIALS OVER ARTINIAN RINGS

CRISTINA BLANCAFORT AND SCOTT NOLLET

ABSTRACT. This paper characterizes Hilbert functions and Hilbert polynomials of standard algebras over
an Artinian ring Ro.

Introduction

Let R0 be an Artinian ring. A standard algebra over R0 is a graded ring S, finitely
generated as R0 S0-algebra by elements of degree 1. That is, S R/I, where
R is a polynomial ring with coefficients in R0 and I is a homogeneous ideal. The
Hilbert function of S, denoted by Hs, is given by Hs(n) )t,, (S,,), where . stands
for length. For n >> 0 it holds Hs(n) Ps (n) where Ps is a polynomial, the Hilbert
polynomial of S.

The purpose of this paper is to describe the possible Hilbert functions and Hilbert
polynomials of such standard algebras. In the case of a field, these questions were
initially addressed in Macaulay’s pioneering work [9]. His results were strengthened
and extended by Sperner 11 ], Hartshorne [8], Gotzmann [6], and Stanley 12]. More
recently, Green’s remarkable paper [7] has stimulated new interest in the subject. A
number of papers generalizing these results to settings other than standard k-algebras
have appeared over the last few years.

The present paper completes work begun in [1], where Hilbert functions and
polynomials are characterized over Artinian local rings R0 which contain a field. The
proofs of necessity there use hyperplane section arguments. These are not easy to
find without a base field, so we use a different method here: the quotients associated
to a composition series for R0 allow us to reduce the questions to the case of a field.
This method also gives analogs to Gotzmann’s regularity and persistence theorems
(see [6], [7]).

The paper is divided into two sections. The first section describes the Hilbert
polynomials over an Artinian ring and includes an analog to Gotzmann’s regularity
theorem. The second section characterizes the Hilbert functions and gives a general-
ization of Gotzmann’s persistence theorem.
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1. Hilbert polynomials

The question of which polynomials occur as Hilbert polynomials for a proper
subscheme of over a field k has been studied since Macaulay ([9]; see also [I 1,
[81, 111 l). The answer can be stated as follows.

PROPOSITION I.I. Fix an integer r > 0 and let p(z) E Q[z]. Let k be afield.
Then thefollowing conditions are equivalent.

(I) p(z) is the Hilbert polynomial ofa proper subscheme X C
(2) There exist integers mo > m > > mr- > 0 such that

p(z, ,__,r-’[(+t)_ (z+t-m,)]r=o + +
(3) There exist integers r > c > c2 > > c. > 0 such that

p(z)
z + ci (i I)

i=1 ci

(4) There exist integers 0 < q < r and < ao < a < < aq such that

p(z) (z + r) -- (z a, + r t)r t=O r

Proof. Conditions (I) and (2) are equivalent by [8], Corollary 5.7. Conditions
and (3) are equivalent by I], Theorem 4.5, where this was more generally proved

for subschemes over an Artinian local ring containing a field. The equivalence of
(I) and (4) occurs due to Macaulay’s characterization of the Hilbert polynomials for
homogeneous ideals, however Green interpreted condition (4) as condition (3) in [7].

Remark 1.2. In the proposition above, let d dim X. Then the expressions for
the Hilbert polynomial p(z) are related by the following formulas:

(a) Set m,. 0. Then d max{/" mi > 0} and for 0 < < r we have

mi mi+ #{j" i i}.

(b) We have q r min{i" mi < mo}, aq m,.-q-i and for 0 < < q,

ai mr-i-I + I.

The equivalent notions of Proposition I.I have some importance in the study of
homogeneous ideals and projective varieties. Motivated by Gotzmann’s results, we
give these conditions the following name.
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Definition 1.3. We say that p(z) Q[z] admits a Gotzmann development if p(z)
satisfies any of the equivalent conditions of proposition 1. for some integer r. In this
case, the Gotzmann development for p(z) is the expression given in condition (3).

LEMMA 1.4. Let p(z), q(z) Q[z] be polynomials which admit a Gotzmann
development. Then"

(a) The polynomial r(z) p(z) + q(z) admits a Gotzmann development.
(b) Assume that the Gotzmann developmentsfor p(z), q(z) and r(z) are

p(z) Y’-7=, a, q(z) Y-i=, b, ), r(z)= -.i=,
Let si #{j: aj > i- 1}, ti #{j" bj > i- 1} and ui #{j" cj > i- 1}.
Thenfor each > we have ui > si + ti.

Proof. Let p(z) and q(z) be polynomials admitting a Gotzmann development.
By Proposition 1.1 above, p(z) (resp. q(z))is the Hilbert polynomial of a subscheme
X c k (resp. Y C k over some field k. Embedding I and ,,n as disjoint linear
subspaces of a common projective space v, the union of the images of X and Y
yield a closed subscheme with Hilbert polynomial r(z) p(z) + q(z), which proves
statement (a) via Proposition 1. I.
Now we prove the statement about the Gotzmann development for r(z) p(z) /

q(z). We proceed by induction on the degree of r(z). The result is trivial when
deg r(z) 0 (all three polynomials are constant positive integers), so assume deg r(z)
d > 0. Notice that the Gotzmann coefficients for Ar(z) r(z) r(z 1) are
c cu2 I. Since Ar Ap + Aq, the induction hypothesis shows that
ui > si + ti for all > 2. Now consider

p’ (z) i
z + ai -ai

(i
and ,2( )q’(z) i

z + bi -bi
(i 1)

By part (a), p’ + q’ has a Gotzmann development. Since r p’ + q’ + (s
s2) 4- (t t_), the uniqueness of Gotzmann developments shows that u u2 >_
(s s2) 4- (t t2). Therefore u s t > u2 s2 t2 > 0, as required.

Remark 1.5. The same argument gives the stronger inequalities

#{j" cj =i- l}>#{j" aj =i- l}+#{j" bj =i-l} foralli > 1.

In what follows, .(Ro) will denote the length of an Artinian ring Ro.

LEMMA 1.6. Let Ro be an Artinian ring of length . .(Ro). Let R
Ro[xo, x Xr], I C R a homogeneous ideal, and S R/I. Then there exist. surjections ofgraded R-algebras

1 .-S So- S ---> Sx =O
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such that the kernels T/ ker q/i are principal, generated in degree O, and annihilated
by a maximal ideal. In particular, Ti ki [xo, x Xr ]/Ji for some residue field
ki of Ro, and some homogeneous ideal Ji C ki [xo Xr ].

Proof. Let (0)= No C N C... C Nx Ro be a composition series for R0.
There are exact sequences

0 --+ Ni+l / Ni Ro/Ni Ro/Ni+l -- 0

where Ni+l/Ni - ki. Tensoring these sequences with S gives the sequence of R-
algebras Si S (R)to,, Ro/Ni along with surjections Pi" Si Si+ whose kernels are
images of ki (R) R,, S, generated in degree 0.

Remark 1.7. (a) In the construction above, let Ri Ro/Ni. Then there are ideals
li such that S Ri [xo, x Xr ]/li. The snake lemma shows that there are short
exact sequences of graded R-modules

(b) Let us make explicit the first surjection of Lemma 1.6. There is a 6 Ro such that
(0 a) is a maximal ideal mo and N (a). Setting R (Ro/(a))[xo xr] and
I (I + (a)) / (a), we get S R/I and there is an exact sequence

0-- R/(l’a) - R/I R/I O.

Since moR C (I a), we see that Jo (I a)/moR.

THEOREM 1.8. Let Ro be an Artinian ring and p(z) Q[z]. Then the following
statements are equivalent.

(a) There is a closed subscheme X C ]r such that p(z) px(z) is the HilbertRo
polynomialfor X.

zh-r(b) We may write p(z) q( -Jl" E(Z), where 0 < q < (Ro) is an integer and
r(z)

_
Q[z] is a polynomial ofdegree < r admitting a Gotzmann development

such that (fq ,k (Ro) then r z O.

Proof. First suppose that p(z) px(z) is the Hilbert polynomial for X C IRo
and hence is the Hilbert polynomial for a graded ring S Ro[xo, x xr]/I,
where ! is a homogeneous ideal. By Lemma 1.6, we obtain successive quotients Si
with kernels Ti. Let pi(z)denote the Hilbert polynomial of T/. For each _< _<

z-t-r,k(R0), note that either pi(z) or deg Pi(Z) < r and pi(z) admits a Gotzmann
development. Letting q be the number of/such that pi(z) (:+rr), it is clear from
Lemma 1.4 and the fact that p(z) -i p(z) that p(z) may be written in the form
above.
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Conversely, if p(z) can be written in the above form, then p(z) satisfies the suf-
ficiency conditions of [1], Theorem 4.5. The constructive part of the proof (see [I],
proof ofTheorem 2.9) makes no use of the local equicharacteristic hypothesis (it only
uses a filtration of R0), hence there exists an ideal I such that S R/I has Hilbert
polynomial p(z) and we may take X Proj(S).

We shall now state and prove the promised analogue of Gotzmann’s regularity
theorem.

THEOREM 1.9. Let Ro be an Artinian ring, X C IPR,, a closed subscheme and
p(z) px(z) the Hilbert polynomial of X. Write

z + r) +r(z)p(z) =q
r

with r(z)=(z+ai-(i-I))
i=1 ai

as in Theorem 1.8 (set s 0 if r(z) 0). Let st #{j" aj > 1}. Then

H (Zx (n t)) Ofor > 0 and n >

In particular, the ideal sheafZx is s-regular.

Proof. Let I 0H, (Zx) C R R0[x0, x Xr] be the homogeneous ideal
for X and let S R/I be the homogeneous coordinate ring for X. Recalling the
construction from Lemma 1.6, we have exact sequences

0--> Ti--> Si--> Si+--> 0

where T/ - ki [x0, x Xr]/Ji for homogeneous ideals Ji. From Remark 1.7 (a),
we have exact sequences of ideals

0--> Ji --> li li+l :--> 0

where li C Ri[xo, x Xr] and IxtR,,)+ 0. Note that Ji C Op is the ideal sheaf
for Proj(Ti) C 17,. Let pi(z) be the Hilbert polynomial for T/.
Now we note some vanishings ofhigher cohomology. If pi (z) (z+r) then 0I’

and hence H. (.) 0 for all > 0. If Pi (Z) 0, then . Op,i, and hence all the

intermediate cohomology vanishes and H ((n r)) 0 for n > 0. In particular,. is 0-regular. Finally, if0 p(z) and deg p < r, let pi(z) -’-, a
be

> t- }, then by Green’sthe Gotzmann development for pi. Ifwe define s, #{j" aj
interpretation of Gotzmann’s vanishing theorem [7], we have H’( (n t)) 0 for
n >_s,.

In considering the long exact cohomology sequence associated to the sequences

0 > Ji "-> Ii - Ii+l --> 0
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and the vanishings above, we conclude that H (lo(n t)) 0 for all > 0 and
n > max/{s }, where this maximum is taken over such that deg Pi (Z) < r. On the
other hand, r(z) is the sum of such pi(z), so by repeated application of Lemma 1.4,
we conclude that

Z <stm.axls, _< s,

and hence H’ ([0(n t)) 0 for all > 0 and n > s,. Noting that ) Zx, we
conclude the proof.

Remark I. 10. The same kind of proof can be carried out using long exact se-
quences of local cohomology to prove a similar result over a polynomial ring (see
1], Theorem 3.3).

/whereRemark I. 11. The proofactually gives the stronger regularity boundi
s are defined by the filtration of Sx induced by lemma 1.6. For general subschemes
X ( ]1r this bound is much stronger than the bound given in the statement of 1.9,Ro
because the Gotzmann development of a sum of polynomials generally has many
more terms than the sum of the Gotzmann developments of the polynomials (see
proof of Lemma 1.4).

For example, consider R0 Z/p2Z with residue field k Z/pZ, where p 6 Z
is prime. Let I (x0, XI)(X2, X3) C (X0, XI) 10 C Ro[x0, x, X2, X3] (over a field,
these are the ideals of a pair of skew lines and of one of the lines, respectively) and
consider the ideal I (I, plo). This defines a scheme X, which is the disjoint union
of a line and a double line. Using the standard composition series (0) C (p) C R0,
we see that J0 is the image of I0 in k[x0, x, x2, x3] under the natural surjection, while
J is the image of I. The Gotzmann development for X has 6 terms, so the theorem
says that the ideal sheaf is 6-regular. However, Gotzmann regularity for the individual
ideal sheaves suggests that 2x is only 3-regular. In fact, the actual ideal sheaf of two
skew lines is 2-regular, so this is also true of 2x.

2. Hilbert functions

In this section, we extend Macaulay’s criterion for Hilbert functions to arbitrary
Artinian rings. As in the previous section, the key is to reduce to the case when R0 is
a field by using Lemma 1.6.
We first recall Macaulay’s criterion (see [9], [12]), for which we must define

certain binomial transformations. For any integers h, n > I, there exist unique
integers k,, > k,,_ > > k > > such that

(*,;’) + (,*,’:I) +- + (*;).
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This gives the n-binomial expansion of h. Since this expression is unique, we may
define

(h)++ ’"+ ("-’+ t,, ,,,/,) +, ,, )+... +
By convention, (0,,) 0 for all n > 0.

With this definition, Macaulay proved that a function H: N N is the Hilbert
function of a standard k-algebra if and only if H(0) and
H(n + I) < (H(n),,)_ for all n > 1.

PROPOSITION 2. (ELIAS). Let a b, r, n > 0 be integers such that a, b I"
Then thefidlowing inequalities hold.

(a) Ira + b < (nr-l-r), then

(a,,)++ + (b,,)_ <_ ((a + b),,).

(b) Ira + b > ("r+r), then

(a,)++ + (b,,)++ < ("+rr+’) + ((a + b ("r+r)),,):.
Proo.f. Part (a) is [4], Corollary 2.7 (iii) with the choices t t2 n,s n + I,

and h r + I. For (b), in [4], Corollary 2.7 (ii) with the same choices, Elias writes
in the proof that

(a,,)++ + (b,,)++ -(a<,,>(i) + b<,,>(i))
i=0

<n>(i)
+(aTb-(n+r)) )r <,,>(i)

((nWr))++ ((a+b-(n+r)))+r ,, + r +

Note that the inequality is strict in the r term of the summation: since a, b and
(a + b (,,+rI) are strictly less than (,,+r we have a<,,>lr b<,,>(rl (a -t- b
(n+r])<n>(r)--- O, while (nr+r) <n>(rt

PROPOSITION 2.2. Let H Ht" N N be.functions and H Yti= Hi.
Consider the.functions qi, ri and q, r defined.for all n > 0 by the Euclidean divisions

n +r)Hi(n) qi(n) -I- ri(n) and
n +r)H(n) q(n) + r(n).

F
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Assume that, for all n > 0, H Ht satis. the condition

(*)i
n+ +r)Hi(n + 1) < qi(n) -t- (ri(n),,)_.

r

Then H also satisfies (,)" H(n -t- I) < q(n)("++r] "t- (r(n),,)++ fi)r all n > O.
+Moreover, if(*)i are equalitiesfor all n > d and H(d-t- I) q(d)(d++r) +(r(d)d)+,

then (,) is an equalityfor all n > d.

Proof. By induction, it is enough to show that H verifies (,) in the case 2.
Let n > 0. By (,) and (*)2 we have

n+l +r)n(n + 1) < (q(n) -t- q2(n)) -t- (ri(n),,)++ -t- (r2(n),,)_.

Now we consider two cases. If r (n) + r2(n) < (n+r) then r(n) r (n) +
r2(n), q(n) q (n) + q2(n) and condition (.) is immediate from Proposition 2.1 (a).
On the otherhand, if (,,+r < r (n)-t-r2(n) < 2("+r then q(n) q=(n)+q2(n)+
r(n) r(n) + r2(n) (n+r] and (,) follows from Proposition 2.1 (b).

To prove the second part, let H’ ’q=2 Hi and define q’ and r’ as usual. We
have just seen that

H(d -t- I) H(d -t- 1) -t- H’(d -I- 1)

(d + + r) (d + + r)<_ q (d) + (r (d)d)++ q- q’(d) + (r’(d)d)++

< q(d) + (r(d)d)++ H(d + 1).

Id+l+r\ d +Then H (d-I- 1) .)q (d)-t-(r’( )d)+. By induction hypothesis
H’(n + 1) ("+l+r)q’(n) -1- (r’(n),,)_ for all n > d, and hence it will be enough
again to prove the case 2.

For 2, notice that the strict inequality in Proposition 2.1 (b) assures that the Case
r=(d)+r2(d) > (d+r cannotoccur; thusq=(n)+q2(n) q(n) foralln > d andthese
values remain constant. Replacing H=, H2 and H by r=, r2 and r respectively, we may
assume that H= and H2 satisfy the conditions of the classical Macaulay’s theorem"
by [2], Theorem 4.2.10, there exist homogeneous ideals I R k[o r]
and ] S k[yo y] (whr k is an fild) such that H= H// and

Lt T k[o , Yo y] and (0 r) (0 ). On can

asil show that (I T + (Yo y)) (T + (o r)) I T + JT + and
(I T + (yo r)) +(T + (0 )) (o , Yo r). Hnc, lttin
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K I T + J T + Q we have an exact Sequence of graded k-algebras

0--> T/K ---> R/I S/J ---> k --+ 0

which gives Hr/K (n) H (n) + H2 (n) H (n) for all n > I.
First assume d I. Then a straightforward computation shows that ((H (I) +

H2(I))) (H(I))++ + (H2(I))++ holds only when n 0or H2 0, in which
case the result is obvious. Thus we may assume that d > 2. From the equalities
Hi (n + I) (Hi (n),,)++ for n >_ d and [5], Corollary 2.6 (b), we see that I and J (and
hence also K) are generated in degrees < d. By Gotzmann’s persistence theorem
(see [71), we get H(n + I) (H(n),,)_ for all n > d, as required.

Notice that the construction in the above proof is an algebraic version of the proof of
Lemma 1.4(a).

THEOREM 2.3. Let Ro be an Artinian ring, R Ro[xo Xr ], and H: N --> N
be a .function. Define the .functions q and r by the Euclidean division H(n)
("+rr)q(n) + r(n). Then H Hie for a homogeneous ideal I C g (fand only f

(a) H(O) < ,k(Ro) and
(b) H(n + I) < ("+!+r)q(n)+ (r(n) )- for all n > O.

Proo.f. Suppose that H Hn/I. When R0 is a field, condition (b) follows
straightforwardly from the classical Macaulay’s theorem. Thus we may assume

(R0) > 2. From Lemma 1.6 we obtain for < < t, graded ki-algebras
ki[xo Xr]/Ji with respective Hilbert functions H Hr, such that HR/t
i= Hi. Then (b) follows from Proposition 2.2.

Conversely, if the function H satisfies conditions (a) and (b), then we may use
the construction in [I], Theorem 2.9, of an ideal I such that H HR/t, since that
construction does not use the fact that R0 is local equicharacteristic.

Notice that as a corollary of this theorem we obtain the straightforward translation of
the usual Macaulay’s theorem to the Artinian coefficient case. See ], Corollary 2. I;
the same proof works here.
We now give the generalization of Gotzmann’s persistence theorem.

THEOREM 2.4. Let Ro be an Artinian ring, R Ro[xo, x Xr] and I C R
a homogeneous ideal generated in degrees < d. With the notations of theorem 2.3,
assume that Hg/t(n + I) ("++r)q(n) + (r(n),,) forn d. Then the same holds

[d-l-t’i-(i- I)), then.fi)r all n >_ d. Equivalently, (fr(d) has d-binomial expansion Yi= d-ti-)

(n+r) (n+ci-(i-,,)HR/t(n) q(d)
r

i=1 ci

for all n > d.
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Proof. We may assume that R0 (R0, m, k) is local, because the Hilbert function
of R!I is the sum of the Hilbert functions of its Iocalizations at the maximal ideals
of R0, and we apply Proposition 2.2.
We may also assume that I is generated in degree exactly d. We will show by

induction, on ,k (R0) that

(a) H(n + I) q(n)(’’++r) + (r(n),,) for all n > d and
(b) Tor (1, k) 0 in degrees > d.

When R0 k is a field, part (a) is a direct consequence of Gotzmann’s persistence
theorem as it appears in [7]; since I is generated in degree d, either I 0 or q (d) 0.
Since this gives the Hilbert polynomial, the ideal sheaf is s-regular by Gotzmann’s
regularity theorem. Moreover, since the Hilbert function and polynomial coincide for
n > d > s, we conclude that the R-module I is d-regular. Applying [3], Theorem 1.2,
we get (b).

For the general case let us first notice the following fact:

Claim. Leta C R0anideal, R0 Ro/aandR Ro[xo Xr]. LetMbe
a graded R-module generated in degrees < d. Then there is a surjection of graded
R-modules

Torf(, k) Torf(, k)

which is an isomorphism in degrees > d.

For the induction step, consider the exact sequence

0 k[xo xrl/J - R/I R/I 0

from Remark 1.7(b). Note that R is a polynomial ring over R0, which has length
.(Ro) I. Let H and H’ denote the Hilbert functions of R/I and k[xo x,.]/J.
As in the proof of Proposition 2.2, Macaulay’s bound for H and H’ is an equality
when n d. By induction and Proposition 2.2, part (a) will follow once we know
that I and J are generated in degree d. This being obvious for I, we prove it for J.

Consider the exact sequence of graded R-modules

Tor(7, k) J (R), k I (R), k 7 (R), k -- 0

derived from the exact sequence of Remark 1.7 (a). Induction hypothesis and the
claim about the Tor modules show that Tor(, k) 0 in degrees > d. Since I
is generated in degree d, I (R)R k 0 in degrees > d, and hence J is generated in
degrees < d; since J - I, it is generated in degree exactly d.

To prove (b), consider the exact sequence of graded R-modules

Torf (J, k) Torf (1, k) -+ Torf (Y, k).
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By induction, both I and J satisfy (b); since they are generated in degree d, we are
done by the claim.

To prove the claim, notice that the property ofbeing a minimal system ofgenerators
does not depend on whether we consider M as an R or R-module. It follows that
a given R-minimal free surjection F0 -- M lifts to an R-minimal free surjection
F0 -- M such that Fo/aFo Fo. We get a commutative diagram with exact rows:

0 -- K F0 M -- 0

0 --+ K -- F0 M -- 0.

The snake lemma gives an exact sequence of graded R-modules

O--+ aFo--+ K--+ K--- O.

By minimality of the surjections, one has Torn(,k) K (R)R k and

Tor(, k) K (R)g k K (R)R k. Tensoring the exact sequence with k gives
an exact sequence

(aFo) (R)g k Tor(, k) --+ Tor(, k) 0

which proves the claim because aF0 is generated in degrees < d.
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