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ELEMENTARY AND INTEGRAL-ELEMENTARY
FUNCTIONS

MIKL6S LACZKOVICH AND IMRE Z. RUZSA

ABSTRACT. By an integral-elementary function we mean any real function that can be obtained from
the constants, sinx, ex, logx, and arcsinx (defined on (-1, 1)) using the basic algebraic operations,
composition and integration. The rank of an integral-elementary function f is the depth of the formula
defining f. The integral-elementary functions of rank < n are real-analytic and satisfy a common algebraic
differential equation Pn (f, f’ f(k)) 0 with integer coefficients.

We prove that every continuous function f: R R can be approximated uniformly by integral-
elementary functions of bounded rank. Consequently, there exists an algebraic differential equation with
integer coefficients such that its everywhere analytic solutions approximate every continuous function
uniformly. This solves a problem posed by L. A. Rubel.

Using the same basic functions as above, but allowing only the basic algebraic operations and com-
positions, we obtain the class of elementary functions. We show that every differentiable function with
a derivative not exceeding an iterated exponential can be uniformly approximated by elementary func-
tions of bounded rank. If we include the function arcsin x defined on [- 1, 1], then the resulting class of
naive-elementary functions will approximate every continuous function uniformly.

We also show that every sequence can be uniformly approximated by elementary functions, and that
every integer sequence can be represented in the form f (n), where f is naive-elementary.

1. Introduction

The investigations of this paper were motivated by the following question posed
by J. Pintz: is it possible to approximate the function zr (x) (the number of primes up
to x) using elementary functions in such a way that the error of the approximation is
smaller than, say, Izr(x)- Li(x)[? Of course, the answer to this question depends on
what we mean by elementary functions.

The "naive" approach is to consider a function f elementary if it can be given by a
finite closed expression; that is, if f can be obtained from a given set ofbasic functions
using a given set of operations. Our choice is then to select the admissible basic
functions and operations. We shall choose one of the most restrictive possibilities,
and adopt the following definition. (In the sequel, by intervals we always mean
non-degenerate intervals.)
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The class of naive-elementaryfunctions is the smallest class NE of real functions
defined on subintervals of R such that:

(i) NEcontains the constants, the identity function x, the functions sin x, ex, log x,
and arcsin x (defined on [- 1, 1 ]).

(ii) If f is a function defined on an interval I, and if there are functions g, h NE
such that f equals the restriction of one of the functions g + h, g. h, g/h, g o h,
to the interval I, then f NE. (In the case of g/h we assume that h does not
vanish on I.)

Let NEo denote the set of functions listed in (i). If NEn is defined, then let NEn+I
denote the family of all functions f: I --+ R with the following properties: I is
an interval, and there are functions g, h NEn such that f is the restriction of one
of g + h, g h, g/ h, g o h to I. The elements of NEn will be called the naive-
elementary functions of rank n. From the minimality of the class NE it follows that
NE k.Jn=oNEn Thus every element f of NE can be given by a finite expression,
and the rank of the function is given by the depth of the simplest formula defining f.

As we shall see, the class NE is surprisingly large. Namely, for every pair of
continuous functions g: R --+ R and e: R --+ (0, oo) there is a function f NE
such that If(x) g(x)l < e(x) for every x 6 R (Theorem 6.2). Moreover, we may
take f NE19, and thus f can be obtained from NEo using only a bounded number
of operations. This result provides the following answer to Pintz’s question: There
is a naive-elementary function f such that If(x) zr(x)l < 1 everywhere. As for
the sequence zr(n), we show that there is a naive-elementary function f such that
f (n) zr (n) for every n. In fact, this is true for any sequence of integers in place of
zr(n) (Corollary 4.3).

Considering the notion of naive-elementary functions it could be objected that,
although the elements of NEo are analytic, NEt already contains nondifferentiable
functions (take, for example, arcsin(sinx)). Since the elementary functions are re-
quired to be analytic, it seems natural to adopt the following definition.

The class of elementaryfunctions is the smallest class E of real functions defined
on open subintervals of R such that:

(i) E contains the constants, the identity function x, the functions sin x, ex, log x,
and arcsin x (defined on (- 1, 1)).

(ii) If f is a function defined on an open interval I, and if there are functions g, h 6

E such that f equals the restriction ofone ofthe functions g/h, g.h, g/h, goh,
to the interval I, then f 6 E. (In the case of g/h we assume that h does not
vanish on I.)

We define the classes En in the same way as above. Then, by the minimality of the
class E it follows that E tO En. Clearly, every elementary function is analyticn=0
on its domain.
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We shall prove that every differentiable function with a derivative not exceed-
ing an iterated exponential can be uniformly approximated by elementary functions
(Theorem 5.1). (This easily implies that there is an elementary function f such that
If (x) zr(x)l < 1 everywhere.) Also, if an is an arbitrary sequence of real numbers,
and ’n is an arbitrary sequence of positive numbers, then there is a function f 6 E9
such that If(n) anl < en for every n (Theorem 4.2). On the other hand, we do not
know whether or not every sequence of integers can be represented in the form f(n),
where f 6 E. We show, however, that not every real sequence is of the form f(n),
where f NE. This is a special case of Theorem 4.5.

Our proof showing that every continuous function can be approximated by naive-
elementary functions breaks down if we are allowed to use elementary functions
only. In fact, it is very likely that if a continuous function is too large or oscillates too
rapidly, then it cannot be uniformly approximated by elementary functions. We shall
prove, however, that if integration is also allowed, then the resulting class, defined
below, approximates every continuous function.

The class of integral-elementaryfunctions is the smallest class IE ofreal functions
defined on open subintervals of R satisfying the following conditions:

(i) IE contains the constants, the identity function x, the functions sin x, ex, log x,
and arcsin x (defined on (- 1, 1)).

(ii) If f is a function defined on an open interval I, and if there are functions
g, h IE such that f equals the restriction of one of the functions g + h, g
h, g/h, g o h, to the interval I, then f IE. (In the case of g/h we assume
that h does not vanish on I.)

(iii) If g IE is defined on the interval I and if a I, then the function f defined
by f(x) fxa g(t) dt (x I) also belongs to IE.

If we define the classes IEn in the obvious way, then we have IE Un=olEn.
Clearly, every integral-elementary function is analytic on its domain. The class IE
is strictly larger than E, since it contains, for example, the nonelementary function

f ((sint)/t) dt (x > 0). Still, the class IE is rather small in the sense that each of its
elements satisfies an algebraic differential equation, that is, an equation of the form
P(x, f, f’ fk) 0, where P(xo Xk+l) is a polynomial. Moreover, for
every n there is a nonzero polynomial Pn with integer coefficients such that each ele-
ment of IEn satisfies the algebraic differential equation Pn 0. Indeed, the elements
of IEo satisfy one of the equations

f’= 0, f’= 1, f2+ (f,)2= 1, f’= f, x. f’= 1, (1-x2) (f,)2 1.

Thus for Po we may take

x2. (x2 1). (Xl2 + x2
2 1). (x2 x). (xox2- 1). ((1 xo)2. x- 1).

It is known that for every nonzero polynomial P with integer coefficients there are
nonzero polynomials Q1 Q5 with integer coefficients such that whenever the
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analytic functions f and g satisfy the algebraic differential equation P 0, then f +
g, f.g, f/g, fog, f f satisfy the algebraic differential equations Q1 0 Q5
0 respectively. (See, e.g. [3, Theorem 5.4].) This easily implies, by induction on n,
that all the elements of IEn satisfy a common algebraic differential equation Pn O,
where Pn is a nonzero polynomial with integer coefficients.
We shall prove that for every pair of continuous functions g: R --+ R and e: R

(0, cx) there is a function f IE19 such that If(x) g(x)l < e(x) for every x R
(Theorem 6.1). By the previous remark, this implies that there is a nontrivial algebraic
differential equation with integer coefficients, P 0, with the following property" for
every pair of continuous functions g" R --+ R and e" R (0, o) there is a solution

f of P 0 such that f is everywhere analytic on R, and If (x) g (x)l < e (x) for
every x R.

Whether such an algebraic differential equation exists was asked by L. A. Rubel in
[5] (see also Problem 19 in [6] and [7], and Conjecture 6.2 in [3]). A partial solution
was given by M. Boshernitzan in [3]. He proved that the family of functions

x+a
dt (a, b, c, d R, d > O)

bd cos(et)
+ d2 cos(bt)

is dense in C (I) for any compact interval I C R. It is easy to see that these functions
belong to IET. In [3], M. Boshernitzan also constructed an algebraic differential
equation such that its polynomial solutions are dense in C(1) for every compact
interval I.

The history of Rubel’s problem goes back to a false conjecture of Borel claiming
that the solutions of an algebraic differential equation cannot grow faster than an
iterated exponential (for details see [3],[6],[7]). The simplest counterexample to
Borel’s conjecture was constructed in [2]. Let

f(x) sin2 yrx + sin2 zrotx (2 cos 2zrx cos 2zrtx)/2. (1.1)

In [2] it is shown that for every increasing function b: [1, cxz) -+ R there is an
irrational number ct, and there is a sequence Xn cx such that f, (x,,) -1 > q (Xn)
for every n. On the other hand, it is easy to prove that the functions fl satisfy a
common algebraic differential equation independent of

Our proof of Theorem 6.2 is based on the observation that for every increasing
function b: [1, cxz) --+ R there are irrational numbers ct,/3 such that f(2n)- +
ft(2") -1 > b(n) for every n (Theorem 2.1). Then we use an interpolation formula
involving NE-functions (Lemma 3.5) to prove that every continuous function can be
dominated by a naive-elementary function (Theorem 3.6).

It was proved in [1] that for every increasing function b: [1, cx) --+ R there
is an irrational number ct and a sequence Xn cxz such that fx. fo(t)_ dt >

b (x,) for every n. Our proof of Theorem 6.1, in turn, uses the fact that for every
increasing function q: [1, cx) --+ R there are irrational numbers or, fl such that

f (f(t)- + f(t)-) dt > b(x) for every x > 2 (Theorem 3.2). On the other hand,
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we show that the functions flx f, (t)-1 dt do not dominate all increasing functions: for
every irrational ct there is a sequence xi --+ oo such that f(i fa(t)-ldt < 40xi logxi
(Theorem 3.4).

If an integral-elementary or naive-elementary function f is defined on an interval
I, then f must be analytic on a subinterval of I. Consequently, the classes IE and
NE do not contain all continuous functions. We prove that even if we enlarge the
set of basic functions NEo by an arbitrary countable set of continuous functions, the
resulting class cannot contain all continuous functions (Theorem 6.4).

2. Dominating sequences with elementary functions

In this section we show that every sequence can be dominated by elementary
functions of bounded rank. Recall that the function f, was defined in (1.1). Clearly,
if ct is irrational, then the only real root of f is at x 0.

THEOREM 2.1. For an arbitrary sequence of real numbers, An (n 1, 2 ),
there is an elementaryfunction f ofrank 7 such that f is defined everywhere on R, and
f(n) > An for every n E N. Namely, thefunction f(x) f(2x)-1 + f(2x)-1 has
this property, where ot and are irrational numbers depending on the sequence An.

Let IIx denote the distance of the real number x to the nearest integer. We shall
frequently use the fact that

211xll _< sinzrxl _< rrllxll (2.1)

for every real number x.

LEMMA 2.2. Let Cn (n 1, 2 be an arbitrary sequence of real numbers.
Then there are irrational numbers or, t5 such that

max
ll2nctll, ll2n/3ll

> Cn (2.2)

holdsfor every n 1, 2

Proof. Let a < a2 < be a sequence of positive integers such that a 1,
and

ak+ > 2ak + 10k + max{lCnl: n < ak} (k 1, 2 ). (2.3)

We puta Y.iO__l 2-42’ and/3 ooEi=0 2-a2i+ Then ct,/3 are irrational, as their dyadic
expansions are not eventually periodic. Let n be a positive integer, and suppose that
ak_ < n < ak. If k is even, then

ll2n/ll 2n-a2’+’ < 2n-ak+’. (1 + 2-9), (2.4)
i=k/2
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as ak+2 > ak+ + 10. Thus 11211- >_ 2ak+-ak-1 > 2C" > Cn by thechoice ofa+.
If k is odd then we find, in the same way, that 112c11- > Cn, and thus (2.2) holds in
both cases. El

ProofofTheorem 2.1. Let a, fl be irrational numbers satisfying (2.2) with Cn
zr I/]-A--nl. Then by (2.1), we have,

f(2n)- +f(2n)-1 sin-2(zr2")+ sin-2(zrfl2") > (rll2nll)-Z+(zrll2n[[)-z
1 1 2> rr- max ([[2nt[[ -z, 112n311 -z) > --Cn [an[

for every n > 1. Since f(2x)- + f#(2x)- ET, this completes the proof. El

The next supplement to Theorem 2.1 will be needed in later applications.

LEMMA 2.3. Let 1 al < a2 < be a sequence of integers satisfying (2.3),
and let or, be as in the proofofLemma 2.2. Then thefunction f(x) fa.(2x)- +
f(2x)- has the additional property that If(n) f(m)[ > 1 for every 1 <_ n < m.

Proof. We shall prove first that if a_ < n < ak then

0.9. zr -2. 22(ak+-n) < f(n) < 1.2. rc -2. 22(a+-n). (2.5)

Suppose that k is even (the case when k is odd can be treated similarly). Let 112n
0; then

2n-a+t < 0 < 1.01.2n-a+

by (2.4). Thus we have

f(n) > f(2n)- sin-z (zrfl2n) > zr-z0-2 > zr -z. 1.01 -z. 2z(a+-n,

which proves the first inequality of (2.5). Since zr0 < 0.1 and cosx > 0.99 for every
0 < x < 0.1, we have sin(zr0) > 0.99zr0, and thus

f/(2)- sin-z (zr/2n)
sin- (zr0) < 1.1 zr-z0-z < 1.1 zr -z. 22(ak+-n).

The fractional part of 2a equals

2n-a2’

i=k/2

If n ak 1 then this gives 112all > 1/4 and

f,(2n)- sin-2 (zrct2n) _< (2112notll) -2 < 4 < 0.1.7/--2. 2

(2.6)
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On the other hand, if n < ak 1, then 112nc > 2n-ak, and thus

fa(2n)-1 < (2112’0t11) -2 < 22(a’-n) < 0.1 -2.22(a,+,-n),

that is,

fo(2n)-1 < 0.1 n" -2. 22(a+-n)

holds in both cases. Adding this inequality to (2.6), we obtain the second inequality
of (2.5).
Now let 1 < n < m be arbitrary integers, and suppose ak-1 < n < ak and

aj-1 < m < aj. Then the numbers 2(ak+l n) N and 2(aj+l m) M are
different. Indeed, if k j then N > M, and if k < j then, by aj+l > 2aj we have

aj+ -m > aj+l aj > aj >_ a+l >_ ak+l -n

and thus M > N. For example, if N > M then by (2.5) we have

f(n)-f(m) > 0.9.n"-:z.2u-l.2.n"-z.2M

> 1.8. n"-2 2M 1.2. n"-2. 2

0.6. n"-:z. 2 > 1,

asM >5.

3. Dominating continuous functions with integral-elementary and
naive-elementary functions

In this section our aim is to show that every continuous function on R can be
dominated by integral-elementary and naive-elementary functions of bounded rank.

LEMMA 3.1. We have

n dt 1

-1 f(t) 5011ncll

whenever is irrational, Il < I and n N.

Proof By (2.1) we have

and

f(n) sin2 rrn < rZllnll z,

If(n)l--Izrc sin2rcnl < 12rrc sinzrcnl < 2rr2llncll.
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Since If"l 4zr2 everywhere, Taylor’s formula gives

If(n + t)[
f’(c) t2fa(n) + f(n)t + 2

zr (llnctll 2 + 211nllltl + 2t2)

for every t. Consequently, for 0 _< _< Ilncll we obtain If(n t)l _< 5rcZllncll z.
Thus

n dt fn
n dt Ilncll 1

-1 fa(t) -11,611 f(t) 5rrZllncll z 50llncll

THEOREM 3.2. Forevery continuousfunction g: [1, c) --+ Rthereare irrational
numbers a, such that

(t) + f#(t)
dt > g(x) (x >_ 2).

Proof Let ct,/3 be irrationals satisfying (2.2) with

Cn 50. max{lg(x)l" x [1, 2"+1]}.

We may assume ct,/3 6 (0, 1). Let x > 2 and n [logx/log2]; then n 6 N, and
2n < x < 2n+l. Putting F(x) f(x)- + f(x)-1 by Lemma 3.1 we have

F(t)dt > F(t)dt > "- > Cn > g(x)._ 50112n11 50112n/11 -THEOREM 3.3. For every continuous function h: R R there is an integral-
elementaryfunction f ofrank 8 such that f is defined everywhere on R, and f(x) >
h(x) for every x R.

Proof. Let h" R --+ R be continuous, and put

g(x) max{Ih(t)l" Itl Ixl} (x R).

Then g is also continuous and hence, by Theorem 3.2, there are irrational numbers,
ct and/3 such that flx (f,(t) -1 + f(t)-1) dt > g(x) for every x > 2. Let

x2+2

f(x) (f(t)-1 d- f/(t)-1) dt.
dl

Then f IE8, and f(x) > g(x2 -} 2) > h(x) holds for every x.

For the sake of completeness we show that the functions f f,(t)-ldt do not
dominate every continuous function.
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THEOREM 3.4.

for every i.

For every irrational ot there is a sequence xi --+ oo such that

xi dt
< 40.xi log X

fu(t)

Since this result is independent ofthe rest ofthe paper, we shall give the proof in the
appendix. Our next aim is to dominate continuous functions with naive-elementary
functions. To this end we shall need two auxiliary functions, p and q, defined as
follows. Let p(0) 0, p(1/4) p(1/2) 1, p(3/4) p(1) 0, let p be linear
on the intervals [(i 1)/4, i/4] (i 1, 2, 3, 4), and let p be periodic mod 1 on R.
Let q(x) n if x In, n + (3/4)] (n Z), and let q be linear on the intervals
In + (3/4), n + 1] (n E Z). We show that p, q NE. Since

1 1
Ilxll - arcsin(sin(2rrx (zr/2))) + ,

the function II. belongs to NE6. It is easy to check that

p(x) 211xll + 21Ix + (1/4)11- (1/2) (3.3)

and

q(x) x -Ilxll + IIx + (1/4)11- (1/2). 112xll- (1/4). (3.4)

Since the functions 21Ix + (1/4)11 (1/2) and (1/2). 112xll + (1/4) are still of rank
6, we have p NET and q NE8.

LEMMA 3.5. Let F: R --+ R be an arbitraryfunction, andput

Fl(x) p(x). F(q(x)) + (1 p(x)). F(q(x + (1/2))) (x R). (3.5)

Then F (n) F(n) for every n Z, and F1 is piecewise linear and monotone in
each interval [n, n + 1] (n 6 Z).

Proof. Let {x denote the fractional part of the real number x. It is easy to check
that

F([x]) if {x} < 1/2;
El(X) p(x). f([x]) + (1 p(x)), f([x] + 1) if 1/2 < {x} < 3/4; (3.6)

F([x] / 1) if {x} >_ 3/4.

Then the statement ofthe lemma follows from the fact that p is linear in 1/2, 3/4]. [21

THEOREM 3.6. For every continuous function h: R --+ R there is a naive-
elementary function f of rank 11 such that f is defined everywhere on R, and

f (x) > h(x) for every x R.
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Proof. Let An max{Ih(x)l: Ixl n + 1} (n 1, 2 ). By Theorem 2.1,
there is a function fl E7 such that fl (n) > An for every n 1, 2,.... Let
f2(x) fl (x2 -t- 1); then f2 E8, and f2(n) > max{Ih(x)l: x In 1, n + 1]} for
every n Z. Finally, if we put

f(x) p(x) f2(q(x)) + (1 p(x)) f2(q(x + (1/2))) (x R),

then f NEll, and it follows from Lemma 3.5 that f > h everywhere on R. []

4. Approximating sequences with elementary functions

In this section we shall prove that every sequence can be approximated with arbi-
trary precision by an elementary function of bounded rank.

LEMMA 4.1. Let xn and c,, (n 1, 2 be two sequences ofreal numbers such
that infnCm lXn IXm II > 0 and Icnl <_ Ix Ifor every n. Then there are real numbers

?’, M such that the function f(x) x sin(?, eM’x) satisfies ]f (Xn) cnl < 1 for
everyn 1, 2,....

Proof. We may assume x,, 0 for every n. After rearranging the sequences we
may also suppose that IXll < Ix2l < Let infn(lXn+ll IXnl) > 0, and put
M 10/3. Let

In [c-nn l Cn [-n[l,-- + fq [-1, 11;

then I,,I > 1/Ixn for every n. We have to prove that the intersection of the sets

E=l?,R:sin(?,.eM’X,)In} (n 1,2

is nonempty. Since sinx sin Yl < Ix Yl for every x, y, there is a closed interval
Jn C [-zr/2, n:/2] for every n, such that IAI >_ 1/Ixl and sin(J,) C In. The set E
is periodic mod Pn 2rr e-M’x, and contains the interval Kn {y e-t’x"" y Jn }.
Therefore, Kn -F pnk C En for every k Z. To complete the proof, it is enough to
find integers kl, k2 such that

Kn + pnkn D Kn+ + Pn+lkn+l (4.1)

for every n Indeed, in this case the intersection ooNn=l (Kn "+" pnkn) is nonempty, and
then so is oo[")n=l En. Let kl 0 and suppose that kn has been selected. Now

Pn+l 2Zr e-M’x2.+t < 2zr. IJl" Ixnl" e-M’(Ix"l+8)

< 2zr IJl" e-Mx2" IXnl. e-2MS’lx"l 2zr. IKI" Ixl’ e-1"1 < Ignl/2,

and thus the interval Kn "F pnkn is longer than 2pn+l, twice the period of En+l. Since

Kn+l < P+I, it follows that Kn+l can be translated by an integer multiple of Pn+l
such that the translated copy is covered by K + pnkn; that is, (4.1) holds.
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THEOREM 4.2. If an (n 1, 2,...) are arbitrary real numbers and en (n
1, 2,...) are arbitrary positive numbers, then there is an elementary function f of
rank9 such that f is defined everywhere on R and If(n) -al < enfor every n N.

Proof. By Theorem 2.1 we can choose a function to E7 such that to > 0
everywhere and w(n) > lien for every n. Applying Theorem 2.1 and Lemma 2.3,
we find a function v E7 with the following properties: v is defined everywhere,
v(n) > lanl.w(n)foreveryn N, andlv(n)-v(m)l > 1 foreveryn # m. Applying
Lemma 4.1 with xn v(n) and cn an" to(n) we obtain a function g E6 such that
Ig(v(n)) an w(n)l < 1 for every n 1, 2, Then the function f (g o v)/w
belongs to E9, and satisfies

If(n) anl Ig(v(n)) an" w(n)l/w(n) < 1/w(n) < En

for every n. [2]

COROLLARY 4.3. Let an (n N) be an arbitrary sequence of integers. Then
there is an f NElo such that f(n) = an for every n N.

Proof Let g 6 E9 be such that an < g(n) < an + (3/4) for every n. Then the
function f q o g satisfies the requirements (compare (3.4)). I21

Since the function q does not belong to IE, the following question remains open.

PROBLEM 4.4. Let an (n N) be an arbitrary sequence of integers. Does there
exist an integral-elementary (or even an elementary)function f such that f(n) an
for every n?

In light of the statements of Theorem 4.2 and Corollary 4.3 it is natural to ask
whether or not every sequence is actually equal to the sequence f(n) with a suitable
naive-elementary function f. In the next theorem we show that the answer is negative.
Let

[0, 1]TM {(xl, X2 ): Xi . [0, 1] (i 1, 2,...)}

denote the set of sequences in [0, 1 ], and let/Z denote the product measure on [0, 1 ]N,
where each component is endowed with the Lebesgue measure L. We shall prove that
the set

{(f(n))n= 6 RN: f NEU IE} fq [0, 1]N

is of/z-measure zero.
Let f be a real valued function defined on a set H C Rn. We say that f is Lipschitz

c, if there is a constant K such that If(Y) f(x)l < Kly xl for every x, y 6 H.
We say that f is locally Lipschitz ct, if every x 6 H has a neighbourhood U such that
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the restriction of f to H fq U is Lipschitz ct. Finally, we say that f is locally Lipschitz
if there is c > 0 such that f is locally Lipschitz or. Clearly, every C function is
locally Lipschitz. Since

arcsinx arcsin Yl < lx yl /2 (4.2)

for every x, y [-1, 1 ], the function arcsin x is Lipschitz 1/2 on [-1, 1 ].
Let .T" be a family of functions defined on subintervals of R. We shall denote by

IE(-) the smallest class satisfying the following conditions: (i) IE(Jc) contains
and also the constant functions; (ii) if f is a function defined on an interval I, and
if there are functions g, h IE(J:) such that f equals the restriction of one of the
functions g + h, g h, g/ h, g o h, to the interval I, then f IE(:); and finally,
(iii) if g IE(f) is defined on the interval I and if a I, then the function f defined
by f (x) f g(t) dt (x I) also belongs to IE(Sr).

THEOREM 4.5. Let be a countablefarnily oflocally Lipschitzfunctions defined
on subintervals ofR. Then the set

S- (f (n))n=l f e IE(’)} (q [0, 1]TM

is oftz-measure zero.

The proof is given in the appendix. The local Lipschitz property cannot be replaced
by continuity in the previous theorem. Moreover, there is a single continuous function
F: R ---, R such that

[0, 1]N C {(f (n))nC=" f IE({F})}.

Indeed, since the Hilbert cube [0, 1]N is the continuous image of [0, 1], there are
continuous functions Cn: [0, 1 --+ [0, 1] such that

[0, 1]TM {(tn(t))nC=l" [0, 1]}.

Let F(2n + x) bn (x) for every n e N and x e [0, 1], and let F be extended to R
as a continuous function. If an [0, 1 ]r and ct is such that an ,, (or) for every n,
then we have f(n) an (n N), where f(x) F(2x + a) IE({F}).

In this example the set {(f(n))=1" f IE({F})} will actually contain every
sequence. In fact, every sequence (an) can be written in the form (b; c;1), where
bn, Cn (0, 1), and thus an f(n), where

1
f(x)

F(2x + ) F(2x + )
with suitable t, y [0, 1].

We also remark that analogous results concerning the set of sequences represented
by differentially algebraic functions were proved in [4].
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5. Approximation of functions by elementary functions

In this section our aim is to prove that differentiable functions with not too large
derivatives can be uniformly approximated by elementary functions. Recall that ek (x)
denotes the iterated exponential function; that is el (x) ex and ek+l (x) ee*(x) (k
1,2 ).

THEOREM 5.1. Let g: R R be a differentiable function, and suppose that
Ig’(x)l _< e,(Ixl) for every x R with a suitable positive integer k. Thenfor every
n N there isanelementaryfunction f: R Rsuchthat If(x)-g(x)l < 1/en(lxl)
everywhere on R.

LEMMA 5.2. Let g" R R be a continuousfunction such that Ig(Y) g(x)l < 1
whenever lY xl <_ 1. Then there is f E7 such that If(x) g(x)l < 7for every
xR.

Proof. First we suppose that g(0) 0, and construct a function f El6 such
that If g < 7. Then the statement of the general case will follow by considering
the function g g(0) instead of g, and by adding the constant g(0) to f.

Since g(0) 0, the assumption on g implies that Ig(n)l < Inl for every n Z.
Then we can choose real numbers c, such that Ic,, g(n)l < 1/3, and Icl _< In +
(1/3)1 (n Z). Since Iln + (1/3)1- Im + (1/3)11 >_ 1/3 for every n, rn Z, n m,
we may apply Lemma 4.1, and find real numbers ?, and M such that the function
f(x) x sin(?’ eM’x2) satisfies If(n + (1/3)) Cnl < 1 for every n Z. Let
F(x) fl (x + (1/3)), then F E7 and

IF(n) g(n)l < Ifl(n + (1/3)) c,,I + Ic, g(n)l < 2

for every n 6 Z. Let F1 be defined by (3.5). If n < x < n + 1, then we have IF(n)
g(n)l < 2, IF(n + 1) -g(n + 1)l < 2, Ig(x) -g(n)l < 1 and Ig(x) -g(n + 1)1 < 1,
and hence IF(n) g (x)l < 3 and IF(n + 1) g (x)l < 3. Thus, by Lemma 3.5, we
have IF1 (x) g (x)l < 3.

In the sequel we shall write exp(x) for ex. We put K 8(IM?’I + IMi + 1),
e exp(-5K) and ;(x) e. exp(-2Kx2). Let

1 1
R(x) arcsin ((1 ;(x)2) sin(2rrx (zr/2))) + ;

then it follows from (3.2) and (4.2) that

In(x)- Ilxlll < (x) (5.1)

for every x R. Also, R E9, and hence the functions

pl(X) 2. R(x) + 2. R(x + (1/4)) (1/2)
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and

ql(x) x R(x) + R(x + (1/4)) (1/2). R(2x) (1/4)

belong to El3. Now we define

f(x) pl(x) F(ql(x)) + (1 pl(x)) F(ql(x + (1/2)));

then f 6 E16. We shall prove that If FI < 4. Since F g < 3, this will finish
the proof. Let Q q(x + (1/2)) and Q q(x + (1/2)). Then, by (3.5) we have

If FI <_ Ip F(q) pl F(ql)l + I(1 p) F(Q) (1 pl). F(Q1)I
< p. IF(q) F(ql)l + IPl PI" IF(ql)[ + (1 p). IF(Q) F(Q)I

+Ipl-pI’IF(Q)[

de=f A + B + C + D.

We shall prove that each of A, B, C, D is less than 1. Since exp(Klx]) < exp(K)
exp(Kx2) for every x, we have

6(x + (1/4)) e. exp(-2K(x + (1/4))2) < e. exp(-2Kx2), exp(Klxl)
< e. exp(-2Kx2), exp(K), exp(Kx2) exp(-4K), exp(-Kx2).

By (3.3), (3.4) and (5.1) this implies

Ip(x) pl(x)l < 2.8(x) + 2.8(x + (1/4)) < 4. exp(-4K), exp(-Kx2)
1

< exp(-3), exp(-x2) < (5.2)
Ixl 3’+

and

Iq(x) ql(x)l < 6(x) + 3(x + (1/4)) + 3(2x) < 2. (x) + 3(x + (1/4))
< 4. exp(-4K) exp(-Kx2)

1
exp(-K), exp(-Kx2) < 1 (5.3)< "Since x 1 < q(x) <_ x, we have x 2 < q (x) < x + 1. Thus

IF(ql(x))] If(q(x) + (1/3))1 < Iq(x) + (1/3)1 < Ixl + 2,

and F(Q)I < Ix + (1/2)1 + 2 < Ix + 3. By (5.2), this gives B < 1 and D < 1.
Since 0 < p < 1, in order to prove A < 1 and C < 1, it is enough to show that
IF(q)- F(q)l < 1. We have

F(q(x))-F(q(x)) F’(c)(ql(x)-q(x)) f(c + (1/3))(q(x)-q(x)), (5.4)
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where c (x 2, x + 1). If d c + (1/3) then d (x 2, x + 2), and thus

If(d)l <_ 1 / Idl" I’l" exp(Md2) 2lMdl
< 1 + 21M?’l(Ixl + 2)2. exp(M(Ixl + 2)2)
< 2. exp(K), exp(Kx2).

Thus (5.3) and (5.4) yield IF(q) F(q)l < 1, which completes the proof.

Proof of Theorem 5.1. Let Di denote the family of all differentiable functions
h: R - R satisfying Ih’(x)l _< ei(Ixl) for every x 6 R, and put D I,.JiC=lOi.
If h c:. Di then Ih(x)l _< Ih(0)l / ei(lxl) for every x, as e >_ ei on [0, ). Since
e(lxl)2 < ei+ (Ixl), this impliesthathl.h2 D andh oh2 D forevery h, h2

_
D.

Let Cl (x) ex + e-x and Ci+l (x) c (ci(x)) for every x 6 R and 1, 2,
It is easy to prove by induction that ci - D and ci(x) > ei(lxl) (x . R) for every
i. Also, the functions ci are even and satisfy x c(x) > 0 for all x 6 R. Let
vi (x) x ci (x). Then vi

_
E N D and v(x) > ci (x) everywhere.

Let k, n 6 N and g: R --+ R be as in the theorem, and put g 7 g c,,. Since
’(x) > ei(Ixl) >g 6 D by assumption, it follows that g Di for a suitable i. Then v

Ig’ (x)l everywhere, and thus Ivi(x) vi(y)] > Igl (x) g (Y)I for every x, y. Let
g2 gl o v-, then Ig2(x) g2(Y)l < Ix Yl for every x, y. By Lemma 5.2, there
is u E such that lu g21 < 7. Let f (u o vi)/(7cn). Then f E, and

U 0 1) gl

7Cn 7Cn
lU 0 O g2 0 Vii 1

7Cn Cn e(Ixl)

6. Approximation of functions by integral-elementary
and naive-elementary functions

In this section we shall prove that every continuous function can be approximated
with an arbitrarily small error by integral-elementary and naive-elementary functions
of bounded rank.

THEOREM 6.1. For every pair ofcontinuous functions g" R --+ R and e" R --->
(0, cx there is afunction f . IE 9 defined everywhere onRsuch that If (x g(x <
e(x) for every x

_
R.

Proof. By Theorem 3.3, there is a function w . IE8 such that w > 7/e every-
where. Let gl g" w. Since g is continuous on R, there is a positive number
3n < 1 for every n 6 Z such that if x, y In 2, n] and ]y x] < 3,,, then
Igl (Y) g (x)l < 1. Let h be a continuous function such that h(x) > 1/Sn for every
x 6 [n 2, n] and n 6 Z. Applying Theorem 3.3 again we obtain a function v

_
IE8

such that vl > h. Let v(x) f) Vl (t)dt. Then v . IE9, v is a strictly increasing
homeomorphism of R onto itself, and v’(x) > h(x) > everywhere.
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We show that if x, y R and Iv(y) v(x)l _< 1 then Igl (Y) gl (X)l < 1. Let
x, y Rbe fixedsuchthat [v(y)-v(x)l _< 1. Thenwehave ly-xl _< Iv(y)-v(x)l <_
1, and thus there is n Z such that x, y [n 2, n]. Then

lY x[/Sn <_
Y
h(t) dt _< Iv(y)- v(x)l < 1,

from which we obtain lY xl _< 8 and Ig (Y) gl (X)l < 1.
Let g2 gl o v-l Then g2 is continuous on R and has the property that [g2(y)

g2(x)[ < holds whenever [y x[ _< 1. By Lemma 5.2, there is u El7 such that
[u g2[ < 7 everywhere on R. Let f (u o v)/w. Then we have f IE19, and

if gl
U O V g lu o v- g2 o v[ 7

<--<e. D
tO W W tO

THEOREM 6.2. For every pair ofcontinuous functions g: R R and e" R
(0, o) there is a function f NE9 defined everywhere on R such that If(x)
g(x)[ < e(x) for every x R.

Proof. We shall repeat the previous proofwith minor modifications. By Theorem
3.6, there is a function to NEl such that w > 7/e everywhere. Then let gl, 8n,
and h be as in the previous proof. We shall construct a function v NE5 such that
v is a strictly increasing homeomorphism of R onto itself, v is piecewise linear, and
v’(x) > h(x) > 1 at every point x where v’ exists. This will conclude the proof,
since defining gg. gl o v-l u and f (u o v)/w in the same way as in the previous
proof, it follows that f NE19 and If gl < e.
We can choose real numbers ak (k Z) such that

ak+l ak > 3 + max{h(x)" x [k, k -t- 1]}

for every k Z. Let bn ak if k Z and n 2k2 + k -t- 1, and let b,, 0 if there is
no k Z such that n 2k2 +k + 1. Since the function 2x2 -t- x + 1 maps Z injectively
into N, the definition of the sequence bn makes sense. By Theorem 4.2, there exists
a function 4 E9 such that q is defined everywhere on R and Ib(n) bnl < 1 for
every n. Putting F(x) q(2x2 + x + 1), we have F e E0, and IF(k) al < 1 for
every k Z. Let F1 be defined by (3.5), then F1 e NE13 and, by Lemma 3.5, F is
increasing and is piecewise linear. Since Fl(k + 1) Fl(k) F(k + 1) F(k) >

ak+ ak 2 > 1, we have

lim F1 (x) o and lim F1 (x) -o.
x--- oo x-- --oo

Also, it follows from (3.6) that F1 is linear on [k + (1/2), k + (3/4)], and

F(x) >
ak+l ak 2

(1/4)
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in the interior of this interval. By the choice of the numbers ak this implies that

F(x) > max{h(x): x [k,k + 1]}

for every x e (k + (1/2), k + (3/4)). This easily implies that the function

v(x) Fl(X + (1/2)) + Fl(X + (1/4)) + Fl(X) + Fl(x (1/4))

satisfies the requirements. I-l

As we remarked in the introduction, Theorem 6.1 implies the following.

THEOREM 6.3. There is a nontrivial algebraic differential equation with integer
coefficients, P O, with thefollowingproperty: foreverypairofcontinuousfunctions
g: R --+ R and e: R --+ (0, cx:) there is a solution f of P 0 such that f is
everywhere analytic on R, and If(x) g(x)l < e(x) for every x R.

If an integral-elementary or naive-elementary function f is defined on an interval
I, then f must be analytic on a subinterval of I. Consequently, the classes IE and
NE do not contain all continuous functions. Thus, we may ask whether or not all
continuous functions can be obtained by starting from a suitable finite or countable
collection of continuous functions. We close this section by showing that the answer
is negative.

THEOREM 6.4. Let be a countable family of continuous functions defined on
subintervals of R. Thenforevery compactand infinite set K C R there is a continuous

function f: K --+ R such that f q {glK: g IE(J:’)}.

Proof Let f be a continuous function defined on the compact set A C R. By
the modulus of continuity of f we mean the function of: R+ --+ R+ defined by

wf(3) max{If(y) f(x)l: x, y

Clearly, we have lim,__,0+ of(3) 0. We shall prove that for every k 0, 1
there is a countable family f2k of functions from R+ to R+ such that

(i) lim,0+ (3) 0 for every 6 f2,; and
(ii) if f IE(’) is of rank k, A C R is compact, and f is defined on A, then there

is a function r 6 f2 such that

O)flA(3 3(3) (3 > 0).

We shall prove this statement by induction on k. Let f 6 .T" be fixed, and suppose
that f is defined on the interval I. Then there are compact sets Ai C I such that
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I [,.Ji=l Ai, and whenever A C I is compact, then A C Ai holds for some i. Let

"f {COfIA," 1, 2 }.

Clearly, if f is defined on a compact set A, then cofla (t) _< 17 (t) holds for at least one
r f2f. Let

f20=

Then f20 satisfies (i) and (ii) for k 0, since the functions of rank zero are the
elements of.T" and the constants, and the modulus of continuity of a constant function
is identically zero.

Let k > 0, and suppose that the countable family ’2k has been constructed so that
it satisfies (i) and (ii). We put

Clearly, flk+l is countable and satisfies (i) (with k + 1 instead of k). To prove (ii), let
f e IE(.T’) be an arbitrary function of rank k + 1, and let A be a compact subset of the
domain of f. Then there are functions g, h of rank k such that one of the following
statements is true:

f g+h. In this case g, h must be defined on A. Let coglA _< 171 and 17h[A < 172,

where 171,172 "k. Then cofla --< 171 -" 172 "k+l.
f g h. Again, g, h must be defined on A. Let coglA --< 171 and cohlA <-- 172,

where 171,172 f2k. If Ig(x)l, Ih(x)l _< N for every x A then coflA <-
N(171 + 172) f2k+l.
f g/h. This is similar to the previous case, taking into consideration that h
must be nonzero on A and thus Ih(x)l > 1/N for every x A with a suitable
NN.
f(x) ff g(t)dt with an a R. In this case g must be defined on a closed
interval J containing A. If Igl _< N on J, then we have

COfIA(t) coflj(t) N3.

Since N x 6 f2k+l, this completes the proof of (ii).

Let 171, 172,... be an enumeration of the elements of I,..Jk=O"k. Then for every
f IE(.T’) and for every compact subset A of the domain of f there is an such that

cofla "< 17i. Let 3i > 0 be such that 17i(i) < 1/i (i 1, 2 ).
Let K be a compact infinite subset of R, and let x be a point of accumulation of

K. Then we can select a sequence xi of distinct points of K such that limi._, xi x
and 0 < Ix xil < 8i for every i. Let f(xi) 1/i (i 1, 2,...), and extend f
continuously to K. Then coy (Si) > 1/i > 17i (Si) for every and, consequently, f
cannot be the restriction of any of the elements of IE(.T:’) to K. [3
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7. Appendix

ProofofTheorem 3.4. We shall prove that for every irrational number 0 < c <
there is a sequence xi --+ cx such that

x dt
< 36.xi log X

fa(t)

for every i. Then the case of c > 1 follows easily by using f/(x) f(x/c), and
by making the substitution u t/c.

First we show that
n+(l/2) dt 6

< (7.1)
an-(1 f(t)- Ilnall

for every n 6 N. By (2.1) we have f(n) sin2 zrcn > 4llncll z. Then, by (3.1) and
f"l < 4r2 we obtain

If(n + t)l--
f’(C) t2f (n) -t- f (n)t + 2 > 4llnall 2 2rr211nallltl- 2zr2t2

for every t. For tl Ilna II/10 this gives

If(n + t)l 411nailz -2llnall9 -Ilncllz Ilncll z,
and thus, putting I In Ilnall/10, n + Ilnall/10], we have

dt Ihl<
fa(t) -Ilncll 2 Ilncll

If Ilncll/10 < < 1/2 then

fa (n + t) >_ sin2 zr (n + t) sin2 zr >_ 4t2.

Therefore, denoting 12 [n + Ilnall/10, n + (1/2)] we obtain

dt f /z dt 2.5

fa(t) allnall/lO 4t2 IIncll

Similarly, ft3 fa(t)-ldt < 3/llncll, where/3 [n (1/2), n Ilncll/10]. Since
[n (1/2), n + (1/2)] I1 U 12 U 13, (7.1) follows. If x is a positive integer then
(7.1) gives

fX dt
< 6

Ilncll
(7.2)

fa(t) n----1

Let Pi/qi denote the convergents of the continued fraction expansion of a. It is well
known that qi > Fi holds for every i, where Fi is the sequence ofFibonacci-numbers.
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Since Fi+l/Fi --+ (,/’ + 1)/2, this implies that qi+l/qi > 1.6 for infinitely many
indices i. We shall prove that if x qi 1, where qi+l/qi > 1.6 and is large
enough, then ’nX=l Ilncl1-1 < 6x logx. By (7.2), this will finish the proof.

Since lot-(pi/qi)l < 1/(qiqi+l),wehavelnot-(npi/qi)l < n/(qiqi+l) < 1/qi+l
for every n < qi. If npi =-- j (mod qi) where 0 < j < qi, then this implies

..nctl. >min(j, 1-/) 1

qi qi+l
> min(j l_j) 1

qi’ qi 1.6 qi

> min

If n runs through the numbers 1 qi 1 then so does npi (mod qi) and hence

1 8 [x/2< 2.
x/l

< 6x log x
n= Ilncll 3

j=l J

if is large enough, rl

ProofofTheorem 4.5. Let " be a countable family of locally Lipschitz functions
defined on subintervals of R. Let 79 denote the smallest family of functions (of
arbitrary many variables) satisfying the following conditions.

(i) 79 D ’.
(ii) 79 contains the function (y, x) -> y (y, x 6 R).
(iii) If thefunctions f: H --+ R (H C Rn+l), g: K --+ R (K C Rk+l) are in

79 then so are the following functions (defined on the largest set where their
definition makes sense):
(y,z,x)+ f(y,x) -+- g(z, x) (yRn, zRk, x R),
(y,z,x) -> f(y,x) g(z,x) (y . Rn, z c:. Rk, x . R),
(y, z, x) - f(y, x)/g(z, x) (y Rn, z Rk, x c:. R),
(y, z, x) - f(y, g(z, x)) (y

_
Rn, z . R, x . R).

(iv) If the function f: H R (H C Rn+l) belongs to 79 then so does the function
h: K--+R, whereK-{(y,z,x): y6Rn, z6R, x6R, {y} x [z, x] C H}
and h (y, z, x) f f(y, t) dt.

Clearly, 79 is countable. It is easy to check that if f and g are locally Lipschitz
then so are the functions defined in (iii) and (iv). Since .T" consists of locally Lipschitz
functions, this implies that the locally Lipschitz elements of 79 also satisfy (i)-(iv).
Therefore, by the minimality of 79, it follows that each element of T’ is locally
Lipschitz.
We claim that for every f IE(.T’) there is a function g: H --+ R(H C Rn+l),and

there is a point y 6 Rn such that g 6 79 and g(y, x) f(x) for every x 6Dom(f).
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This is obviously true (with n 0) for the elements of .T’. By (ii), this holds true for
the constant functions as well. Then the general statement easily follows by induction
on the rank of the function f IE(:F).

Let g" K -- R be given, where K C Rk+l. Let Kng denote the set ofpoints y Rk

for which g is defined at (y, n). If

sg (g(y, n))n=l" y 6 Kng
n=l

then it follows from our last remark that

S: C U sg N [0, 1]r.
g7:’

Since 79 is countable,/z(S-) 0 will follow, if we can show that IZ(Sg [0, 1 ]r) 0
for every g 7’.

Let g 79 be given, where g: K -- R, K C RTM, and suppose that g is locally
Lipschitz with exponent ct. Let N > k/a be fixed, and let pr/v denote the projection
of [0, 1]r to R/v; that is, let

pr/v((Xl, X2 )) (X1, XN) ((X1, X2 [0, 1]N).

We shall prove that ,.N(pr/v(sg f’) [0, 1]r)) 0. This will finish the proof, as/z(A) _<
;k/v(pr/v(A)) for every A C [0, 1]r.

Let the function gn be defined by gn (Y) g(Y, n) (y Kgn). By the local Lipschitz
property of g, for every n N and y e Kg there is a neighbourhood Uy of y such
that gn is Lipschitz ct in Kgn t’) Uy. This implies, by Lindel6f’s theorem, that Kng can
be covered by a sequence U’, U, of sets such that gn is Lipschitz ct restricted to
each U/n. Let V1, V2 be an enumeration of the sets

N

It is clear that the sets s {(g(y /vn))n= y V} (j 1, 2 cover

prN(Sg [0, 1IN), and thus it is enough to show that >,/v(s) 0 for every j. From
the construction of the sets I it follows that the function Gj" s defined by

Gj(y) (g(y, 1) g(y, N)) (y Vj)

is Lipschitz ct for every j. Since I C Rk, this implies that the k/a-dimensional
Hausdorff-measure of Sg

j Gj (V.) is or-finite. Since N > k/ct, we have /v (Sgj) 0



182 MIKL6S LACZKOVICH AND IMRE Z. RUZSA

REFERENCES

1. S.B. Bank, Some results on analytic and meromorphic solutions ofalgebraic differential equations,
Adv. in Math. 15 (1975), 41-62.

2. N. Basu, S. Bose, and T. Vijayaraghavan, A simple examplefora theorem ofVijayaraghavan, J. London
Math. Soc. 12 (1937), 250-252.

3. M. Boshemitzan, Universalformulae and universal differential equations, Ann. of Math. 124 (1986),
273-291.

4. L. van den Dries, Parametrizing the solutions ofan analytic differential equation, Illinois J. Math. 39
(1995), 450-462.

5. L.A. Rubel, A universal differential equation, Bull. Amer. Math. Soc. 4 (1981), 345-349.
6. Some research problems about algebraic differential equations I, Trans. Amer. Math. Soc.

280 (1983), 43-52.
7. Some research problems about algebraic differential equations I1, Illinois J. of Math. 36

(1992), 659-680.

Mikl6s Laczkovich, Department of Analysis, E6tv6s Lonind University, Budapest,
Rik6czi tit 5, Hungary 1088
laczk@cs, elte.hu

Imre Z. Ruzsa, Mathematical Institute of the Hungarian Academy of Sciences, Bu-
dapest, Reiltanoda u. 13-15, Hungary 1053
ruzsa@math- inst. hu


