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INTRINSIC ULTRACONTRACTIVITY, CONDITIONAL
LIFETIMES AND CONDITIONAL GAUGE FOR
SYMMETRIC STABLE PROCESSES ON ROUGH DOMAINS

ZHEN-QING CHEN AND RENMING SONG

ABSTRACT. For a symmetric a-stable process X on R" with0 < « < 2,n > 2 and adomain D C R”, let
LP be the infinitesimal generator of the subprocess of X killed upon leaving D. For a Kato class finction
g, it is shown that LP + g is intrinsic ultracontractive on a Holder domain D of order 0. Then this is used
to establish the conditional gauge theorem for X on bounded Lipschitz domains in R”. It is also shown
that the conditional lifetimes for symmetric stable process in a Holder domain of order 0 are uniformly
bounded.

1. Introduction

A symmetric «-stable process X on R” is a Lévy process whose transition density
p(t, x — y) relative to the Lebesgue measure is uniquely determined by its Fourier
transform

/ e¥Ep(t, x)dx = e8I,

Here « must be in the interval (0, 2]. When a = 2, we get a Brownian motion
running with a time clock twice as fast as the standard one. Brownian motion has
been intensively studied due to its central role in modern probability theory and
its numerous important applications in other scientific areas including many other
branches of mathematics. In the sequel, symmetric stable processes refer to the case
when 0 < a < 2. During the last thirty years, there has been an explosive growth in
the study of physical and economic systems that can be successfully modeled with the
use of stable processes. Stable processes are now widely used in physics, operation
research, queuing theory, mathematical finance and risk estimation. Recently some
fine properties related to symmetric stable processes and Riesz potential theory, as
counterparts to Brownian motion and Newtonian potential theory, have been studied,
for example in [8]-[13].

Let X be a symmetric a-stable process in R” with n > 2. It is well known that X
is transient and has Green function G(x, y) = A(n, a)|x — y|*~™" where

@2*~IT(%42)

A= oAt -

(1.1)
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Definition 1.1. A Borel measurable function g on R” is said to be in the Kato

class K, o if
lim sup / M dy =
0 xeR Jix—y|<r |x — y|n—e

Forq € K, 4 and ¢t > 0, define

€q(t) = exp (/0 q(X;) ds) -

For a domain D C R”, the gauge function g of (D, g) is defined by g(x) =
E*[e4(tp)], x € D where tp = inf{t > 0: X, ¢ D}. The following gauge
theorem is known for domain D with finite Lebesgue measure: The function g is
either identically infinite or is bounded on D. In the latter case, (D, g) is said to be
gaugeable (with respect to X). By Theorem 1 of Chung [14], (D, 0) is gaugeable
for any domain D with finite Lebesgue measure. It is proved in [12] that (D, q) is
gaugeable if and only if the first eigenvalue of L? + g is negative, where LP? is the
non-positive definite infinitesimal generator of the part process X of X killed upon
leaving the domain D.

Now assume that D is a bounded Lipschitz domain. Recall that the Green function
G p and Poisson kernel K p of X in D are determined by the following equations. For
x e D,

E* [/'fn f(Xs)ds] = / Gp(x,y)f(y)dy forf>0onD,
0 D

E* [p(X:,)] = / Kp(x,2)p(z)dz fore > 0on D°.
DC
Fix an x¢ € D; it is shown in [13] (see also [9]) that for each z € 3D and x € D,

MpGr.z)= lim 229
Yy

exists and is finite. 1.2
—2z,yeD Gp(xo, y) ' (12

M is called the Martin kernel of X in D.
For a domain D in R", we adjoin an extra point d to D and set

p, ~_ | Xi(w) ift <7p(w),
X (@)= [a if1 > 7p(w).

The process X? is called the symmetric a-stable process killed upon leaving D,
or simply the killed symmetric «-stable process on D. From now on we use the
convention that any function f defined on D is automatically extended to D U {3} by
setting f(3) = 0.
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Definition 1.2. Let D be a domain in R"”. A locally integrable function f de-
fined on D taking values in (—oo, oo] and satisfying the condition
Sostsnnp I @)||x|~ "+ dx < oo is said to be superharmonic respect to XP
ifg f is lower semicontinuous in D and for each x € D and each ball B(x,r)
with B(x,r) C D,

fx) = Ef(Xey,,,); T8 < TD]-

A function  is said to be harmonic with respect to X if both h and —h are super-
harmonic respect to X2,

Suppose that & > 0 is superharmonic in D with respect to X D, Then by Theorem
2.3 of [13], for any domain D; C D; C D, E, [h"(Xf:)l )] < o0 and

h(x) = Ex[h(X) )] forevery x € Di.
This implies (for example, see page 11 of Dynkin [24]) that
h(x) = E*[h(XP)).

Therefore one can define the A-conditioned stable process. Note that for each fixed
y € D and z € 3D, Gp(x,y) and Mp(x, z) are harmonic functions in x with
respect to XP\0) and X2, respectively. Forany w € D, Kp(x, w) is superharmonic
in x with respect to X?. Therefore we can define the G p(-, y)-conditioned stable
process, Kp(-, w)-conditioned stable process and the Mp(-, z)-conditioned stable
process. The probability laws corresponding to these conditional stable processes
will be denoted by P}, P, and P, respectively. The following conditional gauge
theorem is established in Chen and Song [12].

THEOREM 1.1. Assume that D is a bounded C"'! smooth domain inR", q € K, 4
and that (D, q) is gaugeable. Then there exists a constant ¢ > 1 such that

_l . x <
¢ = inf E; le < su E*[e <c.
(x.2)eDx(R"\3D)  * [e4©)] (x,z)euxgv\ap) 7 [ea ()]

Recently it was shown in [13] that under the conditions of Theorem 1.1, there is a
constant ¢ > 1 such that

¢ = (x,z)lengxab E; [eq(;)] = (x,z)seulgan E; [eq (C)] =¢

The gauge theorem for Brownian motion was first proved by Chung and Rao in
[15] for bounded g and later was generalized to more general g by various authors.
The conditional gauge theorem for Brownian motion was first proved by Falkner [25]
for bounded g and a class of domains including bounded C? domains. Extensions of
this result to g belonging to the Kato class and to bounded C!'! domains were given by
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Zhao in [35] and [36]. The conditional gauge theorem has also been generalized by
Cranston, Fabes and Zhao [19] to diffusion processes whose infinitesimal generators
are uniformly elliptic divergence form operators and to bounded Lipschitz domain
in R". For a more detailed story about gauge and conditional gauge theorem for
Brownian motion, the interested reader is referred to the recent book of Chung and
Zhao [17].

In this paper, we extend the above conditional gauge theorem for symmetric stable
processes from bounded C!'! domains to bounded Lipschitz domains. We follow
the idea from Chen and Song [12], proving the conditional gauge theorem through
intrinsic ultracontractivity, but with substantial improvements, motivated by Baiiuelos
[3]. In[12], sharp estimates on Green functions of bounded C!'! domains obtained in
[11] were used to establish the conditional gauge theorem. However these estimates
are no longer available for bounded Lipschitz domains. We are able to circumvent
it in this paper. We first show that, under the assumption that (D, g) is gaugeable,
the Green function V, of L? + g on D is bounded by a constant multiple of Gp.
The latter is then used to prove the conditional gauge theorem on bounded Lipschitz
domains. In order to establish V; < ¢ Gp on D x D for some ¢ > 0, we show that
operator L? + q is intrinsiclly ultracontractive on D. In fact we show that L? + ¢ is
intrinsically ultracontractive for any Holder domain D of order 0. For definitions of
intrinsic ultracontractivity and Holder domain of order 0, see Definitions 3.1 and 3.2
below. We mention here that John domains, particularly bounded NTA domains and
Lipschitz domains, are Holder domains of order 0. Under the assumption that D has
finite Lebesgue measure such that L is intrinsically ultracontractive, we show that
there is a constant ¢ > 0 such that for each non-trivial nonnegative superharmonic
function h in D with respect to X2, sup, ., Ef[tp] < c. This especially implies that
for a bounded Lipschitz domain D,

sup Ej[rp] < o0.
xeD, zeR®

Previously the boundedness of conditional lifetimes was proved for bounded C!:!
smooth domains for symmetric stable processes in [11] and [13]. Conditional lifetime
estimates for Brownian motion in planar domains were first studied by M. Cranston
and T. McConnell [20], in answering a question of K. L. Chung. The first extension
to several dimensions for Brownian motion was done by M. Cranston [18], followed
by many works on important extensions to more general domains and to elliptic
diffusions (see [3], [4] and the references therein).

Acknowledgement. We are grateful to Rodrigo Bafiuelos, Rich Bass and Chris
Burdzy for very helpful discussions. We thank Krzysztof Bogdan for very interesting
and helpful discussions at the MSRI, Berkeley, and University of Washington, Seattle.
Bogdan has informed us that he has also proved the conditional gauge theorem on
bounded Lipschitz domains independently.
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2. Preliminaries
Throughout this paper, we assume that n > 2 and 0 < ¢ < 2. Let X be a

symmetric a-stable process in R”. It is well known that the Dirichlet form (€, FX")
associated with X is given by

£, v) = A(n,a)/ f (u(x) —u(y) ) —v(y)) dx dy

|x —_ y|n+a
_ 2
FR = lu € L>(R™): / __—(u(x) “(y)) dxdy < oo],
nJre X =yt

where A(n, ) is the constantin (1.1). Asusual, we use { P; };>o to denote the transition
semigroup of X and G to denote the potential of { P,},>o; that is,

Gf(x) = /0 ¥ Bt

From now on, we assume that D is a domain in R". It is well known (cf. [26]) that
the Dirichlet form corresponding to the killed symmetric o-stable process X on D
is (£, F) where

F = {u € F}': ii = 0 quasi everywhere on D},

where i denotes a quasi continuous version of u.

We are going to use P° and pP(t, x, y) to denote the transition semigroup and
transition density of X respectively. L” will be used to denote the non—positive
definite infinitesimal generator of X on L*(D, dx). Gp, Kp and Mp will be used to
denote the Green function, Poisson kernel and Martin kernel of X on D respectively.
From [11] we know that when D satisfies the uniform exterior cone condition, Gp
and Kp are related by

D(x9 }’)

G
Kp(x,z) = A(n,a)/ - dy, 2.1)
ply —z|"t

where A(n, ) is the constantin (1.1). Suppose that 2z > 0 is a positive superharmonic
function with respect to X©. We define

PP, x,y) = h(x)"'pP(t, x, h(y), t>0,x,y€D.

It is easy to check that pP is a transition density and it determines a Markov process
(see Doob [23]). This process is called the h-conditioned symmetric stable process.

For any y € D, the Gp(-, y)-conditioned symmetric stable process is a Markov
process with state space (D \ {y}) U {3}, with lifetime { = tpy(,;. We will use Py
and E to denote the probability and expectation with respect to this process.
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For any w € D', the K p (-, w)-conditioned symmetric stable process is a Markov
process with state space D U {3}, with lifetime ¢ = tp. We will use P} and E} to
denote the probability and expectation with respect to this process.

For any z € 9D, the Mp(:, z)-conditioned symmetric stable process is a Markov
process with state space D U {9}, with lifetime ¢{ = tp. We will use P; and E; to
denote the probability and expectation with respect to this process.

In [11] we proved the following 3G Theorem.

THEOREM 2.1.  Suppose that D is a bounded C"! domain in R" withn > 2. Then
there exists a constant ¢ = c¢(D, n, «) > 0 such that

Gp(x,y)Gp(y, w) < clx —w|*™*
Gp(x, w) T x —ylrely —w|re’

Gp(x, y)Kp(y,2) - clx —z|"™®
Kp(x,2) T lx = ylrely —zre”

x,y,w € D, 2.2)

x,y€e€ D,ze D°. (2.3)

Using Theorem 2.1 above and the scaling property we easily get the following
result.

COROLLARY 2.2. There exists a constant ¢ = c(n, a) > 0 such that for any ball
B in R" one has
Gex, )Gy, w) _ clx —w|"™®
Gp(x, w) T k= ylrely — wine’
Gp(x, )Kp(y,2) _ cle —z"™
Kp(x,2) T x—ylrely —zjre’

x,y,w € B, 2.4)

x,y € B,ze B°. (2.5)

The 3G Theorem actually holds for bounded Lipschitz domains.

THEOREM 2.3.  Suppose that D is a bounded Lipschitz domain in R". Then there
exists a constant ¢ = c(D, n, &) > 0 such that

Gpx,y)Gp(y, w) < clx —w|*
Gp(x, w) T lx = yirely —wlre’

Gp(x,y)Mp(y, 2) < clx =z
Mp(x,z) T x = yrely —zjre’

x,y,we€D (2.6)

x,y€D,z€dD. (27)

Proof. Note that the boundary Harnack inequality holds on D for positive har-
monic functions in D with respect to the symmetric stable process X, due to Bogdan
[8]. One can then prove (2.6) by repeating the argument in Section 6.2 of [17] so we
omit the details here. Recalling (1.2), inequality (2.7) follows from (2.6) by letting
w—z 0O
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We need the following result on the decomposition of Kato class functions later
on.

LEMMA 2.4. Let q have compact support. Then q € K, o if and only if, for any
& > 0, there is a function q. such that q — q. is bounded and

supf Igs ()| dy <&

xeR" JR" |x - yln—a
Proof. The proof is the same as that of Theorem 4.16in [1]. O

In what follows, g is an arbitrary but fixed function in K, . For a domain D in
R”, define

T.f() = E* [e,)f(X@); t <7p],  x€D.

The semigroup T, admits an integral kernel u, (¢, x, y) (cf. [12]). The infinitesimal
generator of the semigroup 7, on L*(D, dx) is L? + q. If D has finite Lebesgue
measure, then it is known (see Theorem 3.3 of [12]) that L? +q has discrete spectrum.
Let {Ax, k =0, 1, ...} be all the eigenvalues of L? + g written in decreasing order,
each repeated according to its multiplicity. Then A; | —oo and the corresponding
eigenfunctions {¢;, k = 0, 1, ...} can be chosen so that they form an orthonormal
basis of L2(D, dx). We know that all the eigenfunctions ¢ are bounded and the first
eigenfunction ¢ can be chosen to be strictly positive in D (cf. [12]).

Definition 2.1. A bounded Borel function f defined on R” is said to a solution
to the equation

(L°+q)f(x)=0, xeD (2.8)
if it is continuous in D and for any open domain Dy C Do C D,
f(x) = E¥[eq(tp,) f(Xzp,)l, % € Do.
Clearly the first eigenfunction ¢g of T; is a positive solution of
(LP +q+X)fx)=0, xeD.

For positive solutions of (2.8) we have the following uniform local Harnack inequality,
which is applicable to ¢y with g 4+ A¢ in place of g.

THEOREM 2.5. There exist two positive constants ro = ro(q) and C = C(g) > 0
such that for any solution f of (2.8) which is strictly positive on D and for any ball
B(xg, r) with0 < r < rg and B(xp,2r) C D, one has

sup f(x) <C inf f(x).

x€B(xo,r) x€B(xo,r)
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Proof. 1t follows from (2.5) and the assumption of g € K, o that there exists a
positive number Ry such that for any ball of radius r < Ry in R",

/ Gp(x, y)Ig(»)|Kp(y, 2)
B

P Ks(r,2)

x€B,zeB

1
< =
dy_,2

By Jensen’s inequality and Khas’minskii’s lemma,

e”'? < inf__Ej[e,(rs)] < sup E;leq(tp)] < 2.
xeB,zeB x€B,z€B’

For any ball B(xgp, r) with 0 < r < Ry/2 and B(xg, 2r) C D, for any x € B(xo, 2r)
we have

fx)

E* leg (tB(xo,2r))f(Xta(xo.2r) )]

= f E}[eq(tB(xy,2r))] f (2) KB(xo,2r) (X, 2) d2Z
B(x0,2r)°

IA

2E*[f (Xtpey00)]-

By the Harnack inequality in [5], there exists a constant ¢ = c(n, o) > 0 such that

SUp  E*[f (Xeypay)] S ¢ inf  E*[f (Xrgp0)]-

x€B(xo,r) x€B(xo,r)

Therefore for any x, y € B(xo, ),

F®) < 2 ELf Kugy)]

IA

2cell? f E[e(ta0s02)] £ @) Ko (v 2) d2
B(xg,2r)c

= 2ce' f(y),

and the proof is now complete. [

From the theorem above we immediately get the following Harnack inequality by
a standard chain argument.

THEOREM 2.6. Suppose that K is a compact subset of D. There exists a constant
C =C(D,q, n,a) > 0such that for any solution f of (2.8) which is strictly positive
on D one has

sup f(x) < C inf f(x).
xek

xeK
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3. Intrinsic ultracontractivity

Let us first recall the definition of intrinsic ultracontractivity, due to Davies and
Simon [22]. Suppose that H is a semibounded self-adjoint operator on L?(D) with
D being a domain in R” and that {¢#*, ¢ > 0} is an irreducible positivity-preserving
semigroup with integral kernel a(z, x, y). Assume that the top of the spectrum g
of H is an eigenvalue. In this case, o has multiplicity one and the corresponding
eigenfunction ¢y, normalized by |l¢oll2 = 1, can be chosen to be positive almost
everywhere on D. ¢ is called the ground state of H.

Let U be the unitary operator U from L*(D, g}(x)dx) to L2(D) givenby Uf =
@0 f and define H on L*(D, ¢2(x) dx) by

H=U"'Y(H-up)U.

Then e;i ! is an irreducible symmetric Markov semigroup on L2(D, (pg (x) dx) whose
integral kernel with respect to the measure 3 (x)dx is given by

e Ma(t, x,y)
®o(x)po(y)

Definition 3.1.  H is said to be ultracontractive if e"!* is a bounded operator from
L2(D) to L°(D) for all t > 0. H is said to be intrinsically ultracontractive if
His ultracontractive; that is, e”’ is a bounded operator from L2(D, Lo 2(x)dx) to
L®(D, g%(x)dx) forall ¢ > 0.

Ultracontractivity is connected to logarithmic Sobolev inequalities. The connec-
tion between logarithmic Sobolev inequalities and L? to L9 bounds of semigroups
was first given by L. Gross [27] in 1975. E. Davies and B. Simons [1] adopted L.
Gross’s approach to allow g = 0o and therefore established the connection between
logarithmic Sobolev inequalities and ultracontractivity. (For an updated survey on
the subject of logarithmic Sobolev inequalities and contractivity properties of semi-
groups; see [2], [28].) In [3], R. Baiiuelos proved the intrinsic ultracontractivity for
Shrodinger operators on uniformly Holder domains of order « € (0, 2) using the
logarithmic Sobolev inequality characterization. We will use the same strategy in
this section; that is, establishing the intrinsic ultracontractivity through logarithmic
Sobolev inequalities.

In the rest of this section, unless otherwise specified, D is a domain in R* with
finite Lebesgue measure, ¢ is a fixed function in the Kato class K,, ,. Recall that the
semigroup {7;, ¢t > 0} is defined as follows:

T.f(x) = E* [eq) f(X(®)); t <tp], x€D.

{A: k = 0,1,...} are all the eigenvalues of L? + g written in decreasing order,
each repeated according to its multiplicity. {¢x: k = 0, 1, ...} are the corresponding
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eigenfunctions, normalized so that they form an orthonormal basis of L?(D, dx) and
¢o > 0on D.
The following result is proven in [12].

THEOREM 3.1.  The logarithmic Sobolev inequality holds for functions in (€, F).
That is, for any n > O and f € F N L*®°(D, dx), we have

fD frloglfldx < nE(f, )+ BMIFIE+ I FI3log Il f 2

with
n

B(n) = 3

logn+c¢

for some constant ¢ > 0.

Recall that for any domain D in R”, the quasi-hyperbolic distance between any
two points x; and x; in D is defined by

ds
s X2) =inf | ———
Pp (X1, %) = in /,, 5. 3D)

where the infimum is taken over all rectifiable curves y joining x; to x; in D and
8(x, a D) is the Euclidean distance between x and 9 D. Fix a point xg € D which we
call the center of D and assume without loss of generality that §(xp, dD) = 1.

Definition 3.2. A domain D in R" is a Hélder domain of order 0 if for a fixed
xo € D, there exist constants C; and C; such that for all x € D,

pp(xp, x) < Cylog ( + C,.

1
8(x, BD))

It is shown in Smith and Stegenga [32] that a Holder domain of order 0 is bounded. It
is well known that John domains, in particular bounded NTA domains and Lipschitz
domains, are Holder domains of order O (cf. [3]).

LEMMA 3.2. If D is a Holder domain of order 0, then there exists a constant
C = C(D) > 0 such that for any 8 > 0,

/ (pD(xo,x))ﬂuz(x) dx < C&(u,u), uelF.
D

Proof. From [32] we know that for any 8 > 0 we have

f (pp (0, x))? dx < o0.
D
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It follows from the Sobolev inequality (see formula (1.5.20) of [26] or Theorem 1 on
page 119 of [34]) that there is constant Cy > 0 such that for any u € F,

"u"po s Cl \' 8(“’ u)v

where pg is such that 1/pp = 1/2 — «/(2n). Let p =n/(n — @) and p’ = n/a. By
Holder’s inequality it follows that for any u € F,

1y (n—a)/n
/ (pp(x0, X)Pu(x)dx < ( / (pp (x0, X))PP dx) ( f lul”°(x)dx)
D D D

1/p
<G (/ (po(xo,x))ﬂ”'dx) Eu,u).
D
The proof is now complete. O

THEOREM 3.3. If D is a Holder domain of order 0, then for any ¢ > 0 and any
o > 0 we have

1
f Flog~dx <e€(f, )+ BOIfIE  feF
D %o

with
B(e) =c1e™" + 2

for some positive constants c| and c,. Here @y is the ground state of LP + q.

Proof. LetW = {Q;}be a Whitney decomposition of D. This is a decomposition
of D into closed cubes Q with the following three properties (see [34] for details):

(1) For j # k, the interior of Q; and the interior of Q are disjoint.
(2) If Q; and Qy intersect, then

_1_ < diam(Q;) <4
4 ~ diam(Qy) ~

(3) Forany j,

< ____S(Q,-,BD) <4,
= diam(Q;) ~

Let xo be a fixed point in D and xo € Qq. If Qx € W, we say that Qo = Q(0) —
o) - --- — Q(m) = Qy is a Whitney chain connecting Q¢ and Q, of length m if
Q(i) € Wforalli and Q(i) and Q(i + 1) have touching edges for all i. We define the
Whitney distance d(Qo, Q) to be the length of the shortest Whitney chain connecting
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Qo and Qy. If x € QO we define p(xp, x) = d(Qo, Qk). It is well known and easy
to prove that this distance is comparable with pp, the quasi-hyperbolic distance.

By Theorem 2.5, property (3) of the Whitney decomposition, the boundedness of
D and the equivalence of p and pp, there is a constant C; = C(D) > 0 such that
for any Q € W we have

sup o(x) < Cj inf @o(x).
xeQ xeQ

Therefore there exists a constant C, = C,(D) > 0 such that
po(x) = e~ PPN gy(xg),  x € D. 3.1)

For any p > 1, let p’ be its conjugate. By (3.1) and Lemma 3.2, for any ¢ > 0 and
uelF,

1
2
u-log —dx
fo &%

IA

o f pp(xo, X)u(x) dx
D

RV ,
Cz/ —i75 Pp (X0, X)u(x)”dx
p &'/?

IA

eCy / (pp(x0, X))Pu(x)? dx + Cre PP / ut(x)dx
D D

IA

eC3EW, u) + Cpe /P / u*(x) dx,
D

where Cj is a positive constant depending on D only. The proof is now complete.
O

Combining the two theorems above we get the following result.

THEOREM 3.4. If D is a Holder domain of order 0, then for any ¢ > 0 and any
o > 0 we have

fD f*log % dx < n€E(f, H+BMIFI3+IfI3loglfll2,  f € FAL®(D,dx)

with
B(e) = - loge +c1677 + ¢,
2a

for some positive constants ¢, and c;.

With the result above, we can easily get our main result of this section.
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THEOREM 3.5. Assume that D is a Holder domain of order 0. Then LP + q is
intrinsically ultracontractive. More precisely,

-A
e ug(t, x, y) < 2M/2)

< forallx,y € Dandt > 0,
o(x)eo(y)

where

t
M@ = l/ A(e)de
t Jo
with

—floge+cie” P+, fore<l,
1+ fore > 1.

A(g) = [
for some positive constants ¢ and c;.

Proof. By taking 0 = 1/3 in Theorem 3.4, for any ¢ > O and any f € F N
L*®(D, dx) we have

/D f? log%dx < eE(f, )+ Bi@IFI3+ 1 £131og [l Iz, (3.2)
with
Bi(e) = —% loge + Clt"z‘_'l/3 +

for some positive constants ¢; and c».
Suppose that (7', F) is the Dirichlet form on L?(m) withm(dx) = (p(z,dx associated
with the semigroup whose integral kernel with respect to the measure m is given by

e Mug(t,x,y)
©o(x)@o(y)
Then

F=(f: fooe F)
and

F(.m = oo ~ [ afmbonds +30 [ sham
D D
Since g € K, by Theorem 3.2 of [33] there exists a constant B > 0 such that
1
/ Iqluzdxs—-g(u,u)+Bf u*dx, uelrF.
D 2 D
Thus

T, ) 2 5600, hew) = (B = ho) / 1 dm.
D
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By putting f = hgg in (3.2), for h € Fn L*®(D,dm), we get
f W log|hldm < 2T (h, h)
D

+ (B1(&)+2(B — ho) /D B2 dm -+ k122 108 [l 2my. (3:3)
Therefore for 0 < £ < 1 and h € F N L®(D, dm),
/D K2 log |hldm < e T(h, h) + Ba(e) /D h2dm + |22 10g 1Al 2gny,  (B.4)
where
Ba(e) = —2% loge + c3e71 4 ¢4,

for some constants c3, ¢4 > 0. For & > 1, since T is nonnegative and (3.4) holds for
¢ = 1, we have, for any h € F N L*(D, dm),

[ #togntdm < Fou,hy+ pic0) [ 2 dm+ Wiy log Il
D D

IA

eT(h,h) + Bi(1) fD h2 dm + 17122y 108 12 20y (3:5)
Combining (3.4) and (3.5), for any ¢ > QO and any h € Fn L*°(D, dm) we get

f h*log |h|dm < &T (h, h) + A(e) llhlliz(m) + ||h||2Lz(m) log |AllL2my,  (3.6)
D

with

—floge +cse” P+ ¢ forn<1,

cs +¢c6 fore > 1.

Ae) = l

for some positive constants c¢s and cg. By Corollary 2.2.8 of [21], we have

U5 Y) _ awrn

forallx,y e D andt > O,
®o(x)po(y)

where
1 t
M(t)=;/ A(g)ds < 0. O
0

Using the same argument as that of Theorem 6 in R. Smits [31], we have:

THEOREM 3.6. Assume that D is a domain in R" with finite Lebesgue measure
such that LP + q is intrinsic ultracontractive. Then there exists C > 0 such that for
anyt > 1,

e Mu,(t, x,y)
Po(x)po(y)

eM—2o) <

ll < CePi—2o)
x,yeD
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4, Conditional lifetimes

Assume in this section that D is a domain in R” with finite Lebesgue measure such
that L? is intrinsically ultracontractive, unless otherwise specified. In particular, we
know from Theorem 3.5 that a Holder domain of order O satisfies this assumption.
Since (D, 0) is gaugeable, the first eigenvalue uo of L? is negative. Let ¢ be the
ground state of L?. Recall that pp is the transition density function for the killed
symmetric stable process X . Similar to Corollary 1 of Bafiuelos [3], we have:

THEOREM 4.1.  Under the assumption given at the beginning of this section there
is a constant ¢ > 0 such that:

(1) e**do(x)po(y) < pP(t, x, y) < cet' ¢o(x)¢o(y) forallx,y € D andt > 1.
(2) Let SHT denote all non-trivial nonnegative superharmonic functions in D with
respect to XP. Then

sup  Ej[tp] < oo.
xeD, heSH*
(3) Forh € SH,
¢o( )
T hx)

In particular, lim;, o 1 log P (tp > t) = po.

Jim e M P (tp > 1)

/ do(h(y).

Proof. (1) This follows directly from Theorem 3.6.
(2) Note that for each h € SH*, by (1),

hx) = fD P21, x, YYh(y) dy = ego(x) fD bo()h(y)dy forx € D,

Therefore
¢o(x)

xeD, hesut h(X)
Therefore by (1)

l [o.¢]
sup Ej[tp] =  sup ———/ pr(t,x,y)h(y)dy
xeD, heSH* xeD,hesut R(x) Jo  Jp

¢ / % gttt g qup Do) f do(Nh(y)dy < 00.
0 xeD, hesut P(x) Jp

/D do(Nh(y)dy < e ™™ < 0.

IA

(3) By Theorem 3.6,
lim €™ P} (tp > 1) = lim e™*¢o(x)™" f PP, x, y)h(y) dy
=00 t—> 00 D

_ $ox)
T h(x)

/ o) 0
D
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When D is a bounded Lipschitz domain, Gp(x, y), Mp(x, z) and Kp(x, w) are
superharmonic functions in x with respect to X ? for each fixed y € D, z € 3D and
w € D', respectively. The above theorem in particular implies the following result.

COROLLARY 4.2 (Conditional Lifetimes). Assume that D is a bounded Lipschitz
domain. Then

sup Ej[rp] < oo.
xeD, zeR"

5. Conditional gauge theorem

Throughout this section, D is a bounded Lipschitz domain. Recall that L is the
non-positive definite infinitesimal generator of the killed «-stable process on D. For
q € Ky, let ug(t, x, y) be the kernel of the following Feynman-Kac semigroup

T, f(x) = E* [eq(t)f(Xt)llt<tD}] .

Note that the semigroup 7; only depends on the function g through g1, so we may
assume that g = 0 off D. The following result is proven in [12].

THEOREM 5.1. Suppose that q € K, 4 is such that

sup / Gp(x,2)19(2)|Gp(z, y)
x,yeDJD Gp(x,y)

1
dz < -.
=3

Then we have

e™2Gp(x,y) < Vg(x,y) <2Gp(x, ), 3.1

where

o0
Vo, y) = fo ug(t %, y) dt.

THEOREM 5.2. Assume that q € K, o and (D, q) is gaugeable. Then there is a
constant ¢ > 0 such that

Vo(x,y) <cGplx,y) forallx,ye D.

Proof. By Lemma 2.4 and Theorem 2.3, the function g can be decomposed as
q = q1 + g2 with g; bounded and ¢; € K, , satisfying

/ Gp(x,2)192(2)IGp(z,y)
D GD(JC, )’)

sup

1
dz < —. 5.2)
x,yeD 2
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Therefore by Theorem 5.1,

e 2Gp(x,y) < Vy(x,y) <2Gp(x,y). (5.3)

Let {w, k = 0,1, ...} be all the eigenvalues of LD 4+ g, written in decreasing
order, each repeated according to its multiplicity. and let {4, k = 0, 1, ...} be the
corresponding eigenfunctions with o > 0 on D. We can assume that {y, k =
0, 1,...} form an orthonormal basis of L2(D, dx). Since by Khas’minskii’s lemma
Ejleq,(8)] < 2forx,y € D, we know from Theorem 3.11 of [12] that vy < 0.

By Theorem 3.6, there isa #; > 1 such thatforallz > ¢, and all x, y € D,

% < e ug(t,x,y) < 3

Yo()Wo(y) ~ 2
Therefore for all x, y € D,

o0
qu(x,}’) = /0 uqz(tax’y)dt

o0
Z f “qz(t,x‘)’)dt
n

I\

1 o0
SYO0Yo0) f e di
C1 ¥o(x)¥o(y) 54)

v

for some positive constant C; > 0.

Since L? +¢ = (LP + ¢;) +¢; and q; is bounded, it follows from Theorem 3.4 of
[22] that the first eigenfunction ¢g of L? + g is comparable to the first eigenfunction
Vo of L? + g, i.e., there exists a constant C; > 1 such that

C5 'Y < 9o < Cavo. (5.5)
By Theorem 3.6 again, thereisa #, > 1 such thatforallz > f, and all x, y € D,

l < e—xotuq(t,x,y) < E
2 ©o(x)@o(y) 2

Since the gauge function of (D, ¢q) is assumed to be finite, the first eigenvalue Ag is
negative by Theorem 3.11 of [12]. Therefore it follows from (5.5), (5.4) and (5.3)
that for any x, y € D,

x 3 [o.¢] N
/ ug(t,x,y)de < 5<po(x)<po(y) f M dt
t b

C300(x)@o(y) < Caro(x)¥o(y)
CsVg,(x,y) < C¢Gp(x,y),

IA

1A
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where C3, C4, Cs, Cg are positive constants. Since g; is bounded,

/:z ug(t,x,y)dt < ellgrlloorz j:z ug,(t, x,y)dt
< elldilleotz Vo, (x,y) < 2e"q‘"°°'2GD(x, y).
Hence there exists a constant C > 1 such that
Va(x,y) < CGplx,y), x,y € D. O
THEOREM 5.3. Assume that (D, q) is gaugeable. Then:

(1) Forall x,y € D with x # y, we have
Vo) = Golxu) + [ Yyt wg@Cotudu (56
D

Volx,y) = GD(x,y)+/;Go(x,u)q(u)Vq(u,y)du- (3.7

(2) Forallx,y € D withx # y, we have

Ej [eq()] =14 Gpx, ™! /; Ve(x, w)g(w)Gp(w, y) dw.

(3) Forallx,y € D withx # y, we have

Z1I))

E; [e‘l(g)] - GD(x, y)'

(4) There exists ¢ > 1 such that

-1 .
cl< x,l)r:lefD E; [eq ®)] =< x,S;lEPD Ej [e,()] < c.

(5) There exists a constant ¢ > 1 such that
¢ Gp(x,y) < Vg(x,y) <cGpx,y) forx,yeD.
That is, the Green function of D with respect to LP + q is comparable to the

Green function of D with respect to LP.
(6) Forallx € Dandz € D', we have

E} [eg)] =1+ Kp(x, )™ /D V, (x, w)g(w)K p(w, z) dw.
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(7) There exists a constsnt ¢ > 1 such that

U< inf _Efe, )< sup  Eile ()l <c.
(x,2)eDxD (x,z)erBc

Proof. The proofs of (1)—(5) are exactly the same as those of Theorems 5.3-5.7
of [12] so the details are omitted.
Now we prove (6). By (2.1), for any Borel measurable subset A C D,

f Gp(x, WIg(y)|IKp(y, 2) dy

A KD(X,Z)
_ A, @) Gp(y, w)
——KD(x’z)LGu(x,y)lq(y)l(/I) o=z dw>dy

_ A, a) [ Gplx,w) (/ Gp(x, NIgMIGp(y, w) dy)dw.
A

~ Kp(x,2) Jp lw—z*+ Gp(x, w)
The family of functions

[GD(x, INgOIGp (-, w)
Gp(x,w)

is uniformly integrable by (2.6) and therefore the family of functions

( GD(X, )|Q()|KD(‘, Z)

,x,weD}

KD(x, Z)

is uniformly integrable. By Fubini’s theorem,

¢
Ex [ [ eq(mq(x,)ndt]

=/0 E} [e,0lg(X))l; t < ¢] dt

,xeD,zeﬁ]

= Kp(x, 9" fo E* [e,0lg(X)|Kp(X,, 2); £ < ] dt
=Ko(x,z)“/ /uq(t,x,y)lq(w)IKo(w,z)dwdt
0 D

= Ko(x,z)“lf Vo (x, w)lg(w)|Kp(w, z) dw < oo.
D
Hence

E;leq(0)]

¢
1+ E: [ [ eq(t)q(X:)dt]
0

= 1+ Kp(,2)! f V, (x, w)q(w)Kp(w, 2) dw.
D



CONDITIONAL GAUGE THEOREM 157
Finally we prove (7). By (2.1),
E; [eq(tD)]
1 Gp(w, v)

=14+ — [ V,(x, —————dvd

+Ku(x,z)fp 7t "’)q(“’)/ulv—zlnw v

A(n, @) Gp(x,v) 1 f
= 1+ —— | V,(x, ,vVdw )d

Ko, 2) Dlv—z|"+“< T ot Jp 1 Wa@ICp ) dw dv
_ A, ) Gp(x,v)
" Kp(x,z) Jp [v—zlrte

The assertion of this theorem then follows from (4) above. [

E} [eg(9)] av.

Remark. (3) and (7) in the above theorem are the the conditional gauge theorms
for symmetric stable processes. We are informed by Bogdan that he has also obtained
these results independently.

For g € K, 4, let ¥ > be the ground state of L? + g and let u,(t, x,y) be the
density kernel of L? + g with respect to the Lebesgue measure in D.

THEOREM 5.4. Assume that (D, q) is gaugeable. Then:

(1) There exists a constant ¢ > 1 such that

-1 . x M
¢ < inf Ej|e(tp)] < su E*le,(tp)] < c.
(x,2)eDxdD ¢ [ a )] (x’z)eg)an z [ q( )]

(2) There exists a constant ¢ > 1 such that

1< inf EY < EX <ec.
R 4 L) s S G

(3) There is a constant ¢ > 1 such that

¢ 'po(x) < Yo(x) < cpo(x) forallx € D.

(4) For eacht > O there is a constant ¢, > 1 such that
¢ pP(t, x,y) Sugt,x,y) < pPt,x,y) forallx,y e D.

Proof. (1). It follows from the (2.7) that the family of functions
[ Gp(x,)lg()|Mp(,2)
Mp(x, z)

is uniformly integrable. A calculation similar to that given in the proof of Theorem
5.3 (6) yields

,xeD,zeaD}

1
Elle,($)] =1+ m /;) Vg (x, u)g(u)Mp(u, z) du.
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Let xo be a fixed point in D. Then from [13] we know that

Gp(w, y)/Gp(xo, y)
GD(xv y)/GD(x()’ .V)
MD (wv Z)

Mp(x,2)’

Now using the uniform integrability of the family of functions

[Go(x, Ng()IGp (s y)
Gp(x,y)

and letting y — z € dD in Theorem 5.3 (2) we have

. 1 .
)1,1_)112 qu(X, w)qg(w)Gp(w, y) = )l,l_fg Vo (x, w)g(w)

= Vo (x, w)g(w)

,x,yeD]

im E* I S
lim E5leg(§)] = 1+ = fD V, (6, 1)q ) Mp (u, 2) du.

Therefore
y_)rr; E)[eq(£)] = Elleq ()] (5.8)

and the theorem now follows from Theorem 5.3 (4).
Combining Theorem 5.3 and (1) above we get (2). The proofs of (3) and (4) are
the same as that for Theorem 2 in Bafiuelos [3] and are thus omitted. [

Remark. 1t is possible to extend conditional gauge theorem beyond bounded
Lipschitz domains to domains having the following properties. Suppose that D is a
domain having finite Lebesgue measure and g € K, 4 such that L? + q is intrinsic
ultracontractive. Also assume that g admits a decomposition g = g; + ¢, with g; and
q. satisfying (5.2). Then Theorem 5.2 remains true by exactly the same argument.
Assume further that

GD(x)')lq(')IGD(" y) }
DX, D 5.
[ Go(,y) hye G

is uniformly integrable on D. Then (1)-(5) of Theorems 5.3 hold by the same proofs
as those for Theorems 5.3-5.7 in [12]. In this case, (3) and (4) of Theorem 5.4 hold
as well. When D is a bounded Lipschitz domain, the above conditions are satisfied
due to 3G Theorem 2.3.
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