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INTRINSIC ULTRACONTRACTIVITY, CONDITIONAL
LIFETIMES AND CONDITIONAL GAUGE FOR

SYMMETRIC STABLE PROCESSES ON ROUGH DOMAINS

ZHEN=QING CHEN AND RENMING SONG

ABSTRACT. For a symmetric c-stable process X on with 0 < o < 2, n > 2 and a domain D C Rn, let
LD be the infinitesimal generator of the subprocess of X killed upon leaving D. For a Kato class finction
q, it is shown that Lo + q is intrinsic ultracontractive on a Htlder domain D of order 0. Then this is used
to establish the conditional gauge theorem for X on bounded Lipschitz domains in Rn. It is also shown
that the conditional lifetimes for symmetric stable process in a H/51der domain of order 0 are uniformly
bounded.

1. Introduction

A symmetric u-stable process X on Rn is a L6vy process whose transition density
p(t, x y) relative to the Lebesgue measure is uniquely determined by its Fourier
transform

eix’ p(t, x) dx e-tll

Here c must be in the interval (0, 2]. When u 2, we get a Brownian motion
running with a time clock twice as fast as the standard one. Brownian motion has
been intensively studied due to its central role in modern probability theory and
its numerous important applications in other scientific areas including many other
branches of mathematics. In the sequel, symmetric stable processes refer to the case
when 0 < u < 2. During the last thirty years, there has been an explosive growth in
the study ofphysical and economic systems that can be successfully modeled with the
use of stable processes. Stable processes are now widely used in physics, operation
research, queuing theory, mathematical finance and risk estimation. Recently some
fine properties related to symmetric stable processes and Riesz potential theory, as
counterparts to Brownian motion and Newtonian potential theory, have been studied,
for example in [8]-[13].

Let X be a symmetric c-stable process in Rn with n > 2. It is well known that X
is transient and has Green function G(x, y) A(n, u)lx yl"-n where

ot+nc2,- 1" (..T_,
a(n,t) (1.1)
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Definition 1.1.
class Kn,, if

A Borel measurable function q on Rn is said to be in the Kato

lim sup fx Iq(Y)l
r,[O xR, -yl<r Ix yl- dy O.

For q 6 Kn,a and > 0, define

eq(t) exp q(Xs) ds

For a domain D C Rn, the gauge function g of (D, q) is defined by g(x)
EX[eq(rO)], x D where ro inf{t > 0: Xt q D}. The following gauge
theorem is known for domain D with finite Lebesgue measure: The function g is
either identically infinite or is bounded on D. In the latter case, (D, q) is said to be
gaugeable (with respect to X). By Theorem 1 of Chung [14], (D, 0) is gaugeable
for any domain D with finite Lebesgue measure. It is proved in [12] that (D, q) is
gaugeable if and only if the first eigenvalue of Lo + q is negative, where Lo is the
non-positive definite infinitesimal generator of the part process X of X killed upon
leaving the domain D.
Now assume that D is a bounded Lipschitz domain. Recall that the Green function

Go and Poisson kernel Ko of X in D are determined by the following equations. For
xD,

Ex f(Xs) ds Go(x, y)f(y)dy for f > 0 on D,

for 9 > 0 on Dc.

Fix an xo e D; it is shown in [13] (see also [9]) that for each z 3D and x D,

Go(x, y)
Mo(x, z) lim exists and is finite. (1.2)

y---z,yD GD(XO, y)

Mo is called the Martin kernel of X in D.
For a domain D in Rn, we adjoin an extra point 0 to D and set

Xt(og) ift < rD(og),Xt(og) 0 if > ZD(og).

The process X is called the symmetric a-stable process killed upon leaving D,
or simply the killed symmetric a-stable process on D. From now on we use the
convention that any function f defined on D is automatically extended to D tA 0 by
setting f() 0.
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Definition 1.2. Let D be a domain in Rn. A locally integrable function f de-
fined on D taking values in (-o, o] and satisfying the condition

fll>}D If(x)llxl-(n+=)dx < o is said to be superharmonic respect to XD

if f is lower semicontinuous in D and for each x D and each ball B(x, r)
with B(x, r) C D,

f(x) > Ex[f(Xrtx,r); "tSB(x,r) <

A function h is said to be harmonic with respect to xD if both h and -h are super-
harmonic respect to xD.

Suppose that h > 0 is superharmonic in D with respect to xD. Then by Theorem
XD2.3 of [13], for any domain D1 C DI C D, Ex[h-( rOl )] < o and

h(x) > Ex[h(Xrot)] for every x e D1.

This implies (for example, see page 11 of Dynkin [24]) that

h(x) >_ EX[h(XtO)].
Therefore one can define the h-conditioned stable process. Note that for each fixed
y D and z OD, Go(x, y) and Mo(x, z) are harmonic functions in x with
respect to X\lyl and X, respectively. For any w -c, Ko(x, w) is superharmonic
in x with respect to X. Therefore we can define the Go(., y)-conditioned stable
process, Ko(., w)-conditioned stable process and the Mo(., z)-conditioned stable
process. The probability laws corresponding to these conditional stable processes
will be denoted by P, P and Pzx, respectively. The following conditional gauge
theorem is established in Chen and Song 12].

THEOREM 1.1. Assume that D is a bounded C 1, smooth domain in Rn, q Kn,a
and that (D, q) is gaugeable. Then there exists a constant c > 1 such that

c-’ < inf E [eq(()] < sup E [eq(()] < c.
(x,z)a.Dx (Rn\OD) (x,z).Dx (Rn\O D)

Recently it was shown in 13] that under the conditions of Theorem 1.1, there is a
constant c > 1 such that

c-’ < inf E [eq(()] < sup E [eq(()] < c.
(x,z)EDx OD (x,z)ED x OD

The gauge theorem for Brownian motion was first proved by Chung and Rao in
15] for bounded q and later was generalized to more general q by various authors.
The conditional gauge theorem for Brownian motion was first proved by Falkner [25]
for bounded q and a class of domains including bounded C2 domains. Extensions of
this result to q belonging to the Kato class and to bounded C 1, domains were given by
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Zhao in [35] and [36]. The conditional gauge theorem has also been generalized by
Cranston, Fabes and Zhao [19] to diffusion processes whose infinitesimal generators
are uniformly elliptic divergence form operators and to bounded Lipschitz domain
in Rn. For a more detailed story about gauge and conditional gauge theorem for
Brownian motion, the interested reader is referred to the recent book of Chung and
Zhao 17].

In this paper, we extend the above conditional gauge theorem for symmetric stable
processes from bounded C1’ domains to bounded Lipschitz domains. We follow
the idea from Chen and Song [12], proving the conditional gauge theorem through
intrinsic ultracontractivity, but with substantial improvements, motivated by Bafiuelos
[3]. In 12], sharp estimates on Green functions ofbounded C’ domains obtained in
11 were used to establish the conditional gauge theorem. However these estimates

are no longer available for bounded Lipschitz domains. We are able to circumvent
it in this paper. We first show that, under the assumption that (D, q) is gaugeable,
the Green function Vq of LD + q on D is bounded by a constant multiple of Go.
The latter is then used to prove the conditional gauge theorem on bounded Lipschitz
domains. In order to establish Vq < c Go on D x D for some c > 0, we show that
operator LO + q is intrinsiclly ultracontractive on D. In fact we show that Lo + q is
intrinsically ultracontractive for any HOlder domain D of order 0. For definitions of
intrinsic ultracontractivity and HOlder domain of order 0, see Definitions 3.1 and 3.2
below. We mention here that John domains, particularly bounded NTA domains and
Lipschitz domains, are H61der domains of order 0. Under the assumption that D has
finite Lebesgue measure such that Lo is intrinsically ultracontractive, we show that
there is a constant c > 0 such that for each non-trivial nonnegative superharmonic
function h in D with respect to X, SUPxo E[o] < c. This especially implies that
for a bounded Lipschitz domain D,

EX, [ro] <sup
xD, z.R

Previously the boundedness of conditional lifetimes was proved for bounded C’
smooth domains for symmetric stable processes in 11 and 13]. Conditional lifetime
estimates for Brownian motion in planar domains were first studied by M. Cranston
and T. McConnell [20], in answering a question of K. L. Chung. The first extension
to several dimensions for Brownian motion was done by M. Cranston 18], followed
by many works on important extensions to more general domains and to elliptic
diffusions (see [3], [4] and the references therein).

Acknowledgement. We are grateful to Rodrigo Bafiuelos, Rich Bass and Chris
Burdzy for very helpful discussions. We thank Krzysztof Bogdan for very interesting
and helpful discussions at the MSRI, Berkeley, and University ofWashington, Seattle.
Bogdan has informed us that he has also proved the conditional gauge theorem on
bounded Lipschitz domains independently.
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2. Preliminaries

Throughout this paper, we assume that n > 2 and 0 < c < 2. Let X be a
symmetric u-stable process in Rn. It is well known that the Dirichlet form (E, .T"R)
associated with X is given by

o(u,v) A(n, ot)fi fl (u(x)-u(y))(v(x)-v(y))

Ix- yln+
dxdy

"Tz’I {uc=L2(Rn)" fRfRo (u(x)-u(Y))21x-yln+

where A(n, ct) is the constant in (1.1). As usual, we use Pt }t>0 to denote the transition
semigroup of X and G to denote the potential of Pt }/>_0; that is,

Gf(x) Pt f (x) dt.

From now on, we assume that D is a domain in Rn. It is well known (cf. [26]) that
the Dirichlet form corresponding to the killed symmetric ct-stable process X on D
is (g, .T’) where

." {U ( .E’R" / 0 quasi everywhere on DC},

where fi denotes a quasi continuous version of u.
We are going to use Pt and pO (t, x, y) to denote the transition semigroup and

transition density of X respectively. L will be used to denote the non-positive
definite infinitesimal generator of X on L2(D, dx). Go, Ko and Mo will be used to
denote the Green function, Poisson kernel and Martin kernel of X on D respectively.
From 11 we know that when D satisfies the uniform exterior cone condition, Go
and Ko are related by

Go(x, Y)
Ko(x, z) A(n, t)

lY zln+a
dy, (2.1)

where A(n, or) is the constant in (1.1). Suppose that h > 0 is a positive superharmonic
function with respect to XD. We define

p (t, x, y) h(x)-lpD (t, x, y)h(y), t>O,x,yD.

It is easy to check that p is a transition density and it determines a Markov process
(see Doob [23]). This process is called the h-conditioned symmetric stable process.

For any y 6 D, the Go(., y)-conditioned symmetric stable process is a Markov
process with state space (D \ {y}) tO {0}, with lifetime ( "rD\{y}. We will use P
and E to denote the probability and expectation with respect to this process.
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For any w e , the Ko(., w)-conditioned symmetric stable process is a Markov
process with state space D t.J {0 }, with lifetime to. We will use P and EXw to
denote the probability and expectation with respect to this process.

For any z OD, the Mo(., z)-conditioned symmetric stable process is a Markov
process with state space D t_J {0 }, with lifetime to. We will use P and E to
denote the probability and expectation with respect to this process.

In [11] we proved the following 3G Theorem.

THEOREM 2.1. Suppose that D is a bounded C 1,1 domain in Rn with n >_ 2. Then
there exists a constant c c(D, n, or) > 0 such that

Go(x, y)Go(y, w) c Ix wln-a< x,y, to D, (2.2)
Go(x, w) Ix yln-lY wln-

Go(x, y)Ko(y, Z) c Ix zln-t< x, y6D, z6Dc. (2.3)
Ko(x, Z) Ix yln-aly zln-’

Using Theorem 2.1 above and the scaling property we easily get the following
result.

COROLLARY 2.2.
B in Rn one has

There exists a constant c c(n, or) > 0 such thatfor any ball

GB(x, y)GB(y, w)
Gn(x, w)

Gn(x, y)KB(y, z)
Ks(x,z)

c lx toln- x, y to B (2.4)<- Ix yl-ly wl-’
clx zl-< x,yB,zBc. (2.5)

Ix yln-ly zln-

The 3G Theorem actually holds for bounded Lipschitz domains.

THEOREM 2.3. Suppose that D is a bounded Lipschitz domain in Rn. Then there
exists a constant c c(D, n, or) > 0 such that

Go(x, y)Go(y, w) c Ix wln-a< x, y, to D (2.6)
Go(x, w) Ix yln-ly- wl-’

Go(x, y)Mo(y, Z) c Ix zln-< x,yD,zOD. (2.7)
MD(X, Z) IX yln-ly Zln-’

Proof. Note that the boundary Harnack inequality holds on D for positive har-
monic functions in D with respect to the symmetric stable process X, due to Bogdan
[8]. One can then prove (2.6) by repeating the argument in Section 6.2 of [17] so we
omit the details here. Recalling (1.2), inequality (2.7) follows from (2.6) by letting
w --+ z.
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We need the following result on the decomposition of Kato class functions later
on.

LEMMA 2.4. Let q have compact support. Then q Kn,u ifand only if, for any
e > O, there is afunction q, such that q q is bounded and

Iq(Y)l
sup dy <
xR Ix yl-

Proof The proof is the same as that of Theorem 4.16 in [1]. I-1

In what follows, q is an arbitrary but fixed function in K,,,,. For a domain D in
Rn, define

Ttf(x) Ex [eq(t)f(X(t)); < VD], x e D.

The semigroup Tt admits an integral kernel Uq(t, x, y) (cf. [12]). The infinitesimal
generator of the semigroup Tt on L2(D, dx) is LD + q. If D has finite .Lebesgue
measure, then it is known (see Theorem 3.3 of 12]) that LD ...q has discrete spectrum.
Let {.k, k 0, 1 be all the eigenvalues of LD -q- q written in decreasing order,
each repeated according to its multiplicity. Then .k $ -cx and the corresponding
eigenfunctions {p, k 0, 1 can be chosen so that they form an orthonormal
basis of L2(D, dx). We know that all the eigenfunctions Pk are bounded and the first
eigenfunction P0 can be chosen to be strictly positive in D (cf. 12]).

Definition 2.1. A bounded Borel function f defined on Rn is said to a solution
to the equation

(LD ._ q)f(x) 0, x D (2.8)

if it is continuous in D and for any open domain Do C Do C D,

f(x) EX[eq(VDo)f(Xroo)], xDo.

Clearly the first eigenfunction P0 of Tt is a positive solution of

(LD + q + )o)f(x) O, x D.

For positive solutions of (2.8) we have the following uniform local Harnack inequality,
which is applicable to tp0 with q + .o in place of q.

THEOREM 2.5. There exist two positive constants ro ro(q and C C(q) > 0
such thatfor any solution f of(2.8) which is strictly positive on D andfor any ball
B(xo, r) with 0 < r < ro and B(xo 2r C D, one has

sup f(x)<C inf f(x).
xB(xo,r) xeB(xo,r)



CONDITIONAL GAUGE THEOREM 145

Proof. It follows from (2.5) and the assumption of q 6 Kn,, that there exists a
positive number R0 such that for any ball of radius r < R0 in Rn,

f GB(X, y)Iq(y)IKB(y, z)

xB,zc#Sup JB KB (x, z)

By Jensen’s inequality and Khas’minskii’s lemma,

e-/2 < inf E[eq(VB)] < sup E[eq(VB)] < 2.
xB,za.B x.B,z."

For any ball B(x0, r) with 0 < r < Ro/2 and B(x0, 2r) C D, for any x 6 B(x0, 2r)
we have

f(x) EX[eq(rB(xo,2r))f (Xrsxo,2r))]

: E[eq(:B(xo,2r))] f (z) KB(xo,2r)(X, Z) dz
JB(xo,2r)

< 2EX[f(XrB,xo.2r,)].

By the Harnack inequality in [5], there exists a constant c c(n, or) > 0 such that

sup EX[f(XrB(o.r))] < c inf EX[f(Xrso.r))].
xB(xo,r) xB(xo,r)

Therefore for any x, y e B(xo, r),

f (x) < 2c EY[f(Xr,,:o,,,)

< 2c e 1/2 fB EYz[eq(VB(xo,2r))] f(z) KB(xo,2rl(Y, Z) dz
(xo,2r)

2c e/2f(y),

and the proof is now complete.

From the theorem above we immediately get the following Harnack inequality by
a standard chain argument.

THEOREM 2.6. Suppose that K is a compact subset ofD. There exists a constant
C C(D, q, n, or) > 0 such thatfor any solution f of(2.8) which is strictly positive
on D one has

sup f(x) < C inf f(x).
xK xK
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3. Intrinsic ultracontractivity

Let us first recall the definition of intrinsic ultracontractivity, due to Davies and
Simon [22]. Suppose that H is a semibounded self-adjoint operator on Le(D) with
D being a domain in Rn and that {eHt, > 0} is an irreducible positivity-preserving
semigroup with integral kernel a(t, x, y). Assume that the top of the spectrum/z0
of H is an eigenvalue. In this case, z0 has multiplicity one and the corresponding
eigenfunction 90, normalized by 110112 1, can be chosen to be positive almost
everywhere on D. 9o is called the ground state of H.

Let U be the u...nitary operator U from L2(D, 9(x)dx) to L2(D) given by Uf
9of and define H on L (D, (x) dx) by

/ U-1 (H -/z0) U.

Then ent is an irreducible symmetric Markov semigroup on La(D, 9(x) dx) whose
integral kernel with respect to the measure 9(x)dx is given by

e-zta(t, x, y)

90(x)90(Y)

Definition 3.1. H is said to be ultracontractive if eHt is a bounded operator from
Lg-(D) to L(D) for all > 0. H is said to be intrinsically ultracontractive if

is ultracontractive; that is, e u’’t is a bounded operator from L2(D, 9(x)dx) to
L(D, o(x) dx) for all > 0.

Ultracontractivity is connected to logarithmic Sobolev inequalities. The connec-
tion between logarithmic Sobolev inequalities and Lp to Lq bounds of semigroups
was first given by L. Gross [27] in 1975. E. Davies and B. Simons [1] adopted L.
Gross’s approach to allow q oo and therefore established the connection between
logarithmic Sobolev inequalities and ultracontractivity. (For an updated survey on
the subject of logarithmic Sobolev inequalities and contractivity properties of semi-
groups; see [2], [28].) In [3], R. Bafiuelos proved the intrinsic ultracontractivity for
Shr6dinger operators on uniformly Htilder domains of order ot 6 (0, 2) using the
logarithmic Sobolev inequality characterization. We will use the same strategy in
this section; that is, establishing the intrinsic ultracontractivity through logarithmic
Sobolev inequalities.

In the rest of this section, unless otherwise specified, D is a domain in Rn with
finite Lebesgue measure, q is a fixed function in the Kato class Kn,o. Recall that the
semigroup {Tt, > 0} is defined as follows:

Ttf(x) Ex [eq(t)f(X(t)); < xD.

{A.k" k 0, are all the eigenvalues of L -F q written in decreasing order,
each repeated according to its multiplicity. {9k" k 0, 1,...} are the corresponding
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eigenfunctions, normalized so that they form an orthonormal basis of L2(D, dx) and
o0 > 0on D.

The following result is proven in [12].

THEOREM 3.1. The logarithmic Sobolev inequality holdsforfunctions in (g, ’).
That is, for any > 0 and f .T" (q L(D, dx), we have

log Ifl dx 0(f, f) +/3(r/)llfll + Ilfllz log Ilfl12,

with
n

/3(7) -’-d log r/+ c

for some constant c > O.

Recall that for any domain D in Rn, the quasi-hyperbolic distance between any
two points x and x2 in D is defined by

IOD(X1, X2) inff ds

where the infimum is taken over all rectifiable curves , joining x to x2 in D and
8 (x, 0D) is the Euclidean distance between x and 0 D. Fix a point x0 D which we
call the center of D and assume without loss of generality that 8(x0, 0D) 1.

Definition 3.2. A domain D in Rn is a H6lder domain of order 0 if for a fixed
x0 D, there exist constants C1 and C2 such that for all x D,

(1)Po(xo, x) < C Iog 3(x’OD) +C2.

It is shown in Smith and Stegenga [32] that a Htlder domain of order 0 is bounded. It
is well known that John domains, in particular bounded NTA domains and Lipschitz
domains, are H61der domains of order 0 (cf. [3]).

LEMMA 3.2. If D is a H6lder domain of order 0, then there exists a constant
C C(D) > 0 such thatfor any > O,

X))#U2(x) dx <_ C$(u, u), u .T’.

Proof. From [32] we know that for any fl > 0 we have

x))/ dx < c.
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It follows from the Sobolev inequality (see formula (1.5.20) of [26] or Theorem on
page 119 of [34]) that there is constant C1 > 0 such that for any u .T’,

Ilullpo C/(u, u),

where p0 is such that 1/po 1/2 c/(2n). Let p n/(n a) and p’ n/. By
H61der’s inequality it follows that for any u ’,

fD (fD )l/p’(f
D )(n-or)In(PD(X0, X))uZ(x) dx < (po(xo, x))tp’ dx lulP(x) dx

(fD)lip’< CI (po(xo, x))p’ dx 8(u, u).

The proof is now complete. []

THEOREM 3.3.
> 0 we have

If D is a H61der domain of order O, then for any > 0 and any

f2 log
1

dx < eg(f, f) +/(e)llfl[,
o0

with

() cle- + c2

for some positive constants C and c2. Here ao is the ground state oLo + q.

Proof Let W Qj be a Whitney decomposition of D. This is a decomposition
of D into closed cubes Q with the following three properties (see [34] for details):

(1) For j -# k, the interior of Qj and the interior of Q, are disjoint.
(2) If Qj and Qk intersect, then

1 diam(Qj)-< <4.
4- diam(Qk)

(3) For any j,

6(Qj, OD)
1< <4.

diam(Qj)

Let x0 be a fixed point in D and x0 6 Q0. If Qk 6 W, we say that Qo Q(0) --Q(1) Q(m) Qk is a Whitney chain connecting Q0 and Qk oflength m if
Q(i) W for all and Q(i) and Q(i + 1) have touching edges for all i. We define the
Whitney distance d(Q0, Qi) to be the length of the shortest Whitney chain connecting
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Qo and Q,. If x Qk we define iS(x0, x) d(Q0, Q,). It is well known and easy
to prove that this distance is comparable with Po, the quasi-hyperbolic distance.

By Theorem 2.5, property (3) of the Whitney decomposition, the boundedness of
D and the equivalence of 3 and Po, there is a constant Cl C1 (D) > 0 such that
for any Q 6 W we have

sup po(x) _< C1 inf tpo(X).
xO

Therefore there exists a constant C2 C2(D) > 0 such that

oo(x) > e-C2px’xOo(xo), x D. (3.1)

For any p > 1, let p’ be its conjugate. By (3.1) and Lemma 3.2, for any e > 0 and
u .T’,

fo u21g 1
dx < c2 fo p(x’ x)u(x)

lIp

C2 --i/gD(X0, X)U(X)2 dx

<_ eCE fo(o(xo, x))Pu(x)E dx q- C2e-P’/P fo u2(x) dx

C3 (u, u) -+. C2 8-p’/p fD uE(X) dx,

where Ca is a positive constant depending on D only. The proof is now complete.

Combining the two theorems above we get the following result.

THEOREM 3.4.
> 0 we have

If D is a HOlder domain oforder O, then for any e > 0 and any

f log If__l dx <_ o(f, f)+(o)llfll+llfll log Ilfll2,
990

f UNL(D, dx)

with
n

/3(e) log e + cle- + C2
2c

for some positive constants c and c2.

With the result above, we can easily get our main result of this section.
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THEOREM 3.5 Assume that D is a H6lder domain of order O. Then L + q is
intrinsically ultracontractive. More precisely,

where

with

e-xtuq (t, x, y)
< e2M(t/2) for all x, y E D and > 0,

9o(x)oo (y)

l forM(t) - A(e) de

, 1/3 fore < 1
A(e) - log e + Cle- + c2

c +c2 fore > 1.

for some positive constants Cl and c2.

Proof.
L(D, dx) we have

with

By taking a 1/3 in Theorem 3.4, for any e > 0 and any f E .T N

f log If___l dx e(f, f) + fll(e)llfll2 -t-Ilfll log Ilfl12,
o0

and

.T" {f" fcPo .T}

Thus

7(f, h) 8(ftpo, hgo) qfoo hgo dx + )o fh dm

Since q e Kn,u, by Theorem 3.2 of [33] there exists a constant B > 0 such that

Iqlu2 dx < -8(u, u) + B U2 dx, u .
1 fDh27"(h, h) > -g(hoo, hgo) (B ,ko) dm.

Then

n e_l/3/1 (e) log e + Cl -" C22ct
for some positiveconstants c and c2.

Suppose that (7-, .T) is the Dirichlet form on LE(m) withm(dx) 92odx associated
with the semigroup whose integral kernel with respect to the measure m is given by

e-XtUq(t, x, y)

9o(x)9o(Y)
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By putting f htpo in (3.2), for h .T" tq L(D, dm), we get

o
h2 log Ihl dm 2e -(h, h)

+ (/l(e)+2(B )o))fnh2 dm+llhllz
L2(m) log Ilhll.(m). (3.3)

Therefore for 0 < e < 1 and h f3 L(D, dm),

h2 [hi dm < -(h h) +/32(e) fr) h2 dm + [[h[[ 2 log (3.4)log E L2(m) [[h[[L(m),

where
n -1/3 qt. C4,flZ(e) --’d log e + C38

for some constants ca, c4 > 0. For e > 1, since 7" is nonnegative and (3.4) holds for
e 1, we have, for any h .T" fq L (D, dm),

h21oglhldm < T(h,h) +/31(1) h2dm + IlhllL2(m) logllhll.2(m)

< e(h h) +/ (1) .l, h2 dm + Ilhll z log Ilhll (3.5)L2(m) L2(m)

Combining (3.4) and (3.5), for any e > 0 and any h .T L(D, dm) we get

hE Ih[ dm < e-(h h) + A(e)llhl[ 2 2 log (3.6)log LZ(.,) / Ilh L2(m) IlhllLz(m),

with
n loge+cse-1/3+c6 foro < 1

A(e) -c5 +c6 fore > 1.

for some positive constants c5 and c6. By Corollary 2.2.8 of [21 ], we have

e-XtUq(t, x, y)
< eZM(t/2) for all x, y 6 D and > 0,

oo (x)oo(y)
where

lfotM(t) - A (e) de < cx.

Using the same argument as that of Theorem 6 in R. Smits [31 ], we have:

THEOREM 3.6. Assume that D is a domain in Rn with finite Lebesgue measure
such that LD + q is intrinsic ultracontractive. Then there exists C > 0 such thatfor
any > 1,

e(xt-x)t < sup
x,y.D

e-xtUq (t, x, y)

t#o (x)oo (y)
--1 < Ce(X-Xo)
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4. Conditional lifetimes

Assume in this section that D is a domain in Rn with finite Lebesgue measure such
that L is intrinsically ultracontractive, unless otherwise specified. In particular, we
know from Theorem 3.5 that a H/31der domain of order 0 satisfies this assumption.
Since (D, 0) is gaugeable, the first eigenvalue/z0 of L is negative. Let b0 be the
ground state of L. Recall that Po is the transition density function for the killed
symmetric stable process X. Similar to Corollary 1 of Bafiuelos [3], we have:

THEOREM 4.1. Under the assumption given at the beginning ofthis section them
is a constant c > 0 such that:

(1) etpo(x)qbo(y) < p(t,x, y) < cetqbo(x)qbo(y)forallx, y D andt > 1.
(2) Let SH+ denote all non-trivial nonnegative superharmonicfunctions in D with

respect to X. Then

(3) For h SH+,

sup E[D] <
xD, hSH+

lim e-ttP (ZD > t)
t--- oo

o(x) foh(x)
qbo(y)h(y).

log P(ro > t)In particular, lim/ 7 =/z0.

Proof. (1) This follows directly from Theorem 3.6.
(2) Note that for each h SH+, by (1),

h(x) > fo P(l’ x, y)h(y)dr > eqbo(x) fo qbo(y)h(y)dy

Therefore
qo(x)

sup qbo(y)h(y) dy < e- <
xD,hSH+ h(x)

Therefore by (1)

1
sup E[ro] sup /

xD, ha.SH+ xD,h.SH+ h(x) .o

forx D.

(t, x, y)h(y) dy

o(x) fosup Po(y)h(y) dy < o.
x.D,h.SH+ h(x)

(3) By Theorem 3.6,

lim e-tP(ro > t) lim e-lZtqbo(x)-lfD pO(t,X, y)h(y)dy

Po(x)h(x) fo qbo(y)h(y).
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When D is a bounded Lipschitz domain, Go(x, y), Mo(x, z) and Ko(x, w) are
superharmonic functions in x with respect to XD for each fixed y D, z 0D and
w -c, respectively. The above theorem in particular implies the following result.

COROLLARY 4.2 (Conditional Lifetimes). Assume that D is a bounded Lipschitz
domain. Then

E,X[ro] < x.sup
xa_D, zER

5. Conditional gauge theorem

Throughout this section, D is a bounded Lipschitz domain. Recall that Lo is the
non-positive definite infinitesimal generator of the killed ct-stable process on D. For
q K,,,,, let Uq (t, x, y) be the kernel of the following Feynman-Kac semigroup

Ttf(x) Ex [eq(t)f(Xt)l{t<ro}]
Note that the semigroup Tt only depends on the function q through q 1 o so we may
assume that q 0 off D. The following result is proven in 12].

THEOREM 5.1.

Then we have

where

Suppose that q Kn,a is such that

[ Go(x, z)lq(z)lGo(z, y)
x,ya.DSUp Jo Go(x, y)

1
dz <-.
-2

e-1/2Go(x, y) < Vq(x, y) < 2Go(x, y), (5.1)

Vq(x, y) Uq(t, X, y) dt.

THEOREM 5.2. Assume that q Kn,a and (D, q) is gaugeable. Then there is a
constant c > 0 such that

Vq(x, y) < c GD(X, y) for all x, y D.

Proof. By Lemma 2.4 and Theorem 2.3, the function q can be decomposed as
q ql + q2 with ql bounded and q2 e Kn,, satisfying

Go(x, z)lq2(z)lGo(z, y)
sup
x,y.D

1
dz <_ ". (5.2)
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Therefore by Theorem 5.1,

e-1/2GD(X, y) < Vq2(X, y) < 2GD(X, y). (5.3)

Let {vk, k 0, 1 be all the eigenvalues of L9 + q2 written in decreasing
order, each repeated according to its multiplicity, and let {apk, k 0, 1 be the
corresponding eigenfunctions with aP0 > 0 on D. We can assume that {aPk, k
0, 1,...} form an orthonormal basis of L2(D, dx). Since by Khas’minskii’s lemma
XEy[eq2(()] < 2 for x, y D, we know from Theorem 3.11 of [12] that Vo < 0.
By Theorem 3.6, there is a tl > 1 such that for all > tl and all x, y 6 D,

e-vt (t x y) 3
< Uq2 <

2 aPo(x)aPo(y) 2

Therefore for all x, y D,

Vq (x, y) Uq (t, x, y) dt

>__. Uq2 (t, X, y) dt

> aP0(x)aP0(y) evt dt

> Cl aPo(x)aP0(y) (5.4)

for some positive constant C1 > 0.
Since LD + q (Lo + q2) d- ql and ql is bounded, it follows from Theorem 3.4 of

[22] that the first eigenfunction o0 of LD + q is comparable to the first eigenfunction
aPo of Lo + q2, i.e., there exists a constant C2 > 1 such that

C- Po _< oo <_ C2Po. (5.5)

By Theorem 3.6 again, there is a t2 > 1 such that for all >_ t2 and all x, y D,

31 e-xtuq (t, x, y)
<

2- po(x)o0(y) 2

Since the gauge function of (D, q) is assumed to be finite, the first eigenvalue )0 is
negative by Theorem 3.11 of [12]. Therefore it follows from (5.5), (5.4) and (5.3)
that for any x, y 6 D,

Uq (t, x, y) dt <_ Oo(X)tpo(y) e’t dt

< C3qgo(x)o(y) < C4o(x)o(y)

C5Vq2(X, y) < C6Go(x, y),
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where C3, C4, C5, C6 are positive constants. Since ql is bounded,

t2 t2

Uq(t, X, y) dt < eIIqllot2
Uq2 (t, X, y) dt

< ellqllod2 Vq2(X Y) < 2ellqlloot2GD(x y).

Hence there exists a constant C > 1 such that

Vq(x, y) < CGo(x, y), x, y6D. yl

THEOREM 5.3. Assume that (D, q) is gaugeable. Then:

(1) For all x, y D with x v y, we have

Vq(x, y) Go(x, y) -t- fo Vq(x, u)q(u)Go(u, y) du

Vq(x, y) Go(x, y) -t- fo Go(x,u)q(u)Vq(u, y)du.

(5.6)

(5.7)

(2) For all x, y D with x v y, we have

E [eq(’)] 1 -t- GD(X, y)-I Vq(x, w)q(W)GD(W, y)dw.

(3) For all x, y D with x v y, we have

x Vq(x, y)
Ey [eq (()] D", Y)

(4) There exists c > 1 such that

C
-1 < x,y.DEyinf X [eq(()] _< sup EyX Leq()] _< c.

x,yED

(5) There exists a constant c > 1 such that

C
-1 Go(x, y) < Vq(x, y) < c GD(X, y) forx, y D.

That is, the Greenfunction ofD with respect to LD + q is comparable to the
Greenfunction ofD with respect to Lo.

C
(6) For all x D and z D we have

E [eq(’)] 1 d- KD(X, Z)- Vq(x, w)q(w)Ko(w, z)dw.
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(7) There exists a constsnt c > 1 such that

C
-1 < inf E[eq(rO)] < sup E[eq(rO)] < c.

(x,z).Dx D (x,z).Dx"

Proof
of 12] so the details are omitted.
Now we prove (6). By (2.1), for any Borel measurable subset A C D,

f Go(x, Y_)I__q(__Y.)[_Ko(y, z)
dyJA Ko(x,z)

a(n’ e) fa (fo Go(y’w) )1-(2c) Go(x, y)[q(y)[ 1- -z.lU+ dw dy

A(n,a) foGo(x,w)(faGO(x,y)lq(Y)lGo(y,w)
The family of functions

{ Go(x,.)lq(.)lGo(., w)
Go(x, w)

x, w D

is uniformly integrable by (2.6) and therefore the family of functions

{ GD(x,.)lq(.)lKo(.,Z)Ko(x,z) x D z }
is uniformly integrable. By Fubini’s theorem,

E eq(t)lq(Xt)ldt

E [eq(t)lq(Xt)l; < ] dt

foKo(x, z)- Ex [eq(t)lq(Xt)lKo(Xt, z); < 3o] dt

fo foKD(X, Z) -1 Uq(t, X, y)lq(w)lKo(w, Z) dw dt

KD(X, Z)- { Vq(X, w)lq(w)lKo(w, z) dw < o.

Hence

The proofs of (1)-(5) are exactly the same as those of Theorems 5.3-5.7

If0E[eq()] 1 q- E eq(t)q(Xt) dt

1 + Ko(x, z)-l[ Vq(x, W)Q(W)KD(W, z) dw.

dy) dw.
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Finally we prove (7). By (2.1),

E [eq(VD)]

+
Ko(x, z)

Vq(x, w)q(w) i’ -zi"n’ga dv dw

A(n, fo Go(x, v) ( l

5:) I : (n +
GD(X, v)

gq(x, w)q(w)VD(w, v)dw dv

a(n, ) f. GD(X, v)

The assertion of this theorem then follows from (4) above. D

Remark. (3) and (7) in the above theorem are the the conditional gauge theorms
for symmetric stable processes. We are informed by Bogdan that he has also obtained
these results independently.

For q E Kn,o, let aP0 > be the ground state of L + q and let Uq (t, x, y) be the
density kernel of Lo + q with respect to the Lebesgue measure in D.

THEOREM 5.4. Assume that (D, q) is gaugeable. Then:

(1) There exists a constant c > such that

c-’ < inf E [eq(rD)] < sup E [eq(rO)] < c.
(x,z)D x OD (x,z)D x OD

(2) There exists a constant c > 1 such that

c- < inf E [eq(()] < sup E [eq(()] < c.
(x,z)DR (x,z)DxR

(3) There is a constant c > such that

c-0(x) < 0(x) < co(x) for all x D.

(4) For each > 0 there is a constant c > 1 such that

c lpD(t,x,y) <Uq(t,x,y) <ctpD(t,x,y) forallx, y D.

Proof (1). It follows from the (2.7) that the family of functions

{ GD(X, .)Iq(.)IMD(.,
Z)

x e D, z 6 OD }
is uniformly integrable. A calculation similar to that given in the proof of Theorem
5.3 (6) yields

x foE [eq(()] 1 d-
MD(X, Z)

Vq(x, u)q(u)Mo(u, Z) du.
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Let x0 be a fixed point in D. Then from 13] we know that

1
lim Vq(x, w)q(w)GD(W, y) lim Vq(x, w)q(w)
y"*Z Go(x, y) y"-Z

GD(W, y)/GD(XO, y)
Go(x, y)/Go(xo, y)

Vq(x, w)q(w)
Mo(w,z)
Mo(x, z)

Now using the uniform integrability of the family of functions

Go(x, ")lq(’)lGo(’, y) }Go(x, y)
x, y . D

and letting y - z D in Theorem 5.3 (2) we have

xlim Ey [eq ()] 1 +
y---z Mo(x, z)

Vq(x, u)q(u)Mo(u, z) du.

Therefore

lim EYx[eq()] EZx[eq()] (5.8)
y---z

and the theorem now follows from Theorem 5.3 (4).
Combining Theorem 5.3 and (1) above we get (2). The proofs of (3) and (4) are

the same as that for Theorem 2 in Bafiuelos [3] and are thus omitted.

Remark. It is possible to extend conditional gauge theorem beyond bounded
Lipschitz domains to domains having the following properties. Suppose that D is a
domain having finite Lebesgue measure and q 6 Kn,a such that L -I- q is intrinsic
ultracontractive. Also assume that q admits a decomposition q ql + q2 with ql and
q2 satisfying (5.2). Then Theorem 5.2 remains true by exactly the same argument.
Assume further that

Go(x, ")lq(’)lGo(’, y)
Go(x, y)

x, y D (5.9)

is uniformly integrable on D. Then (1)-(5) of Theorems 5.3 hold by the same proofs
as those for Theorems 5.3-5.7 in 12]. In this case, (3) and (4) of Theorem 5.4 hold
as well. When D is a bounded Lipschitz domain, the above conditions are satisfied
due to 3G Theorem 2.3.
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