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ON CERTAIN EQUIVALENT NORMS ON
TSIRELSON’S SPACE

EDWARD W. ODELL AND NICOLE TOMCZAK-JAEGERMANN

ABSTRACT. Tsirelson’s space T is known to be distortable but it is open as to whether or not T is arbitrarily
distortable. For n N the norm I1’ IIn of the Tsirelson space T(Sn, 2-n) is equivalent to the standard norm
on T. We prove there exists K < cx so that for all n, IIn does not K distort any subspace Y of T.

Introduction

An important and still open question is whether or not there exists a distortable
Banach space which is not arbitrarily distortable. The primary candidate for such
a space is Tsirelson’s space T. While it is not difficult to directly define, for every
1 < . < 2, an equivalent norm on T which is a .-distortion, T does not belong to
any general class of Banach spaces known to be arbitrarily distortable. In fact (see
below) if there does exists a distortable not arbitrarily distortable Banach space X
then X must contain a subspace which is very Tsirelson-like in appearance. Thus it
is of interest, in particular, to examine all known equivalent norms on T to see if they
can arbitrarily distort T (or a subspace of T). We do so in this paper for a previously
unstudied fascinating class of renormings.

The renormings we consider here are "natural" in that they pertain to the deep
combinatorial nature of the norm of T. Namely, for each n we denote by I1 the
norm of the Tsirelson space T (Sn, 2-n), which can easily be seen to be equivalent
to the original norm on T. Our main result (Theorem 2.1) is that this family of
equivalent norms does not arbitrarily distort T or even any subspace of T. The proof
actually introduces a larger family of equivalent norms (11 II)j,n and (I I’), which
are shown to not arbitrarily distort any subspace of T. Quantitative estimates for
the stabilizations of these norms are given in Theorem 2.5. It is shown that (up to
absolute constants) for all n and subspaces X c_. T, there is a subspace Y _c X such

if Y with 1that Ilyll y y
Some stabilization results for more general norms on T of various classes are also

given in Section 3. In Section 4 we raise some problems.
Section 1 contains the relevant terminology and background material. Otherwise

our notation is standard as may be found in [LT].
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More detailed information about Tsirelson’s space and Tsirelson type spaces can
be found in [CS], [OTW], [AD], [AO] and the references therein.

1. Preliminaries

X, Y, Z will denote separable infinite-dimensional real Banach spaces. If (xi)
is a basic sequence, (yi) < (xi) shall mean that (Yi) is a block basis of (xi). X (xi)
is the closed linear span of (xi). If X has a basis (xi), Y -< X denotes Y [(yi)]
where (Yi) -< (xi). The terminology is imprecise in that "-<" refers to a fixed basis
for X but no confusion shall arise. Sx {x X: Ilxll 1}.
A space (X, I1" II) is arbitrarily distortable if, for all X > 1, there exists an equivalent

norm I. Ion X such that

sup -" y,zS, >X for allY__.X. (1.1)

The norm satisfying (1.1) is said to X-distort X. X is X-distortable if some norm
X-distorts X. X is distortable if it is X-distortable for some X > 1. If X has a basis
then "for all Y _. X" in (1.1) can be replaced by "for all Y - X".

Tsirelson’s space T (defined below) is known to be 2 e distortable for all e > 0
(e.g., see [OTW]). Ifa space X exists which is distortable but not arbitrarily distortable
then X can be assumed to have an unconditional basis [T], to be asymptotic co or ,
for some 1 _< p < c [MT] and to contain ’s uniformly [M]. These characteristics
in conjunction with others developed in [OTW] show that T is the prime candidate
for such a space.

For n N, the Schreier classe Sn is a pointwise compact hereditary collection
of finite subsets of N [AA]. For E, F

_
N, we write E < F (resp. E _< F) if

max E < min F (resp. max E _< min F) or if either one is empty.

So {{n}" n e N} t.J {0}.

We inductively define

Sk+l Ep" {} < E1 < < Ee and Ep Sk for 1 < p <
p=l

(Ei)=I is k-admissible if E1 < < Ee and (min Ei)=l Sk. It is easy to see that

Sk [S] Ei" (Ei) is k-admissible and Ei Sn for 1 < <
i=1

Sn+k.

If (Yi) is a basis then (xi) -< (Yi) is k-admissible (w.r.t. (Yi)) if (suppxi)= is
k-admissible. Here, if x ZiEA aiYi and ai 0 for/ 6 A, then supp x A.
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Coo denotes the linear space of finitely supported real sequences and (ei) is the
unit vector basis for coo. If x -i x(i)ei E coo and E c_C_ 11 then Ex coo is
defined by Ex Yie x(i)ei. Let .T" be a pointwise compact hereditary (that is,
G

___
F .T" = G .T’)family of finite subsets of ll containing So and let 0 < < 1.

The Tsirelson space T (.T’, .) is the completion of coo under the implicit norm

Ilxll Ilxll x/sup IIExll" E1 < < E and (min Ei) e " (1.2)
i---1

Then (ei) is a normalized unconditional basis for T (.’, .). Furthermore if " __. S
then T(’, .) does not contain an isomorph of E but is asymptotically E1 (that is,
if (x) is 1-admissible then xi >_ . Y’ IIx II). The existence of such a norm
(1.2) can be found in [AD].

The classical Tsirelson’s space is T =_ T(S1, 2-) and we write I1" (-- I1" II1)
for the norm of T. We also consider the space T(Sn, 2-’), for a fixed n N, and we
denote its norm by I1o These norms are all equivalent on coo and thus the spaces
coincide. Indeed,

Ilxll _< Ilxll _< 2-lllxlln forx E T. (1.3)

We explain (1.3) and set some terminology for later use. Ilxll is calculated as
follows. If Ilxll # Ilxllo then Ilxll 1/2 IIExll for some 1-admissible collection

(E/1). For < e either IIExll IIExll or IIExll is calculated by means of a
similar decomposition. Ultimately, for some finite A __c 11, one obtains

Ilxll 2-n(i)lx(i)[,
iA

where n(i) is the number of decompositions necessary before obtaining a set E(i)

for which IlEy(ixll IlEy(ixlloo Ix(i)l.
Thus the norm in T can be described as follows in terms of trees of sets. By an

admissible tree 7- of sets we shall mean 7" (E) for < < (n), 0 < n < k is
a tree of finite subsets of 1 partially ordered by reverse inclusion with the following
properties. E is said to have level n. i(0) 1, E < E if < j, all successors

of any E’ form a 1-admissible partition of E and every set E+1 is a successor of
some E. Thus all sets of level n form an n-admissible collection. E is a terminal
set of T if it has no successors.

Thus, for x T, one has

Ilxll sup {-ia_A 2-(illEixll" (Ei)i.A are terminal sets of an

admissible tree with level Ei n(i) ]. (1.4)
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Also, (1.4) holds if [IEixlloo is replaced by IIEixll.
The norm I1 is calculated in a similar fashion except that terminal sets are

allowed only to have levels kn for some k 0, 1, 2

[ , 2-k(’)llEixlloo" (Eg)ia are terminal sets of an admissiblesup

"
tree where Ei has level nk(i) for some k(i) 0, 1, 2,... }. (1.5)

From these formulas we see that IIx I1 _< IIx II. Fuhermore if T is an admissible
tree, terminal sets not having levels 0, n, 2n, can be continued to the next such
level, an increase of at most n 1 levels, yielding Ilxll 2-111xlln.

More exotic mixed Tsirelson spaces were introduced in lAD]. We shall not discuss
a general definition, but we shall give a formula for the norm in a special case ofinterest
here. For j 0 and n N we let I1 be the norm of the mixed Tsirelson space
T ((Sj+,, 2-(j+kn))k=O). One obtains a formula for the norm simil to that in (1.4),
except that terminal sets may only have levels j, j + n, j + 2n,

Ilxll v sup[2-<J+n(i))llEixll: (Ei)ia are terminal sets ofIIxll an
iA

admissible tree having level Ei j @ nk(i) for some k(i) 0, 1, 2 .(1.6)

Thus II" IIg II" IIn, Fuhermore II is an equivalent norm on T.
We prove in Section 2 that the family ofnos (ll II)n, cannot arbitrarily disto

any subspace of T. We do this by introducing a slight variation of II (which omits
the first term in (1.6)):

Ixl sup[2-<J+nk<i))llEixll. (Ei)iA are teinal sets
iA

of an admissible tree having level Ei j W nk(i), k(i) O (1.7)

Thus I. Ig II" II, I" I is an equivalent no on T and l. I II. Our next
proposition shows some simple facts about I. I. Statements (a) and (b) are the reason
we work with l" I rather than directly with II" II, Moreover (d) shows that II" II
and I" I are nearly the same on some subspace of any given Y T. First recall the
Schreier space Xm (see [AA], also [CS], for m 1). Xm is the completion of coo
under
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X,, is isometric to a subspace of C(o:) and hence is c0-saturated: if Y

_
X then

Y contains an isomorph of co. For Z c_. T, Sz is the unit sphere w.r.t, the Tsirelson
norm I1" II.

PROPOSITION 1.1. (a) Let j >_ 0 and n N. For x T,

Ixl 7 sup IIEexlln" (Ee)rl is j-admissible
e=l

(b) Let j > O and k, n 1. For x T,

[xln
1 {- n }j+k sup IEexlj" (Ee)r is k-admissible

e=l

(c) Let e > O, n, k 1 and 0 < j < n. Let Y -< T. Then there exists Z -< Y so
thatfor all z Sz,

lzl- Izl+np <e ifl < p < k. (1.8)

(d) For n, j N, e > 0 and Y -< T there exists Z -< Y so thatfor all z Sz,

n n IlZlln < E.Izl -IIz I1’ < e and Izln-

Proof. (a) and (b) follow easily from (1.5)-(1.7) and the fact that Sk+j S[Sj].
(c) is proved by choosing Z so that the first few levels of the admissible tree used to
compute Izlj+nk will contribute only a negligible amount. More precisely, we first
note that

Izl’ > Iz Ij/np > Izl nj+nfrl <p<k.
Thus we need only achieve (1.8) for p k. Let Ij+n be the norm of the Schreier
space Xj+n. For z T let

Izl
eA

be obtained from (1.7). Thus if

E {e A: k(e) < k}

then E Sj+nk and so

Izl’ < IEzlj+n + Izl n
j+k < Izlj/nk q-Iz j+k

Also Izlj/ng < 2J/nllzll for z T. Since Xj+nk is c0-saturated and T does not
contain co itfollows that given Y -< T there exists Z -< Y so that if z Sz then
Izly/ < . This proves (c), and (d) is proved similarly. The norms in question differ
only in that the terminal sets of an admissible tree can differ only in a finite number
of levels. I--I
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We shall need a generalized notion of n admissible. For k, n N, (Er)S is n
admissible (k) if (kEr)S is n admissible where kE =_ {ke: e E}. Similarly we say
(yi) -< (el) is n admissible (k) if (supp Yi) is n admissible (k). Also we say a tree
7" is admissible (k) if (kE)e7" is an admissible tree.

PROPOSITION 1.2. There exists K < cx so that ifn, k N, 1 > 6‘ > 0 and (yi) -<
(ei) is normalized (in T), then there exists afinite set A N and (ote)ea C (0, 1] so
that (Ye)eA is n admissible, and setting z eA oteYe we have thefollowing"

(i) Zg.A t2le. 2n.
(ii) If B C_C_ A and (ye)een is n 1 admissible (k) then ,in ti < e.
(iii) 1 < Ilzll _<

We call such a z an (n, 6‘) average (k) of (Ye). This was proved in [OTW] for
k 1. The proof uses the following fact (e.g., see [CS], Prop. 11.4).

PROPOSITION 1.3. There exists K2 < cx so that if(Yi ) is a normalized block basis
of(el) in T thenfor all (ai), ifmi min supp yi then

]aem’ <-II yaiyi < K2 l[aiem,
Proof of Proposition 1.2 By passing to a subsequence of (Yi) we may assume

that mi+l > kmi where mi min supp Yi. By [OTW], we can find z -,eA oteye,

(ote)ea C__ +, ’eea oe 2n and Y]-e ce < e/2 if (me)en Sn-1. Furthermore
< Ilzll _< K. It remains to check that (ii) holds. Suppose that B

___
A so that

(kmi)iB Sn-1. Since mi+l > kmi, this shows that (mi+l)iB Sn-1 and hence
(mi)i.B\minB - Sn-1. Thus YeB\minB Ore < 6‘/2. Also OtminB < 6’/2 and so (ii)
holds.

2. Stabilizing the norms (11

Our goal is to prove that the norms (11 I1) and hence in particular the norms (11" IIn)
do not arbitrarily distort any subspace of T. In light of Proposition 1.1 it suffices to
prove the following:

THEOREM 2.1. There exists K > 1 so thatfor all Y -< T and n 1%I there exist
Z -< Y and d > 0 such thatfor all 0 < j < n and z Sz,

a _< Iz17
Before beginning the proofwe recall that there exists K3 < so that bi e3i

K3 biei [CS, Prop. 1.12].
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LEMMA 2.2. Let (11)i) be a normalized block basis of(el) in T. Suppose thatfor
some c > 0 and L > 1,for all we have

L-lc <_ [wi[ < Lc for 0 < j < n.

Let w aiwi, Ilwll 1, ThenforO < j < n, c(LK2)-1 < Iwl’ _< 2LK3c.

Proof From Proposition 1.3 there exists an admissible tree 7" whose terminal
sets are all equal to supp wi for some i, yielding

Ilwll >_ lail2-n(i)llwill

_
lail 2-n(i) > g.

iA iA

Let < j < n be fixed. We shall produce a lower etimate for wl by extending
7- as folloWs. Fix 6 A and consider the term lai 12-n(i) Ilwi II. Suppose this term
resulted from E supp wi where E was terminal in 7" of level n(i). First suppose
that n(i) > j so that n(i) j + kn + p for some 0 < p < n and k > 0; then let
q n p. If n(i) < j, let q j n(i). If q > 1 extend 7- q-levels below E via
the q-admissible family of sets which, by Proposition 1.1, yields

Iwilq - IlEswilln >_ cL-I.
s=l

The new tree has terminal sets only at levels (j + kn)k--0. When used in (1.7) it yields

Iwl’ >_ lail2-n(i)cL-1 >_ c(LK2)-1.

For the upper estimate let 7" be the admissible tree having terminal sets (which we
may assume to be singletons) of levels j, j + n, j + 2n,... which produces wl’ in
(1.7). We say wi is badly split by some level of 7" if there exists E - F in 7" having
the same level with Ewi 5 O, Ews :/: 0 for some s and Fwi O. If no wi is
badly split by some level of 7- then if for some i, supp wi contains a terminal set in
7- then there exists a 1-admissible family (E)(i) in 7" of minimal level having the
property that U(i) E _c supp t0 and F N supp 1/) 0 for all other F T of the
same level as the E’s. Thus for some set A,

e(i)

[tO I 2-n(i)lai EWi 17(/)
iA s=l

where E has level n(i) and j (i) < n satisfies n(i) + j (i) {j, j + n, j + 2n }.
Since Ilwll Ilwill 1, --iEa 2-n<i)lail < 1. Also,

1 (i)

2 IEWi I(i) < Iwi Ij(i)+l < Lc
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by our hypothesis. Hence

Iwl’ _< 2Zc.

Of course 7" may badly split some wi’s. In this case we alter 7 as follows. Starting
with the smallest level we check to see if a given level badly splits any wi’s. If it does
we split the offending sets at min supp wi and max supp wi. Thus, a given E 7"
could be split into at most 3 pieces at this stage. We intersect successors of split sets
with each of the at most three new pieces maintaining a tree, but losing admissibility.
Then proceed to the next level of the new tree and repeat. We now have a tree 7" that
does not badly split any wi. If we replace each set E in this tree by 3E we obtain
an admissible tree. Thus 7-’ is admissible (3). Furthermore, we obtain an expression
like (2.1), except that the equality is replaced by the inequality

e(i)

w I < 2-n(i)lai Ewi
iEA s=l

where the sets (E) come from our altered tree just as (2.1) was obtained from 7".
Letting mi minsuppwi we have aie3m, < K311 _,aiem, < K311wll

K3. Since 7-’ is an admissible (3) tree we have

2-n(i)iai[ <_ K3.
iEA

Thus Iwl 2K3Lc. I--I

ProofofTheorem 2.1. Fix 0 < e < 1 to be specified later. By Proposition 1.1
we may assume

Ilylj-lynn Ij+n < e for 0 < j < n and y Sr (2.2)

Also we may assume (Ye) -< (ee) is a normalized (in T) basis for Y and that for some
(Cj)o2n (0, 1],

[lYel cj <e for all , 0 < j < 2n. (2.3)

Hence, from (2.2) and (2.3), we also have

Icj -Cj+nl < 3e if 0 < j < n. (2.4)

LEMMA 2.3. Let 0 < < n and let z -,A ceye be an (i, e) average (3) of
(Ye), te > Ofor A. Thus (Ye)ea is admissible and -,ea ore 2i. Then

cj-i <_ Izl’ _< 2Cj-i+l -Jr (K3 q- 1)2e,

Cn+j- <_ Izl’ _< 2cn+j-i+ + (K3-t- 1)3e,

0<i <j <n (2.5)
0<j <i <n (2.6)
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Proof. For the first inequality in (2.5), let k j i. From Proposition 1.1, (2.3)
and the fact that &[Si] Sj we have

sup IIEYelI: (Es)is k admissible}
s=l

1

The second inequality in (2.5) is more difficult. By Proposition 1.1, there exist j
admissible sets (Es) with

Izl 7 IIEzlln. (2.7)
s--1

The sets (Es)l are the terminal sets of an admissible tree 7", all having level j, and
we may assume each E c_ Jeea supp Ye. We adjust the tree 7- by splitting some
sets if necessary, as we did in the proof of Lemma 2.2, to obtain a tree 7-’ which is
admissible (3) and which does not badly split any ye, e A. It may be that for some
E 7-’ we have E _c supp Ye for some and level E < i. We remove all such sets
from the tree 7-’ (replace each F by F \ t_J such sets and throw out the empty sets thus
obtained). This gives us a tree T" which does not badly split any ye and for which
no set of level < is contained in supp ye for any 6 A. 7-" is admissible (3).

Let (E’)r’s=l and (E"ar"sJs= be the terminal sets of’T’ and T" respectively. Then (2.7)
yields

rt

Izl’ -llEzlls--’l

1
2-’7

s=l sD

(2.8)

where D 1 < s < r’" E was discarded from T’ in forming T"}. Let

B { 6 A" E c_ supp Ye for some s 6 D}
{ 6 A" E _c supp ye for some E 6 T’ with level E < }.

Thus if B’ B \ min B then (Ye)eB, is 1 admissible (3). Hence eB ce <

minB + ZeB’ e < 8 + 8 28. Now (E)sD is j admissible (3) and so for e 6 B,

1
IlYell K32-7 E Ye IIn

sD

where aie3i if y aiei. Thus

1
2--7 IIEzll K3 e < 2K38.
sD
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From this and (2.8) we obtain

1 r"

Izlj < - IlEtzlln + 2K3e.
s=l

(2.9)

Recall that k j i. For A, Es"" Es" c_ supp Ye is k + 1 admissible. Indeed
ye could first be split into a 1-admissible family only at level or later by T". The tree
7-" continues from this point in an admissible fashion up to level j. Thus from (2.9),

Izl < )- ce sup IIFsYelln" (Fs)f is k + 1 admissible + 2K3e
eA s=l

1
< 2 ote21yel’+l + 2K3

eA

< 2Ck+l + 2K3 +
This completes the proof of (2.5).

For the lower estimate in (2.6) note that

Izlj > [zlj+n > 2J+n ore sup IIEYelI" (Es)r is n + j admissible
eeA s=l

1
> 2 Ole(Cn+j_ F,) Cn+j-i F,. (2.10)

eeA

Furthermore the argument in proving the upper estimate of (2.5) yields that Izl/
2Cn+j-i+l -t- (K3 q" 1)2e and since Izl’ _< Izl/ / we obtain (2.6). r-1

We continue the proof of Theorem 2.1 by using Proposition 1.2 to construct a
n (Ye)=n. Letblock basis (zi)i--_l of (ye) so that each zi is an (i, e) average (3) of

n nz , zi. Let c 1 i.

LEMMA 2.4. For 0 <_ j <_ n,

1 n+3
--C
2 2n Izl’ 2c + 3e(K3 + 1).

Proof If 1 < j < n then by Lemma 2.3,

1 n

Izl’ -i.=
< [2(c1 + cj_ +... + c + Cn + cn- +"" + cj+) + (K3 + 1)3ne]

n
< 2c + 3e(K3 + 1).
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Similarly if j 0 or n,

n 1
Izly [2(Cn + Cn-1 +"" + Cl) + (K3 + 1)3he].

n

Hence the upper estimate is established.
To obtain the lower estimate we note that (zi) is 1 admissible hence by Proposi=

tion 1.1(b), if < j < n

n

Izl-
1 11 ,,

Zi > Izilj_l--2nn
i=l j i=l

1
> --[CO +’’" + Cn-1 ne].

2n

Since Cn > co 3e,

n 1 1
Izl [Cl +... + c, (n + 3)e] c n+3

2n

Also Izlg IZlnn and so the lemma is proved, rq

Note that, by Proposition 1.2, z satisfies Ilzll < maxl_<i_<n Ilzill < K1 and Ilzll >
n

2-- l-,1 Ilzi >_ .
Furthermore, for an arbitrary y T, Ilyll 1 implies that lyl’ >_ 2- for 0 _<

j < n and thus we could have chosen cj > 2-" for 0 < j < n and so in particular
c > 2-n. Thus (using Lemma 2.4) we can choose e above to show that the element
z satisfies

1
:c Izl’ 3c for 0 < j < n.

These remarks in conjunction with Lemma 2.2 complete the proof of Theorem 2.1.

Theorem 2.1 can be restated as saying that there exists an absolute constant K
such that for all Y -< T and n N there exists Z -< Y such that

inf Izl’ < sup sup Izl _< Kd. (2.11)d oi<_)f<n z.Sz O<j<n z-Sz

It is natural to say that Z -< T is n-stable at d if Z satisfies (2.11). Obvious
questions then arise. How does d depend upon Z, how does it depend upon n? Our
next result answers these questions.

THEOREM 2.5. There exists an absolute constant L so that if Z -< Y is n-stable
at d then (Kn)-1 < d < Ln-1.
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Proof. The lower estimate is relatively easy. Let Z -< Y be n stable at d and let
z Sz. Ilzll is calculated by a tree ultimately yielding Ilzll 1 iEA 2-n(i)lz(i)l
as explained previously. The sets in the tree are permitted to stop at any level. If we
gather together those which stop at levels j, j + n, j + 2n for j 0, 1 n 1,
we obtain 1 < --0 Ij Hence for some j < n, Izl’ > and thus d > Kn
by (2.11).

Let y e Z [(em)] with ]]y}] 1 and y ajej. For 0 j < n 1, choose
y in the unit ball Br, of T* so that

Yf(Y) lYly 2-(J+kJs)n)lasl > d.
s.Aj

We may assume that Aj c_ supp y. Note that jn=- y](y) > nd. Partition uin=- Ai
into sets (E0 En-1) as follows, s Ej if and only if for all j either s q Ai
or j + kj(s)n < + ki(s)n. Then (Ejy])]S_ is a collection ofn disjointly supported
vectors in Br. all having support contained in [(em)]n. Since T and the modified
Tsirelson space TM are naturally isomorphic [CS] there exists an absolute constant
L’ so that

Furthermore

< L’ max IIE2yj*llr,
O<j <n

Ejy] (y) >
\j=o

2

Indeed, for s e jn=- Ej pick j0 such that s e Ejo and denote by Fs the set of
all 0 < < n, 7t jo, such that s e Ai. Then {i + ki(s)n" e Fs} is a subset of
{jo + kjo (s)n + 1, jo + kjo (s)n + 2,...}. Thus

Hence nd/2 < L’ so d < 2L’/n.

As an immediate consequence of Theorems 2.1 and 2.5 we get the following.

COROLLARY 2.6. There exists an absolute constant C so thatfor every Y -< T
and n N there exists Z -< Y and d > 0 so that Z -< Y is n-stable at d and
(Cn)- < d < Cn-.
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3. Further results

We now turn to some stabilization results for more general norms on T. Given an
arbitrary equivalent norm I’ on Y -< T, we describe some procedures on I" I, natural
in the context of Tsirelson space, which lead to new norms that cannot distort T by
too much.

Recall [OTW] that if (Yi) is a basis for Y and n N then

n (Yi) inf{ > 0: Xi> IIx/ll

whenever (xi) is n-admissible w.r.t. (yj) }. (3.1)

A result of the type we pursue and which we shall need later was proved in [OTW],
Theorem 6.2 (in stronger form).

PROPOSITION 3.1. There exists D < cx so that if (Yi is a normalized block basis

of (ei) for Y -< T and 1. is an equivalent norm on Y with 3l ((Yi), 1" 1) then l"
does not D distort Y.

Remark 3.2. It was shown in [OTW] that for a block basis (yi) of (ei) and any
equivalent norm I. Ion Y [(Yi)],

6n ((Yi), l) < 2-n for all n.

If is an equivalent norm on Y [(yj)] -< T, for j > 0 and x 6 Y, we set

Ixlj 7 sup IEixl" (Ei) is j admissible

(Ifx aiYi, Ex ieeaiYi.) Thus Izl0 Izl and[. Ij is an equivalent norm on
Y for all j. For n 6 N we let

izl<) 1 n-j IZI.n .=

PROPOSITION 3.3. There exists D < cx so that ifn N and l. is an equivalent
norm on Y -< T having basis (Yi) "< (ei) and satisfying

xi k

> - Ixiln-1

for all 1 admissible (xi)kl "< (yj) then l. Cn) cannot D distort Y.
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Proof Let (xi)kl be admissible w.r.t. (ye). Then for j > 1,

Xi >__.’ Ixilj-
i=l j i=l

since SI[Sj-1] Sj. Thus using the hypothesis,

xi
i=1

(n)

The proposition follows from Proposition 3.1Thus I((Yi), 1" ](n)) "
Remark 3.4. The hypothesis of Proposition 3.3 is satisfied if tn([" l) 2-n.

If l. is an equivalent norm on Y [(yi)] -< T, we define an equivalent norm on
Y by

Ix Irr sup { 2-ni) lEixl"
iEA

(Ei)iEA are the terminal sets

of an admissible tree with level Ei n(i) }.
Clearly I" < I" ITr and if l. < I1" then I. ITr < I1" II. Note that I1" I1" liar if,

(Yi) (ei).
The constant K2 appearing in several arguments below is the constant from Propo-

sition 1.3.

PROPOSITION 3.5. There exists K (= 2K2M) so that if is any equivalent norm
on Y [(yi)] -< T then l. Irr does not K distort Y.

Proof. By multiplying l" by a scalar and passing to Z -< Y we may assume
that I1" >_ I" on Z and Z has a basis (zi) with ]lzi 1 and Izil > 1/2 for all i.
Furthermore, by [AO], we may assume that for all j if (zi)ie is j-admissible w.r.t.
(ei) then (zi+)ie is j-admissible w.r.t. (yi).
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Let z Y’ aizi with Ilzll 1. Then aizi-ll M- for some absolute
constant M [CS]. By Proposition 1.3 there exists an admissible tree w.r.t. (el) having
terminal sets of the form supp zi- and level n(i) for all in some set A so that

--2-n<i)lai[ > K’II jaizi-ll >_ (K2M)-iEA

It follows that

IZlWr Y 2-n(i)lail Izil > (2K2M)-,
iEA

completing the proof.

Remark3.6. It follows from Proposition 3.5 that if l. is an equivalent norm on
Y [(yi)] -< T satisfying lYlrr _< r’lYl for all y Y, then I" does not KF distort Y.

PROPOSITION 3.7. For all , > 0 there exists D(t’) < cxz with the following
property. Let Y [(yi)] -< T. If l. is an equivalent norm on Y and n I%I is such
that 3n((Yi), 1" l) 2-n and lYIj >_ ?’lYlfor all y Y and j < n, then I" does not
D(g) distort Y.

Proof.
d>0,

By Theorem 2.1 we may choose (zi) -< (yi), Z [(zi)], so that for some

d < Ilzll Kd for all z Sz.

Furthermore, by passing to a block basis of Z and scaling l" as necessary, we may
assume that Ilzll >_ Izl for all z e Z and 1 Ilzi >- Ilzi I1 >_ Izil >_ 1/2 Ilzg I1 for all i.
Finally, again by [AO] we may assume that if (zi)ie is j-admissible w.r.t. (el) then
(zi+)ie is j-admissible w.r.t. (yi).

Let z aizi with Ilzll 1.
As in the proof of Proposition 3.5 there exists an admissible tree w.r.t (yi) having

terminal sets of the form supp zi and level n(i), . A, yielding

2-n(i)lailllzi >_ (K2M)-1

i6.A

Choose 0 < j (i) < n so that n(i) + j (i)
_

{0, n, 2n,...}. Since n((Yi), 1’ 1) 2-n

we obtain

Izl 2-n(i)lail Izilj(i) > 2-n(i)lail Izil
i6.A i.A

_
> ?’ 2-n(i) lail Ilzill,, >

2 -2K2M"
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Thus

IlZlln > Izl > IlYll2K2KM
n

Hence Kd > Izl > 2K2KM d. The theorem is proved with D(y) 2,-1K2K2M.

Our next result combines the proofs of Proposition 3.7 and the main theorem.

PROPOSITION 3.8. For , > 0 there exists D(,) < c so that thefollowing holds.
Let n N and let 1. be an equivalent norm on Y [(yi)] -< T with 6n([" 1) 2-n.
Suppose thatfor all y Y, [Yln >- YIY[ and [y[ > ylYlj for 1 < j <_ n. Then [.
does not D(?’) distort Y.

Proof As in the proof of Proposition 3.7 we may assume that I1" IIn Ion Z,
Z has a normalized (in T) basis (zi) -< (Yi) with Izil > Ilzi IIn for all i. In addition,
from Theorem 2.1 we may assume

d < Izl’ Kd for 0 < j < n and z 6 Sz.

Finally, we again assume that if (Zi)E is j-admissible w.r.t. (ei) then (Zi+l)E is j-
admissible w.r.t. (yi).

Note that the hypothesis 6n(l" I) 2-n implies I" >_ I" In and more generally
l" Ij > l" In+j. l" In > Y I" implies that (on Y) I" Ij < ?’-11" In+j.

Furthermore we may assume that, for a suitably small e > 0, lze Ij cjl < e for
all e 6 N and 0 < j < n for some (cj)) c_. I+.

Fix 1 < < n and let z oteze be an (i, e) average (3) of (ze). Note that
Izli > r -,ea otelzel > -} hence

The argument of Lemma 2.3 remains valid for estimates on Iz[j. The proof of the
upper estimate of (2.6) yields

hence

Izlj+n 2Cn+j-i+l "Jr" 2e(K3 + 1),

IZlj < /-1 (2Cn+j-i+l + 2e(K3 + 1)).
,n wi where (wi)’ -< (ze) and each W is an (i, e) average (3) ofIf we set w g n

(zi) then, as in Lemma 2.4 (taking e suitably small),

n(ii) gc < Iwlj < 37’-1c (0 < j < n) where c g Y’l Ci"
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Also

from (i) and so

1 n d’’lwil >Iwl >_ nn 4

d’3 Thus, from (ii)From (ii) and (iii) we have /2 37,-lc and so c > "W"

(iv) wlj > d63 for 0 < j < n.

We are ready to apply the proof of Proposition 3.7. Let (wi) -< (ze) be such that
each wi is constructed as was to above. Let to ai wi with w 1. Choose an
admissible tree having terminal sets supp wi for e A yielding 2-n(i) lailllwi >_
(KaM)-1. It follows that if 0 < j (i) < n satisfies n(i) + j (i) {0, n, 2n then

Kd > Ilwll > Iwl > 2-n(i)lail Iwilj(i) >
dy3

n_

36K2M
36KKMThe theorem is proved with D(,)

In comparison with (1.3), it is of interest to consider the mixed Tsirelson space (see
[AD]) T ((Sk, Ck2-)k), where ck ’ 1. We then ask whether it also coincides with T,
or, at least, whether its norm, I" say, is an equivalent norm on a subspace of T. The
following result gives the positive answer to the latter question. It also indicates that
the answer to the former question probably depends upon the asymptotic behavior of
(c). Finally, it should be compared with Example 5.12 from [OTW] which implies
that if ck < 3 < 1 then no subspace of T((&, c2-)) is isomorphic to a subspace
ofT.

PROPOSITION 3.9. There exists a block subspace X -< T such that cllxll Ixl
[Ix for x X, where c > 0 is an absolute constant, independent of the choice of
Ck " l.

Outline ofthe proof Clearly, Ix Ilx for all x 6 T. Choose n (i) ’ cx such
that I-I Cn(i) > 1/2 ando 2_n(i) < 1/4K2. Letm(1) n(1) and inductively choose
m(i) cx so that m(i + 1) > 2(m(i)+ n(i))for all/= 1, 2

Choose (xi) -< T to be a block basis of (ei) such that each xi is an (m(i), 1) average
(1) of (ei). In particular, x EjFi otjej, where otj > 0 for j Fi, Fi Sm(i) and

Zj(F/ j 2m(i)" It is easy to check that 1 < [Ixi _< 2.
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Let x - aixi with IIx 1. By Proposition 1.3, there exists an admissible
tree 7" having terminal sets of the form supp xi and level p(i), yielding

2-p(i) lail IIx l/K2
iS

for some S

_
{1 }. Set G {i S: p(i) < n(i)}. Note that if B S \ G

then B 2-P(i < B 2-n(i) < 1/4K2, and so

2-p(i)lail IIxll < 2/4K2 1/2K2.
iB

Thus

2-p(i) lail Ilxi > 1/2K2.
iG

Prune the tree 7" so as to only admit terminal sets of the form supp xi for G.
Extend each of these sets m(i) levels in an admissible fashion, ending at the singletons
which form supp xi, ultimately obtaining an admissible tree 7-’. Since Ilxi _< 2, it
follows that

2-p(i’lail

_
2-m(i)ctj > 1/4K2,

i.G j.Fi

which can be rewritten as , 2-p{i)-m{i)lailotj > 1/4K2.
iG jFi

For G, all elements in the support of xi are terminal sets of 7/" having level
j (i) =_ p(i) + m(i). Note that for i’ G, i’ > i, the definition of G and the growth
condition on m(i) imply that

j (i’) j (i) p(i’) -i- m(i’) p(i) m(i) > m(i’) n(i) m(i) >_ n(i).

Let G {i, is} written in the increasing order. The admissible tree 7" has
terminal sets oflevel j (i) which together equal the support ofxi, oflevel j (i2) which
together equal the support of xi2, and so on. Also, .j (ik+) j (ik) > n(ik) > n(k).

By considering all the sets of 7" of level j (il) we obtain

r(1) )IXI >" Cj(il, 2J(il’[ail ctj"t "" 2J(it’ E IElxI
ja_Fq r=l

where (E) are the remaining sets in T’ of level j (i) which are disjoint from the
support of xit.
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We iterate this estimate next continuing the sets (Et) to level j (ia) and so on.
Ultimately we obtain

+ Cj(i3)_j(i2) lai31 ol) +’"
jEFi

Since j (ik+l) j (ik) > n(k), this yields

Ixi > I-I c,( 2-(,lag a}r > (1/4Ka)= 1/8Ka,
k=l r=l j-Fir

completing the proof, rl

Until now we considered the Tsirelson space T T(S1,2-1), its subspaces and
renormings. Analogous results also hold for Tsirelson spaces To =- T (S1, O), where
0 < 0 < 1. It should be noted, however, that absolute constants will change to
functions depending on 0 (typically of the form cO-1 where c is an absolute constant).
In particular, let us recall that the space To admits a 0-1 e distorted norm for every
e > 0 (the proof is exactly the same as for T). In this context a distortion property of
the renorming T (Sn, On) of To might be also of interest.

PROPOSITION 3.10. Let n 1I and 0 < 0 < 1. Let X T(Sn, On). Every
Y -< X contains Z -< Y such that Z is 0 -1 e distortablefor every e > O.

Outline ofthe proof. First note that the modulus 3m defined in (3.1) has the fol-
lowing property: For all Y -< X and k lI, nk(Y) <_ On(k-1)+l. Indeed, let Y -< X
and let (yi) be a normalized basis in Y. Let 0 < e < 1 and y ia otiYi be an
(nk, ) average (1), satisfying conditions (i) and (ii) of Proposition 1.2. (Observe
that these two conditions have a purely combinatorial character, and their validity
does not depend on the underlying Banach space.) In particular, Eia Oli 2nk"
Then IlYll >_ Snk(Y)2nk. Iterating the definition of the norm k 1 times we ob-
tain

IlYll _< 0n(k-1) IIEjyll + . oli,

j=l iB

where E B if supp Yi is split by some set in the tree of sets obtained by iterating the
norm definition. Thus B Sn(k-1) and E1 < < Ee is n(k 1)-admissible, and
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for s < and A one has E N supp Yi I or Ej

_
supp Yi. Thus

Ilyll _<
iA

Comparing this with the lower estimate for Ilyll yields the required bound for
nk(Y).

The supeultiplicativity propeay nk(Y) (I(Y))nk ([OTW], Prop. 4.11) and
the previous estimate immediately imply that for all Y X, dl (Y) 5 0.

This in turn implies that for every Y X there exists Z Y such that for
eve e > 0 there is k N satisfying the following: For all W Z there exist
w < ...w, in W such that E= will 1 and il Ilwill 0-1 e. If not, then
stabilizing suitable quantities for k 1, 2 by passing to appropriate subspaces,
and using a diagonal argument and the definition of S, we would get a subspace Y’
with 8 (Y’) > 0.

Now, given e > 0, define I. Ion Z by

k

Izl sup llEezll,
E <...<E, i=1

where Ez is the projection with respect to the basis of Z. Clearly, Ilzll Izl kllzll
for z Z. Let W Z. By the previous claim, there exists w W with Ilwll 1 and
wl 0- e. On the other hand, a standard argument involving long averages
implies that there exists x W with IIx 1 and Ix 1 + (e.g., see [OTW],
Prop. 2.7).

4. Problems

Of course the main problem is the following.

PROBLEM 4.1.
distortable?

Is T arbitrarily distortable? Is any subspace of T arbitrarily

Our work in Section 3 suggests the following problems.

PROBLEM 4.2. Prove that the class of quivalent norms on Tfor which tn (l" l)
2-n for some n > 1 do not arbitrarily distort T or any Y -< T.

PROBLEM 4.3. Prove thatfor , > 0 there exists K (,) < c so that if l. is an
equivalent norm on T satisfying 3n(I l) -> ’2-n for all n then does not K(?’)
distort any Y -< T.

PROBLEM 4.4. Prove there exists K < o so that if[ is an equivalent norm on
T and Y -< T thenfor some n, I" <n) does not K distort Y.
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