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ON GRADED K-THEORY, ELLIPTIC OPERATORS
AND THE FUNCTIONAL CALCULUS

JODY TROUT

ABSTRACT. Let A be a graded C*-algebra. We characterize Kasparov’s K-theory group/0(A) in terms of
graded .-homomorphisms by proving a general converse to the functional calculus theorem for self-adjoint
regular operators on graded Hilbert modules. An application to the index theory of elliptic differential
operators on smooth closed manifolds and asymptotic morphisms is discussed.

1. Introduction

Let A be a graded tr-unital C*-algebra with grading automorphism ct. We charac-
terize Kasparov’s K-group in the category of graded C*-algebras, /0(A)
KK(C, A), as the group of graded homotopy classes of graded .-homomorphisms
from C0(]R), the C*-algebra of continuous functions on the real line with the even-
odd function grading, to the graded tensor product A/C, where/C M2(/C) is
the C*-algebra of compact operators graded into diagonal and off-diagonal matrices.
Addition is given by direct sum.

The isomorphism is established in Section 3 by proving a general converse to the
functional calculus theorem 11 for self-adjoint regular operators on graded Hilbert
modules in Section 2. We will indicate in Section 4 how this characterization is
useful in simplifying calculations with asymptotic morphisms of C*-algebras and
elliptic differential operators D with coefficients in a trivially graded C*-algebra A
over a smooth closed manifold M. The functional calculus will give an explicit
formulation as (nontrivial) compatible graded ,-homomorphisms of the generalized
Fredholm index Indexa(D) Ko(A) and the symbol class [tr(D)] KA(T*M)
(the topological K-theory of vector A-bundles of the cotangent bundle T’M) in a
form which is suitable for composing directly with asymptotic morphisms, with no
rescaling or suspensions as in the general theory. Since the product in E-theory is
given by composition, this approach to index theory is simpler than using the Kasparov
product in KK-theory 10], which can be very technical.
We should note that Kasparov’s graded K-theory is unrelated to van Daele’s ver-

sion, except when A is trivially graded 19]. This paper represents work that partially
began in the author’s thesis 17], although the material in Section 2 is new. The author
would like to thank his advisers Nigel Higson and Paul Baum for their invaluable help
and encouragement and also Erik Guentner for helpful suggestions.
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2. Graded C*-algebras and Hilbert modules

In this section we collect some definitions and results on graded C*-algebras and
Hilbert modules and fix notation. For a complete discussion, see the books [3], [9].

Let A be a C*-algebra. Recall that A is graded if there is a ,-automorphism
o: A A such that ct2 ida. Equivalently, there is a decomposition of A as a
direct sum A A0 A1, where A0 and A are self-adjoint closed linear subspaces
with the property that if x Am and y An then xy Am+n (mod2). In fact,
An {x A: t(x) (-1)nx}. We write Ox n ifx An. If there is a self-
adjoint unitary (called the grading operator) in the multiplier algebra M(A) such
thatct(x) x*, then A is said to beevenly graded. A ,-homomorphism b: A B
of graded C*-algebras is graded if b (An) C Bn for n 0, 1.

Example 2.1 The following are the main examples we will be concerned with.

(a) Every C*-algebra A can be trivially graded by setting A0 A and A1 {0}.
This is an even grading with grading operator 1. The complexnumbers C
are always assumed to be trivially graded.

(b) The C*-algebra C0(]R) ofcontinuous complex-valued functions on ]R vanishing
at infinity is graded into the even and odd functions by defining ot(f)(t)
f(-t) for all functions f e C0(]R) and ].

(c) Let 7-/be an infinite-dimensional separable Hilbert space. By choosing an
isomorphism 7-/ 7-/ 7-/we obtain the standard even grading on the C*-
algebra of compact operators K: K:(7-() M2(/C), with grading operator

which is determined uniquely up to conjugation by a unitary homotopic to the
identity.

Let A and B be graded C*-algebras. Define a graded product and graded involution
on the vector space tensor product A (9 B by the formulas

(ab)(a’b’) (-1)abaa’(aa’bb’)
(ab)* (--1)aOb(a*b*).

The resulting ,-algebra is denoted by A)B. A grading on AB is defined by setting

O(ab) = Oa + b (mod2).

Now faithfully represent A and B by Pl and P2 on graded Hilbert spaces H and H2
with grading operators and 2, respectively. Then ADB is faithfully represented
on H (R) H2 (graded by (R) 2) via the formula

p(ab) pl(a)a (R) p2(b).



296 JODY TROUT

The C*-algebra completion is denoted by AB and is called the (minimal) graded
tensor product. It does not depend on the choice of representations. (There is also a
maximal graded tensor product [3] but it will not be needed for our purposes since
one of the factors will always be nuclear.)

LEMMA 2.2 (Proposition 15.5.1 [3]). IfB is evenly graded, then AB - A(R) B.
IfA is also evenly graded, then under this isomorphism A (R) B is also evenly graded.

COROLLARY 2.3. Let/C have the standard even grading. Then AIE - M2(A (R)

/C). If A is evenly graded by , AI - ME(A (R) 1E) with standard even grading
given by diag( (R) 1, - (R) 1).

Let B be another graded C*-algebra with grading/3. Then B[0, 1] C([0, 1], B)
canonically inherits a grading by the formula (f)(t) (f(t)). Two graded
-homomorphisms qbo, 1: A -- B are graded homotopic if there is a graded .-

homomorphism : A B[0, 1] such that composition with the evaluation maps
evt: B[0, 1] B for t 0, 1 are equal to q0 and ql, respectively. We shall denote
by I[A, B]! the set of graded homotopy classes of graded .-homomorphisms from
A to B. If : A B is a graded ,-homomorphism, then we denote by limb]! its
equivalence class in I[A, B]I.
A Hilbert A-module is graded if there is a Banach space decomposition 7-/=

7-(0 7-(1 such that 7-in" Am ’n+m and (7-In, 7-Ira) c_ An+m (mod 2). We let
denote the C*-algebra of all bounded A-linear maps T: 7-/ 7-/with an adjoint T*
and let K() denote the closed two-sided ideal ofcompact operators. The grading on

induces gradings on E(7-/) and K(7-() via the identities 0T m if T (7"/n) C 7"(n+m.
We let 7-/p denote with the opposite grading 7"/np 7-/_n. Note that ifA is trivially
graded, 7-/is the direct sum of two orthogonal A-modules. If b: B 13(7-/) is a
-homomorphism, a closed submodule E of 7-/is dp-invariant if $ (b): E E for all
bB.

3. The converse functional calculus

Let 7-/be a (graded) Hilbert A-module. A regular operator on 7-/is a densely
defined closed A-linear map D: Domain(D) -- 7-/such that the adjoint D* is densely
defined and 1 + D*D has dense range. D has degree one if O(Dx) Ox + 1 for all
x Domain(D).

PROPOSITION 3.1. For any graded .-homomorphism : Co(JR) -- A, there is a
maximal qb-invariant closed graded Hilbert A-submodule A ofA and a self-adjoint
regular operator D on A of degree one such that for all f Co(JR) we have

b(f)lA f(O).

If 7"/= A then D is sometimes called an unbounded multiplier [4], [8], 11].
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Proofi Given a graded ,-homomorphism " C0(R) ---> A, define

A Co(]R)A (C0(]R))A

to be the closed right ideal generated by the image of . This is a closed graded
Hilbert submodule of A (see Blackadar [3].) Let Cc(]R) denote the dense graded ideal
of continuous functions on ]R with compact support. Define

Domain(D) (Cc(IR))A,

a dense graded submodule of A#. Let d denote the function d(t) on JR. Define
D: Domain(D) ---> A# by the formula D(f)x (df)x where f Cc(]R) (so
df Cc(]R)) and extend linearly. Suppose that (f)x (g)y for some other
g Cc(). Choose a function d’ Cc(]R) such that d d’ on the compact set
supp(f) t.J supp(g). Then we have

D(f)x (d’f)x (d’)(f)x (d’)(g)y (d’g)y D(g)y.

It follows that D is well-defined and is clearly A-linear. Also, D is degree one since
d is an odd function on ]R. The computation

{D(f)x, (g)y) x*(df)*(g)y x*(dfg)
x*(f)*(dg)y ((f)x, D(g)y)

shows that D is symmetric on Domain(D). This implies that D is closeable, so we
replace D by its closure D. Consequently, (D 4- i) are injective and have closed range
by Lemma 9.7 11 ]. Let f e Cc(]R). For any x e A we have

(1 + O2)((1 + d2)-l)(f)x ((1 + d2)(1 + d2)-1 f)x (f)x.

It follows that Range(1 + D2) Domain(D) is dense and so D is regular. We will
show D is self-adjoint by using a Cayley transform argument.

Extend to +" Co(R)+ -- A+ by adjoining a unit. Let z e Co(R)+ denote the
unitary

t-i
z(t) 1 2ir_(t) for ]R

td-i

wherer_(t) (t-i)- denotes theresolvent. Let UD +(z) 1--2i(r_) e A+.
It is easy to check that for all x e Domain(D), the unitary UD satisfies

UD(D h" i)x (D + i)UDX (D i)x.

By Lemma-9.8 and the discussion following Proposition 10.6 in Lance 11 ], the closed
symmetric regular operator D is self-adjoint and Uo (D + i)- (D i).

To show (f)la, f(D), it suffices to show this for the resolvents r+/-(t)
(d 4- i)- (t). Let {fn }noo= be an approximate unit for C0(]R) consisting of compactly
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supported functions. Let x A be given. Then 4p(fn)X Domain(D) for all n and
b(fn)x "- x asn oo. Asn

(D 4- i)qb((d :t: i) -l fn)x ((d 4- i)(d -t- i)- fn)x (fn)x x.

Now since b((d 4-i)-fn)x qb((d :t: i)-)(fn)X ---> ((d :t: i)-)x as n oo
and (D 4- i) is closed, we conclude that q((d 4- i)-)x (D 4- i)-lx. Since x A
was arbitrary, we are done. El

Let B be a C*-algebra. If 7-/is a Hilbert B-module, a .-homomorphism b: A
/(7-/) is called nondegenerate if b (A)7-/is dense in 7-/. It is called strict if {(un)} is
Cauchy in the strict topology of/(7-/) for some approximate unit {un in A. Nonde-
generacy implies strictness [11]. The following result may be considered the converse
to the functional calculus for self-adjoint regular operators [2], [4], 11 ].

THEOREM 3.2 (Converse Functional Calculus). Let b: Co(JR) -- /(7-/) be
graded. There is a closed graded b-invariant Hilbert submodule 7-[ of 7-[ and a
self-adjoint regular operator D on 7-[ ofdegree one such thatfor all f Co(JR) we
have b(f)x f(D)x for all x . Moreover, if is strict then 7-[ is comple-
mented and (f) f(D) .(7-[) c_ .(7"(). If is nondegenerate then 7-[ 7-[.
And ifqb(Co()) C 1C(7-[) then D has compact resolvents.

Proof. Let A (7-/). Let D’: Domain(D’) A be the self-adjoint regular
operator onA Co(]R),A from the previous proposition such that b (f) f(D’).
Let i" A /(7-/) be the identity. Define 7-/ (C0(]R) AiT-[ which is a
closed Hilbert submodule of 7-/. Define D D’i 1 on

Domain(D) Domain(D’))iT-/__. (Cc())7-[.

By Proposition 10.7 11], D extends to a self-adjoint regular operator on 7-/. (D
i. (D’) in the notation of 11 ].) If x 7-/, we compute

f(D)x f(D’i l)x (f(D’)i l)x f(D’)ix (f)x.

If is strict then 7-/ is a complemented submodule of 7-/by Proposition 5.8 [11]
and so (7-/) is included as a graded subalgebra of/(7-/). The result now easily
follows.

Note that if b is the zero homomorphism then 7-/ {0} and D 0, so f(D)
0 (f).

4. Graded K-theory

Standing assumptions. Throughout this section, A will denote acomplex tr-unital
graded C*-algebra and C0(R) and/C will have the gradings as in Example 2.1.
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Let HA denote the Hilbert A-module of all sequences {an} C A such that
{7, aak} converges in A. It has a natural grading into sequences of even and
odd elements. Let a HA (3 H]p, where Htp denotes HA with the opposite grad-
ing. This is the standard graded Hilbert module for A. We have the following very
important result of Kasparov in the theory of graded Hilbert modules.

STABILIZATION THEOREM (Kasparov 10]).
graded Hilbert A-module then 7"[ HA - HA.

If is a countably generated

It is a standard result that A/C is graded ,-isomorphic to/C(/A), the C*-algebra
of compact operators on Ha (with the induced grading) (see 14.7.1 [3]). For the
remainder of this section, we will identify^AK with K(/a). From stabilization,
conjugation by the graded isomorphism Ha - /a a determines a unitary in
12(Ita) M(A) of degree zero.

LEMMA 4.1. Let u E M(AIC) be a unitary ofdegree zero. There is a strictly
continuous path of degree zero unitaries {Ut}t[o,1] C M(AIC) such that UI u
and Uo 1.

Proof. Write/C --/C(H H) where H L2[0, 1]. Then M(AIE) contains a
copy of Z(H H). Let {vt be a strictly continuous path of isometries in (H) with

Pt vtv 0 strongly as t -- 0 as in Proposition 12.2.2 [3]. Set Vt vt 9 vt
Z(H 9 H) and note that each Vt has degree zero. Set Wt lVt which also has
degree zero and let

Ut WtuW7 + (1- WtW7)
for > 0 and U0 1. It is easy to check that this works.

Definition 4.2. Let A have grading automorphism ct. Define

K’(A) K’(A, or) I[Co(]R), A61C]].

Define a binary operation on K’(A) by direct sum [[]! + i[aP]l I[ ap]], where the
direct sum is with respect to the graded isomorphism I21m - HA l?-Ia

THEOREM 4.3. K’(A) is an abelian group under the direct sum operation and
satisfies the relation - uCu*
where u u*= ( )on I21A HA HA.

Proof. It follows from Lemma 4.1 and the proof of Theorem 3.1 in Rosenberg
15] carded over to the graded case that K’(A) is an abelian monoid with zero given by

the zero (or any null-homotopic) ,-homomorphism. We only need to show inverses.
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Let b: C0(R) /E(/a) be graded. Let D be the regular operator on 7-( C /’)m
associated to b from the converse functional calculus. Via stabilization
/qa and Lemma 4.1, we may assume (up to graded homotopy) that is strict by
Proposition 5.8 [11]. Thus (f) f(D) for all f C0(). Then Dp uDu* on
the Hilbe module # is e operator associated to [uu*] since by the functional
calculus

f(Dp) f(uDu*) uf(O)u* u(f)u*.
Let be the grading on A. For each O, define

t Dop

on, P a and let 0 on the complement. Define" C0(N) (a)
by

Ct(f) f(Dt).

For t 0 we have o(f) f(Do) uu*. Note that

t D 0 D2 + t2

and so the specm of Dt is contained outside the interval (-t, t). Therefore,

IIf(t)ll sup{If(x)l: x

for all f C0() and the result follows.

Definition 4.4. A K-cycle for a graded C*-algebra A is an ordered pair (7-(, T),
such that 7-/ 7-/0 7-/1 is a countably generated graded Hilbert A-module and
T /(7-/), where/(7-/) is the graded C*-algebra of all bounded A-linear operators
on 7-/with adjoint, which satisfies the following conditions:

(i) T is of degree one;
(ii) T T* /E(7-/) is compact;
(iii) T2 /C(7-/) is compact.

The K-cycle is called degenerate if T2 1.

By a standard argument we may assume that T T* is self-adjoint. There is an
obvious notion of unitary equivalence for two K-cycles [3], [10]. Two K-cycles
(0, To) and (7-[1, T1) are homotopic if there is a K-cycle (7-/, T) for A[0, 1] such
that (7-[ev, A, Tev, 1) are unitarily equivalent to (7-/i, T/) where evt" A[0, 1] A
are the evaluation maps. A collection {(7-/, Tt)}tet0,1] of K-cycles for A is called
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an operator homotopy if Tt is norm continuous in t. An operator homotopy
induces a homotopy (7-/’, T) by defining 7-/’ C([0, 1], 7-/) and T(f)(t) Tt(f(t))
for f: [0, 1] --+ 7-/.

PROPOSITION 4.5 (Theorem 4.1 10]). The set KK(C, A) of all equivalence
classes ofK-cyclesfor A under the equivalence relation (generated by) homotopy is
an abelian group under the relations

(7-/1, T1) -- (’/2, T2) (’/1 ( ’/2, D D2),

-(7-/, T) (Hp, -T).

The class ofany degenerate K-cycle is zero in KK(C, A).

Let u ( ) be the degree one unitary with respect to the grading on 7-/

LEMMA 4.6. --(7-/, T) (7"(, Tp) ( KK(C, A), where Tp uTu*.

Proof. In the complex world, (7-/, T) (7-/, -T) since they are operator homo-
topic (but not through self-adjoint K-cycles in general.) It follows that

-(7-/, T) (./op,-T) (7-/p, T) (7-/, uTu*) (7-/, Tp)

since u" 7-/p -- 7-/implements a unitary equivalence. El

THEOREM 4.7. K’(A) is isomorphic to KK(C, A).

Proof. Let G (t) (t2 q-- 1)-1/2 which defines a degree one, self-adjoint element
in Cb(]R) M(C0(]R)), the continuous bounded functions on JR. Define a map
K’(A) KK(C, A) via

i[]1 - (7-[e, G(D))

where D is the regular operator associated to " C0(]R) /C(7-/) C K(/A) via the
converse functional calculus. (As in Theorem 4.3, we may assume that b is strict.)
The operator G(D) is a degree one, self-adjoint element of M(1C(IA)) I(a) and
G(D)2 1 is compact since

G(D)2 1 (D2 + 1)-1 = b(G) /C(7"/).

This map is easily seen to be well-defined since applying the construction to a graded
homotopy : Co(JR) -- /C(A)[0, 1] yields a homotopy of K-cycles by using the
graded isomorphism

]((/’A)[0, 1] - (A/C)[0, 1] A[0, 1]/C /C(/At0,1l).
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It is also distributes over direct sums and maps

-.!1 I[uu*]] - (7-[.,, G(D)p) -(7-/, G(D))

via properties of the functional calculus and Lemma 4.6.
The reverse map is defined using the techniques of Baaj and Julg^ [2]. Let (7-/, F)

beaK-cycleforA. We may assume thatF F* and 7-/ HA. LetT > 0
be a strictly positive element of/C(a) of degree zero which commutes with F.
Any two such operators are operator homotopic via the straight line homotopy. Let
D FT-1. Note that Domain(D) Range(T) is a dense submodule of a. One
has that D D* and (D2 + 1) -1 T2(F2 + T2)-1 is compact. We have the identity
G(D) F(F2 + T2)-/2 and so it also follows that (/a, F) and (/a, G(D)) are
operator homotopic. It follows from the identity

(D 4-i)-1 D(D2 + 1)-1 q: i(D2 + 1)-1

that the resolvents are also compact. Define

KK(C, A) K’(A)

by sending (a, F) to the graded homotopy class of the graded .-homomorphism

" f - f(D) 1C(tA).

As above, /C(/At0,1]) /C(A)[0, 1], so a homotopy (/At0,1], F) is mapped to a

homotopy " C0() -- /C(/A)[0, 1]. Thus the reverse map is well-defined. One
checks easily that these two maps are inverses of each other. I-1

If A is trivially graded and unital then AIC M2(A (R)lC) with even grading given
by diag(1, -1). That is, M2(A (R) 1C) is graded into diagonal and off-diagonal
matrices. It follows from the above that

K’(A) [Co(]R), A (R) 1El] ,2_ Ko(A).

We will describe the isomorphism directly via the more familiar language of pro-
jections. It is a standard result that Ko(A) is the group of formal differences of
homotopy classes of projections p p* p2 A (R)/C with addition given by
direct sum [p] + [q] [p’ + q’] where p "h P’, q "h q’ and p’ _1_ q’. Let
u M2(M(A (R) 1)) be the degree one unitary

Recall that for any self-adjoint involution w (i.e., w* w, w2 1) there is an
associated projection p(w) 1/2 (w + 1).
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Let x [p] [q] Ko(A) where p and q are projections in A (R)/C. Define a
map

by the formula

d/)x" Co() --> M2(A (R)

Cx(f) (f(O)p 0 )0 f(O)q f Co().

This defines a ,-homomorphism since p p2 p, (similarly for q) and is graded
since f(0) 0 for any odd function. Note that the homotopy class of Cx depends
only on the homotopy classes of p and q. Now we define a map/z: Ko(A) --+ K’(A)
by mapping

x-- xll.
It also follows that

CtPl(f)tql(f)=(f(O)diag(p’q)diag(O, 0) diag(O’O))"h(0) 0 )
[p,+q,](f)

and so it is additive. For x [p] [q], -x [q] [p] maps to

-x(f) [If(0)q
0\ o)f(O)p Ux (f)u*.

Thus,/z(-x) [UCxU*]! -[[xll -/x(x). One should note that with the grading
present Cx and -x are not homotopic through graded ,-homomorphisms since u has
degree one and the identity has degree zero.

Conversely, given I[]1 K’(A), extend to a graded ,-homomorphism

+" Co(JR)+ ----> (A (R) K:)+

by adjoining a unit. Let z denote the unitary given by the "Cayley transform"

t+i
z(t) + 2ir_(t)

t-i

where r_ (t) (t i)- is the resolvent function. Let u denote the unitary

u +(z) 1 + 2i(r_) e (A (R) K:)+

A simple computation shows that (u)2 1 and (eu)* eu. We also have
and e2 1. Consider the associated projections

p(), p(u) (A (R) 1C)+.
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By the definition ofu above, we see that p() p(u4,) 2i(r+) A (R)/C. Also,
a homotopy of induces a homotopy of the unitary u, and thus of p(u,). We define
v: K’(A) -- Ko(A) by

v(l[]]) [p(+)] [p(+u+)] Ko(A).

A simple computation shows that v o/z 1. We only need to show/z is onto. It then
follows that v =/z-t is a homomorphism.

Since A is trivially graded, HA HA HA with each factor determining the
grading. Again identify A+/E with /C(/a). Let I[]1 K’(A). Up to graded
homotopy we may assume that : C0(R) +/C(/a) is strict (via stabilization). Let

o: (o0+
on/)a be the self-adjoint regular operator ofdegree one with compact resolvents from
the converse functional calculus such that (f) f(D). Let G(D) D(D2 + 1)-1/2
which is a self-adjoint bounded operator ofdegree one ona with G(D)2-1 compact.
By a graded homotopy, we may assume that (f) (f o G)(D) f(G(D)). (Note
that the diffeomorphism G: ]R + (-1, 1) is the homotopy inverse to the inclusion
(- 1, 1) C IR.) Thus, we can write

(0 o0,+)G(D) G+
on HA 9 HA where G+: HA -- HA is a generalized Fredholm operator [18]. Up
to a compact perturbation of G+ (which would induce a graded homotopy), we may
assume that Ker(G(D)) Ker(G+) Ker(G.) is a finite projective A-module in
/-)a, and is thus complemented. Note that for x m Ker(G(D)) we have f(G(D))x
f(O)x. Since A is trivially graded, Ker(G+) and Ker(G.) are finite projective A-
modules. Let P(+*) 1C(HA) be the compact projections onto Ker(G)). Let x
[P+] [P_] Indexa(G+) Ko(A) [18]. A graded homotopy connecting to the
graded .-homomorphism

o)f(0)P. (HA HA) (I=IA)

is given by

If(t-tG(D)),+t (f) | Cx (f),
Thus,/z(x) = ![]1 and so/z is onto as was desired.

t>0,
t=0.

COROLLARY 4.8.
inverses.

If A is unital and trivially graded then the maps tx and v are
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5. Elliptic operators over C*-algebras

In this section, we will show how the previous results and the functional calculus
give explicit realizations as graded .-homomorphisms of the K-theory symbol class
and Fredholm index of an elliptic differential operator with coefficients in a trivially
graded C*-algebra.

Let A be a trivially graded unital C*-algebra and M a smooth closed Riemannian
manifold. Let E M and F M be smooth vector A-bundles, that is, smooth
locally trivial fiber bundles on M whose fibers Ep and Fp are finite projective A-
modules for each p M. Let Coo(E) denote the vector space of smooth sections of
E, which is amodule over A, and similarly for Coo(F). Let D: C(E) Coo(F) be
an elliptic differential A-operator of order n on M [13], 17]. (If A C then D is an
ordinary differential operator.) Lettr tr (D): zr*(E) rr*(F) denote the principal
symbol of D which is a homomorphism of vector A-bundles, where zr: T*M M
is the cotangent bundle. The condition of ellipticity is the requirement that for each
non-zero cotangent vector 0 TM the principal symbol tr (D): Ep -- Fp is
an isomorphism of A-modules.

Equipping the fibers Ep (and Fp) with smoothly varying Hilbert A-module struc-
tures

(.,.)p: Ep x Ep A

defines a pre-Hilbert A-module structure on Coo(E) via the formula

(s, st) fM (s(p), s’(p))p dVO1M (! A

for s, s’ Coo(E), where dvolt is the Riemannian volume measure on M. (And
any two such structures are homotopic via the straight line homotopy.) It follows
that an adjoint differential operator Dt’. Coo(F) CO(E) exists and is of the same
order as D. The principal symbol of the adjoint is the adjoint of the principal symbol
cr(Dt) try(D) E(Fp, Ep) for TM. Consider the formally self-adjoint
differential A-operator of degree one

l .D 0 Coo(E) (9 Coo(F) Coo(E) (9 Coo(F)

on the graded pre-Hilbert A-module Coo(E) @ Coo(F). The principal symbol of D
is the self-adjoint bundle morphism of degree one

( or*)" rr*(E) rr*(F) rr*(E) rr*(F)r r(ll)) 0

on the graded pull-back vector A-bundle zr* (E) rr*(F).

LEMMA 5.1. The resolvents (tr 4- i)-: zr*(E) zr*(F) zr*(E) zr*(F) are
vector A-bundle morphisms which vanish at infinity on T*M in the operator norm
induced by the Hilbert A-module structures on thefibers Ep Fp.
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Proof. This follows from homogeneity tr(p, t) tntr(p, ) and ellipticity.

Form the Cayley transform 14]

u (tr + i)(tr i)- 1 + 2i(tr i)-1.

By complementing the vector A-bundles E and F, e.g. E G M x An, we may
embed rr* (E F) in a trivial A-bundle

A= T*M x (An An).

Now extend the automorphism u to the A-bundle A, by defining it to be equal to the
identity on the complement of zr*E rr*F in .4,. From the lemma above, it follows
that u extends continuously to the trivial A-bundle on the one-point compactification
(T’M)+ by setting u(cx) I.

Let e diag(1, -1) be the grading of the trivial A-bundle (T’M)+ x (An An).
Since ecr -ire it follows, as in the previous section, that (ue)2 1 and (U)*
(Obviously we also have e* and e2 1.)

Therefore, we obtain two projection-valued sections

p(e), p(ue): (T’M)+ --> End(N)

on (T*M)+ which are equal at infinity. We can view them as projection-valued func-
tions (T’M)+ --+ M2(Mn(A)) M2n(A). Both define elements in Ko(C(T*M+)(R)A)
and so their difference defines an element

E(D) [p(e)] [p(eu)] e Ko(Co(T*M) (R) A).

This is the symbol class of the elliptic A-operator D as constructed in [7], 14], 17].
By Corollary 4.8 and stability, it follows that

Ko(Co(T*M) (R) A) I[Co(]R), Co(T’M) (R) M2n(A))’fl

and E (D) is identified with the graded homotopy class ofthe graded ,-homomorphism

dPa: Co(R) ---> Co(T’M, M2n(A)) M2n(Co(T*M) (R) A)

given fiber-wise by the ordinary matrix functional calculus

(f)() f(o’(D)) e M2n(A)), for e T*M.

The principal symbol a(D): zr*(E) ---> zr*(F) determines a class [a(D)] e
KA(T’M) (the topological K-theory of T*M defined via vector A-bundles) since it
is a bundle morphism that is an isomorphism offthe compact zero-section M C T*M.
By the Mingo-Serre-Swan Theorem 12], 16], we have KA (T*M) - Ko(Co(T*M)(R)
A), which is induced via the action of taking sections as for the case A C. It thus
follows from this and the constructions in the previous section that all three of these
symbol classes can be identified.
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PROPOSITION 5.2. [a(D)]= E(D) =l[,r]] KA (T*M) - Ko(Co(T*M)(R)A).

Let L2 (E) denote the completion of the pre-Hilbert A-module C (E). The differ-
ential A-operatorD defines an (essentially) self-adjoint regular operator of degree one
on the graded Hilbert A-module 7-/o L2(E) (9 L2(F). (We replace D by its closure

which is self-adjoint.) Since D is elliptic, the resolvents (1I) 4- i) -1 are compact.
(This follows from the parallel Sobolev theory for differential A-operators [13].) The
complementation of the bundles E and F above (with the previous constructions)
allows the coherent inclusion

7-/D C L2(A) - L2(M) (R) A2n

which induces a graded inclusion of C*-algebras K:(7-/o) M2n(1C (R) A). By
the functional calculus for self-adjoint regular operators [11] we obtain a graded
,-homomorphism

Oo: C0(]R) M2n(1C (R) A): f -> f(]I))

Recall that the usual definition of the generalized Fredholm (analytic) index,
Indexa (D) in terms of kernel and cokernel modules requires compact perturbations
for a general C*-algebra A 13], 18]. This is incorporated in the computations in the
proof of Corollary 4.8, so we see that the functional calculus for ]l) gives this index.

PROPOSITION 5.3. IndexA (D) [o]] Ko(A).

Naturally associated to M and A is an asymptotic morphism of C*-algebras

{kI/t}te[1,oo): Co(T’M) (R) A --->/C(L2M) (R) A,

which is defined via Fourier transforms and a partition of unity up to asymptotic
equivalence. (For complete details on the construction see [5], [7], 17].) The induced
map

," KA (T’M) - Ko(Co(T*M) (R) A) -- Ko(A)

on K-theory is useful for doing index-theoretic and K-theoretic calculations with
elliptic operators. IfM ]Rn, the induced map is Bott periodicity Ko(Co(IR2n)(R)A) -Ko(A) 17]. The following result implies the exact form ofthe Mishchenko-Fomenko
index theorem 13], hence the Atiyah-Singer index theorem 1] when A C as proved
originally by Higson [7].

THEOREM 5.4 (Lemma 4.6 17]).
order one on M then

If D is an elliptic differential A-operator of

,([a(D)]) IndexA(D) e Ko(A).
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The proof reduces to composing the graded symbol homomorphism

dP,r" Co() M2n(Co(T*M) (R) A)" f f(o’)

with the matrix inflation of this "fundamental" asymptotic morphism for M and A,

{qt}: M2n(Co(T*M) (R) A) M2n(1C (R) A),

and comparing this to the continuous family of graded operator ,-homomorphisms

{b}te[1,oo)" Co() -->" M2n(A (R) K:): f -> f(t-iD).

One then proves 17] via Fourier analysis and a compactness argument that for any
f E C0(]R),

lim Ilqt(f(tr)) f(t-]I))ll 0
t--oo

and so the composition {Pt o , is asymptotically equivalent to {9}. Therefore,
by stability and homotopy invariance of the induced map [5], [6],

q, l[dPa ll I[ dPto ]l I[ dPo ]] e Ko A

The result now follows by Propositions 5.2 and 5.3.

REFERENCES

1. M. E Atiyah and I. M. Singer, The index ofelliptic operators: I, Ann. of Math. 87 (1968), 484-530
2. S. Baaj and P. Julg, Thdorie bivariante de Kasparov et oprateurs non bornds dans les C*-modules

Hilbertiens, S6rie I, C. R. Acad. Sci. Pads 296 (1983) 876-878.
3. B. Blackadar, K-theoryforoperatoralgebras, MSRI Publication Series 5, Springer-Verlag. New York,

1986.
4. A. Connes, An analogue ofthe Thorn isomorphismfor crossedproducts ofa C*-algebra by an action

of,, Adv. in Math. 31 (1981), 31-55.
5. A. Connes and N. Higson, Almost homomorphisms and KK-theory, unpublished manuscript.
6. E.P. Guentner Relative E-theory, quantization and index theory, Ph.D Thesis, The Pennsylvania State

University, University Park, Pa., 1994.
7. N. Higson, On the K-theory proofofthe index theorem, Contemp. Math. 148 (1993), 67-86.
8. N. Higson, G. Kasparov, and J. Trout, A Bott periodicity theoremfor infinite dimensional Euclidean

space, Adv. in Math. 135 (1998), 1--40.
9. K.J. Jensen and Klaus Thomsen Elements ofKK-theory, Birkhiuser, Boston, 1991.
10. G. G. Kasparov, The operator K-functor and extensions of C*-algebras, Math. USSR Izvestija 16

(1981), 513-572.
11. E. Christopher Lance, Hilbert C*-modules: A toolkitfor operator algebraists, London Mathematical

Society Lecture Note Series No. 210, Cambridge University Press, Cambridge, 1995.
12. J. A. Mingo, K-theory and multipliers of stable C-algebras, Ph.d Thesis, Dalhousie University,

Halifax, N.S, Canada.
13. A. S. Mishchenko and A. T. Fomenko, The index ofelliptic operators over C*-algebras, Math. USSR

Iszvestija 15 (1980), 87-112.
14. D. Quillen, Superconnection characterformsandthe Cayley transform, Topology 27 1988), 211-238.



ON GRADED K-THEORY AND THE FUNCTIONAL CALCULUS 309

15. J. Rosenberg, The Role of K-theory in non-commutative algebraic topology, Contemp. Math. 10
(1982), 155-182.

16. R. G. Swan, Vector bundles andprojective modules, Trans. Amer. Math. Soc. 105 (1962), 264-277.
17. J. Trout, Asymptotic morphismsandelliptic operators over C*-algebras, K-theory 18( 1999), 277-315.
18. N. E. Wegge-Olsen, K-theory and C*-algebras, Oxford University Press, New York, 1993.
19. A. van Daele K-theoryfor graded Banach algebras 1, Oxford Quarterly J. Math. 39 (1988), 185-199.

Department of Mathematics, Dartmouth College, Hanover, NH 03755
jody. trout@dartmouth, edu


