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IDEALS ATTAINING A GIVEN HILBERT FUNCTION

MATTHEW J. RODRIGUEZ

ABSTRACT. We improve the result of Charalambous and Evans [C-E] to show that the Betti number
sequence in their example of incomparable minimals among the resolutions for a fixed Hilbert function is
indeed minimal. Their example was dependent upon the graded betti numbers. We give an example of a
finite length Hilbert function and two cyclic finite length modules attaining the Hilbert function for which
the betti number sequences are incomparable, i.e., independent of the grading.

Given a graded module M over a polynomial ring R k[xo Xn], Hilbert [Hi]
showed how to obtain the Hilbert function from the (projective) resolution. Progress
in the opposite direction, i.e., in obtaining the resolutions of modules attaining a fixed
Hilbert function, has been scarce. We present some further results. Fixing a Hilbert
function, many different projective resolutions may occur for the graded modules.
We denote a typical resolution,

0 clFnd[-d] -’+ aFOd[-d] M O,

as/5 (/3md) where the/md rank Fmd are the graded Betti numbers of M. We may
partially order two resolutions c </3 if Om _< /m for all m (coarse ordering on Betti
numbers) or if Otmd <_ md for all m and d (fine ordering on graded Betti numbers).
For now, we will use the latter partial ordering. In 1993, Hulett [Hu] and Bigatti [B]
independently showed that a unique largest element in this partial ordering exists in
characteristic zero, and in 1996 Pardue [P] improved the result to all characteristics.
However, there was no reason to believe that a unique smallest element should always
exist. Charalambous and Evans [C-E] proved through counterexample that a unique
minimal resolution need not exist in the fine partial ordering, weaker than a result
independent of the grading. In this paper, we first restate and then strengthen their
theorem by proving that the Betti number sequence is in fact smallest. Then, we
also prove the desired result of the existence of incomparable minimals among the
resolutions of graded modules with a fixed Hilbert function, i.e., the existence of those
which are incomparable in the coarse partial ordering of Betti numbers. Once again,
we concentrate on the finite cyclic case.

THEOREM 0. [C-E]. Let R k[xo Xn], n > 2. Then there exists a Hilbert
seriesfora cyclicfinite length R-module andtwo incomparable smallest sets ofgraded
Betti numbersfor that Hilbert series.
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The counterexample provided for the Hilbert function HM (s) 1, 3, 4, 2, 1}
(where we write a finite Hilbert function as a sequence of its nonzero terms, usu-
ally beginning in degree zero) was the two modules RIll and R/12 where I1
(xox2, xlx2, X3o, x, x32) and I2 (x, x, xgxl, xgx2, x). The betti diagrams for
these modules are given below

R/I: total: 1 5 6 2
0: 1
1: 2 1
2: 3 4
3:
4: 1 1

R/I2: total: 1 5 6 2
0: 1
1: 2
2: 2 4
3: 1
4: 1 2 1.

Note that the degrees ofthe elements in the socle as well as those ofthe second syzygies
differ in the two modules and a device of Stanley [S] shows that no attainable smaller
resolutions lies beneath both of them. However, since the Betti number sequence
in the two cases are identical we consider these two modules to be weakly (finely)
incomparable.

THEOREM 1. Let R k[xo Xn] and HM(S) 1, 3, 4, 2, 1 }. Then the
unique smallest Betti number sequence is 1, 5, 6, 2.

Proof. Of course we use Theorem 0 to establish existence and need only demon-
strate the sequence’s minimality. This is a brief calculation using facts about almost
complete intersections and Gorenstein ideals. First, the Hilbert function of a Goren-
stein ideal is symmetric and we use the contrapositive. Second, an almost complete
intersection would contain an R sequence of generators fl, f2, f3 and a fourth gener-
ator f4 where the ideal (fl, f2, f3): (f4) is Gorenstein. To obtain the Hilbert function
of the module we subtract the Hilbert function of R/(f, f2, f3) from the given one
for R/(fl, f2, f3, f4) and observe that this difference is necessarily symmetric. Sur-
veying all possible combinations of the degrees of the generators for an R sequence
(with the obvious upper bound of five) we see that no such difference occurs and
hence no almost complete intersections exist. Thus, a minimum of five generators
is required. We remark that since the Hilbert function is asymmetric the number of
socle elements for a module attaining it is greater than one. Therefore, since the
alternating sum of the betti number sequence is zero, we have shown that 1, 5, 6, 2 is
the smallest Betti number sequence. D
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Remark. A sample of the above calculations should clarify the argument. Con-
sider an R sequence of generators in degrees 2, 3, and 5 with Hilbert function
Jt(s) {1, 3,5, 6, 6,5,3, 1}. The difference JM(s)- Hta(s) is {1, 4, 5, 5, 3,
1 (omitting the leading zeroes) representing a Hilbert function beginning in degree
two that is clearly asymmetric.

Similar examples abound in k[xo, xl,x2] and we conjecture that no strongly
(coarsely) incomparable resolutions for a given finite length Hilbert function exist
in this ring. Thus, we extend our search to R k[xo, xl, x2, x3] and prove the
desired result.

LEMMA 2. Let R k[xo Xn] and H(s) {1, 4, 8, 10, 8, 3, 1}. Then the
only possible R sequences leading to an almost complete intersection yielding Ht (s)
are 2, 2, 3, 4 and 2, 3, 3, 4 in which case the fifth generators are of degree 3 and 2
respectively.

Proof. Some observations about Hta(s) are helpful. The Hilbert function of R
is 1, 4, 10, 20, 35 }; hence this first disagrees with Ht(s) in degree two and this
difference requires two quadratic generators for the ideal. These two generators cut at
most 4 x 2 8 from the degree three term ofthe Hilbert function leaving 20- 8 12.
However, in order to match the degree three term of Ht (s), two more cubic generators
are needed. Of course we cannot use all four of them in the R sequence, for then their
Hilbert function is 1, 4, 8, 10, 8, 4, 1 indicating that we must supply a fifth generator
in degree five in which case the generator would multiply nontrivially in degree six
and the Hilbert function would vanish there. Thus, we may take only three of the four
quadratic and cubic generators and are left to examine the cases 2, 2, 3, d and 2, 3, 3,
d where d < 7. Now, we apply the argument from Theorem 1 and notice when the
difference of Ht(s) and the Hilbert function for an R sequence yields a symmetric
sequence denoting the Hilbert function of the quotient ideal. Calculation shows this
occurs only for the R sequences 2, 2, 3, 4 and 2, 3, 3, 4 with Hilbert functions 1, 3,
5, 3, 1 and {1, 4, 8, 11, 8, 4, 1} (note that these Hilbert functions begin in degree 3
and 2) respectively.

THEOREM 3. Let char k 5 and R k[x0, xl, x2, x3]. Then there exists a (finite
length) Hilbert series, {1, 4, 8, 10, 8, 3, 1 }, for a (cyclic finite length) R-module and
two incomparable sequences ofBetti numbers corresponding to modules attaining it.

Remark. We can easily generalize the theorem tO R k[x0,..., Xn] as in the
proof of Theorem 0 by introducing a linear term into the ideals for each additional
variable. Also, the characteristic condition is needed to avoid trouble in cases such
as characteristic 2. The theorem holds in characteristic 0.

Remark. Here are a few comments about the method of this research. The
discovery of 11 and 12 in the proof below was a delicate and tedious process. First,
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code was written in Macaulay 2 to search for incomparable minimals among the
resolutions of monomial ideals and the results were the 7-generated I1 seen below
and a 6-generated one. This provided bounds for our search, though we could not
rule out the existence of a 5-generated (nonmonomial) ideal with a smaller resolution.
Thus, we performed a second search for 5-generated ideals with the given Hilbert
function, taking three pure powers of the variables in the degrees of the R sequence
(either 2, 2, 3 or 2, 3, 3), a random quadratic or cubic binomial, and a homogeneous
fourth degree polynomial. We obtained thousands of ideals attaining the Hilbert
function, all of which had the same Betti diagram leading to the result.

Proof. We first provide two candidate modules for incomparability and remark
that the ideal with more generators has fewer socle elements, hence exhibiting the
requisite strong incomparability. Let M R/I1 and M2 R/12 where

XlX2X3,X)
and

(There is no special significance in the choice of 12, thousands of similar ideals were
found with the same Betti diagram.) Their Betti diagrams are given below.

total: 1 7 15 12 3
0: 1
1: 2
2: 2 2
3: 1 5 2
4: 2 7 8 1
5: 1
6: 1 2 1

R/I2" total: 1 5 12 12 4
0: 1
1: 2
2: 2 2
3: 3 1
4: 6 9 3
5: 1 1
6: 1 1

To complete the proof, we show that the socle of any almost complete intersection
with the Hilbert function must have at least four elements. Applying Lemma 2, we
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are reduced to considering those two cases ofR sequences. We note that in either case
the Betti number sequence is 1, 5, 12, 12, 4. For such an ideal (f, f2, f3, f4, f5) to be
an almost complete intersection, the ideal (f, f2, f3, f4): (f5) must be Gorenstein.
Thus we first examine such ideals for the case of an R sequence with generators in
degrees 2, 2, 3, and 4. For this purpose, consider the generating function

F(t)
-(--1)Jijtj

(1 t)n

which is a polynomial in our finite case. Multiplying through by (1 t)4 gives the
polynomial in the numerator, e.g., (1 + 3t + 5t2 + 3t -F t4)(1 t)4 1 2

3t3 -I- 8t4 3t5 6 7 + 8. This polynomial is translated into a Betti diagram
containing the coefficients where the sign changes signal a shift of syzygies (from
to j 4- 1) and the exponent denotes the degree of the syzygies, hence the following
diagram:

total: 1 5 8 5 1
0: 1 1
1: 1
2: 3 8 3
3: 1
4: 1 1

Note that the sum along each upward sloping diagonal is the corresponding coef-
ficient in the polynomial. We call the sum of the coefficients the Stanley bound in
that any module attaining the Hilbert function must have at least this number as the
sum of its (graded) Betti numbers [$2, p. 62]. We may calculate the same sequence
of sums from the Betti diagrams of the two modules (we must sum the diagonals of
the diagrams since we do not have the polynomial at hand) and taking the sum over
min {sum along the corresponding diagonal}. Ideally, the sum would be below the
Stanley bound and without further argument we could conclude that there exists no
module with a resolution beneath them both. Observe in this case that the Stanley
bound is greatly exceeded indicating the amount of delicacy needed in the proof.

In the above diagram, the presence of a linear and quadratic generator requires a
relation in degree three and then a fourth generator in degree three to compensate and
yield the correct Hilbert function, giving a revised smallest diagram:

total: 1 6 10 6 1
0: 1 1
1: 1 1
2: 4 8 4
3: 1 1
4: 1 1
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We now appeal to a mapping cone argument. Consider the mapping cone in this
case (where we have simplified notation in listing only the degrees of the generators
and exponents to indicate repeated degrees):

{11} ,) {7, 8, 92} ,) {4, 52, 62, 7} {22, 3, 4} {0}

T T T Y T
{11} {84, 9, 10} {6, 78, 9} {4, 5, 64} {3}.

This, of course, need not be minimal, for instance the element in degree eleven is
certainly superfluous, and one of degree eight and another of degree nine may be
unnecessary. Nonetheless, in the worst case in which all possible cancellations do
occur the fourth syzygy will still have a rank of four, hence the fourth Betti number in
the example is indeed minimal. Consider the other case ofan R sequence in degrees 2,
3, 3, and 4. If an R sequence in degrees 2, 2, 3, and 4 also exists then by the previous
case we are done. Suppose not. Then there are two quadratic generators, only one of
which is in the R sequence. Since these two cannot form an R sequence they must
have a common linear divisor and the ideal has a linear generator. On the other hand,
we found that the Hilbert function of the quotient ideal was 1, 4, 8, 11, 8,, 4, 1 }.
Observe that the degree one term is four, indicating that there are no linear generators.
Therefore, every almost complete intersection has an R sequence in degrees 2, 2, 3,
and 4. []

Note that while we have discovered an example of incomparable minimals among
the resolutions for a given Hilbert function we have not (in the above theorem) found
the minimal Betti number sequences which may lie under either of them; i.e., we
have not eliminated the possibility of a module with betti number sequence 1, 5, 10,
10, 4 for instance. Much further study is required before any general results may
be presented, for to this point progress has been only in finding examples to match
our hypotheses. Of particular interest is gaining knowledge of the frequency with
which strong incomparability occurs for finite Hilbert functions. A slightly simpler
matter would be to find multiple (more than two) incomparables for the same Hilbert
function.
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