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I. Introduction and results

In recent interesting pper, H. J. Ryser obtained the following results [1].
Let H be nonnegtive hermitin mtrix of rnk e nd order v with eigen-

vMuesh, ...,,whereh -> -> h > },+ ,, O. Leth
be n integer, h > 1, such that e -< h -_< v, nd define/c and h by

trace (H) kh, <= tc - h 1) <__ 1.

Define the matrix B of order h by

B (/- },)I+

where I is the identity matrix and J is the matrix all of whose entries are
l’s. Let

B0 B 0,

where the matrix B0 of order v is the direct sum of the matrix B of order h
and the zero matrix of order (v h). Let

k* trace (H)/v, t ==h, h*= ((/v) k*)/(v- 1).

Define the matrix B* of order v by

B* (k*-- ,*)I + },*J.

Finally let C(A) denote the r compound matrix of A, and let P(A) de-
note the rt induced power matrix of A (for definitions of C and P see [1]).
Then we have

THEOREM 1. The matrices H and Bo satisfy

trace (C(H)) __< trace (C(B0)) (1 __< r -< v).

Equality holds fort 1, h + 1, v. if toW (h 1) O and equality
holds for an r, 1 < r <- h, or l - (h 1) 0 and equality holds for an
r, 1 r h, then there exists a unitary U such that H U-Bo U.

THnOnEM 2. The matrices H and B* satisfy

trace (C(H)) -< trace (C(B*)) 1 __< r __< v).
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Equality holds for r 1. If k* 1)h* 0 and equality holds
for 1 < r <= v, or if ]c* (v 1)* 0 and equality holdsfor an r, 1 < r < v,
then H B*.
TnEOnEM 3. The matrices H and Bo satisfy

trace (Pr(H)) >= trace (P(B0)) 1 _-< r -_< v).

Equality holds for r 1. If equality holds for an r 1, then there exists a
unitary U such that H U-Bo U.

THEOREM 4. The matrices H and B* satisfy

trace (P(H)) >- trace (Pr(B*)) (1 -< r =< ).

Equality holds for r 1. If equality holds for an r 1, then H B*.
Ryser applies some of these results to certain combinatorial problems such

as the determination of necessary and sufficient conditions for both the exist-
ence of complete finite oriented graphs and the existence of solutions to the
v, ], , problem.

In what follows we state and prove generalizations of Ryser’s results to a
fairly wide class of concuve und convex functions.
Throughout the remainder of this paper we assume that all vectors men-

tioned have nonnegative coordinates.
Let f be a nonnegative concave symmetric function on v-tuples of nonnega-

rive reals. Suppose that whenever Oa + (1 O)b G Ix f(x) > 0},
0 < 0 < 1, then f(Oa + (1 O)b) Of(a) - (1 O)f(b) if and only if a
and b are proportional (a b); then f is called strictly concave. Similarly,
if f is convex and satisfies this last condition, then f is called strictly convex.
If A is a matrix with eigenvalues 1 => 0, "", v ->_ 0, let f(A)
denote f(l, v). Then our main results are the following.

THEOREM 5. If f is concave (convex), then the matrices H and Bo satisfy

f(H) <= >__ f(Bo).

If f is strictly concave (convex), and if ( ) e Gs then equality holds
if and only if H and Bo have the same eigenvalues. Iff is strictly concave (con-
vex), and if for some integer z, G] is the set of nonnegative vectors with at least
z positive coordinates, and if ]c (h 1 ) 0 and z <-_ h, or k + (h 1 )k 0
and z < h, then f(H) f(Bo) if and only if H and Bo have the same eigen-
values.

THEOREM 6. Iff is concave (convex), then the matrices H and B* satisfy

f(H) <__ (>__) f(B*).
If f is strictly concave (convex), and if ( hv) e Gs then equality holds

if and only if H B*. Iff is strictly concave (convex), and if for some integer
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z, Gs is the set of (nonnegative vectors with at least z positive coordinates, and if
/c* -k (v 1)},* 0 and z <= v, or tc* -k (v 1)h* 0andz < v, then
(H) f(B*) if and only if H B*.

Ii. Proofs
An n-square matrix A is doubly stochastic if the elements of A are nonnega-

rive and 1 ai3.-- 1 (j 1, ..., n)and =1 a3. 1 (i 1, ..., n).
Birkhoff’s theorem [2] states that the set of n-square doubly stochastic

matrices is equal to the convex hull of the set of n-square permutation matrices.
Let f be the concave function defined in Section I. The following lemmas

can be modified in the obvious way when f is convex.

LEMMA 1. Let a(1), -.-, a(p) be nonzero v-tuples of nonnegative reals. If= 03. l and O < 03. (j 1, p), then

f(= 0;. a)) _-> =
If f is strictly concave and if 3. 03. a()

e Gs then equality holds if and only
if a(1) a(p).

Proof. Clearly f(= 03. a()) >- E= 03.f(a())
Suppose that f is strictly concave, that 3.=1 03.a) e G], and that

f(_= 03. a()) 3. 03.f(a(J)). Now

f(J=l Oja()) f(Oia() -k (1 0) ’3. (1 O)-03.a())
>= Of(a()) -k (1 0)f(3.(1 0)-103.a())
>= Of(a() -k (1 0) 3.i(1 O)-03.f(a())

= 03.f(a()) (i 1,..., p).

Therefore, since we are assuming equality, we have that

f(Oa() -k (1 0i) 3.i (1 o)-oa())
Of(a()) + (1 0)f(-./ (1 Oi)-i03.a())

for (i 1, p), and so, since f is strictly concave,

a( 3. (1 0)-103. a(3.) (i 1, p).

Thus there exist nonzero numbers (i 1, n) such that

t a() 3. (1 0i)-103. a() (i 1, n).
Therefore

tt(1 0)a( 3.i 03. a

/(1 0)a( -f- 0 a() J_- 03. a’) (i 1, n).

a(j) (i 1, n) and so a(i)Hence a() Z-----I 03"
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LEMMA 2. If H is a nonnegative hermitian matrix with eigenvalues
2 hn and if Ix1, Xn} is an orthonormal set of vectors, then

f(hl, "’’, n) - f( (Hxl xl), ..., (Hxn Xn) ).

Iff is strictly concave, and if (hl h,) e Gs then equality holds if and only
if Hx x is a diagonal matrix.

Proof. The proof of the inequality is a familiar one [3]. However it is
brief enough to include here and makes the discussion of the case of equality
easier. If H 0, the result is trivially true; hence ussume H
(Hxi, x) ). Then K XHXr, where X is the unitary matrix’whose row

vectors are, in order, x, x,. Thus H and K have the same eigenvalues
h, hn. Let u, Un be an orthonormal set of eigenvectors of H
corresponding to h, --., n respectively. Let h (ha, ..., h), and let
a, a be the main diagonal elements of K. Then

a, (Hx,, x,) (HE= (x,, u)u,, Xt= (x,, ut)ut)
(E: (x, u) u, E: (x, u)u)

= (x, u) h (i 1, ..., n).

Let S (s) (] (x, u) ]). Then clearly S is doubly stochastic, nd
a (S, h) where S is the i row of S (i 1, n).
By Birkhoff’s theorem there exist permutation mtrices P(),-..,

suchthtS =OP() where1 Oj 1 nd 0 < 0 < 1 (j 1 p)
Thus a (S,h)= ((E 0 P()),h). Therefore

f( (Hx x), ..., (Hxn Xn)) () f(E=l P()).
ut f i on, d o, brL 1,y(E P()) E
But P() is permutation mtrix, ndf is symmetric function, nd therefore
f(g()) f() (j 1, ..., p). Thus

f( (Hx x), "’’, (Hxn Xn) f(h ", n).

Suppose now that f is strictly concave, that (, ..., n) Gf, nd that
f((Hx,x),...,(Hxn,X)) =f(,’’’,hn). This means that

nd so, by Lemm 1, 0 P() 0 P(). Thus, setting P() P, we
hve that P()h d Ph for some number d (i 1, p). No d cn be
zero; otherwise 11 the d would be zero, nd hence 0 P()h would be
zero. This would imply that (, ..., ) 0 which would contradict the
ssumption that H 0. Thus

jv= Oj P()h Sh dPh,
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whered= --ld. ButJSh Jh J dPh dJh, and so d 1. There-
fore S}, Ph. Thus a h() (i 1, ..., n) where z is the permutation
corresponding to the permutation mtrix P. Since

i=1 i

it follows that K diag (a, an), i.e., K ((Hx, x)) is a diagonal
matrix.

LEMMA 3. Let a (a a), and let n be an integer, 1 n v. Then

f(a) f((1/n) a ..., (l/n)=a an+i, "’’,

If f is strictly concave, and if a G], then equality holds if and only if
al an.

Proof. The result is trivially true if a 0, so assume henceforth that
a 0. Let P P i_, where P is the permutation matrix correspond-
ing to the full n-cycle and I_ is the (v-n)-order identity matrix.

Since f is symmetric,

f(a) f(Pa) (l/n)= f(Pa) f((1/n) Pa)
f((1/n) a, ..., (1/n)= a, a+, ..., a,).

Suppose now that f is strictly concave, that a e G], and that

f(a) f((1/n)=a ..., (1/n)= a a+ ..., a).
Then by Lemma 1, Pa P’a a. Thus Pa a for some number. Now 0; otherwise then Pa O, a O, contradicting the hypothesis
that a0. Hence we may assume 0, and so at
(t 1, n). Therefore a a If ai 0, then

a al 0, a a 0, ..., a a_ 0,

i.e., al a O. Similarly we can show that if a 0 (1 < i n),
then al a O. Therefore suppose that no a 0 for 1 i n.
Then 1, and, since Pa O, a O, and neither is zero, it follows that

1. Therefore a a.
We prove Theorems 5 and 6 when f is concave; the arguments for f convex

re of course identical.
Proof of Theorem 5. Let u, u be an orthonormal set of eigenvectors

of H corresponding to hi, h respectively. Since

k + (h- 1) 1,

there is a unit vector Xl in the space spanned by Ul, ..., u such, that
(Hx, x) k + (h 1)h. Choose orthonormal x:, x in the inter-
section of the space spanned by u, u and the orthogonal complement
ofxl;letx+l=U+,...,x u. ThenbyLemma2
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f(H) =f(hl,""

By Lemma 3

_-< f((Hxl, Xl), (Hx, x,)

f(/ + (h- 1.)},, (Hx2, x),’"

f(/ + (h- 1),, (Hx., x),...

(Hx,, x,))

(Hxh,xh), O, ...,0).

f(]c-t- (h- 1),, (Hx., x), (Hx, x), 0,..., O)

=< f(k - (h- 1), (h- 1)-1_-. (Hxj,xj),...,

(h 1)-1_- (Hx,x), 0,..., 0).
:Now

Therefore

and so

Thus

hh-(h- 1)(- ,) h-’j=(Hx ,x),

h(h- 1)-_=(Hx ,xj) k- ,.
f(H) <__ f(c + (h 1),, ]c ,, ]c ,, O, ..., 0).

But Bo ((/ },)I - J) 0, and so

/-(h-1), /-,, ..., /-,

are the eigenvalues of Bo. Thus f(H) <__ f(Bo).
Suppose now that f is strictly concave, that (hi,

f(U) f(Bo). Then
) e G, and that

f( ,,) f( (Hxl x), (Hx.. x,) ),

and so by Lemma 2, (Hxi, xj) is a diagonal matrix. Since we are assuming
that (,, ,) e G, it follows (in the case of equality) that

(k - (h- 1),, (h- 1)-_=(Hxj ,x),...,

(h 1)-=(Hx x.), 0, 0), Gs.
Since in the case of equality

f(k -t-- (h 1), (h- 1)-_-(Hx.,xj),...,

(h 1)-_-.(Hx, x.), 0, ..., 0)

f(k "b (h 1), (Hx, x.), (Hxa, x), O, 0),
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it follows by Lemma 3 that

(Hx x) (Hx x) lc X.

Thus ((Hxi, xj)) and B0 have the same eigenvalues, and therefore, since H
and (Hxi, xj) are unitarily similar, it follows that H and B0 have the same
eigenvalues.

Suppose now that f is strictly concave, that there exists an integer z such
that Gs is the set of x with at least z positive coordinates, and suppose that
f(H) -/(B0).
We have just discussed the case in which (Xl, "’", Xv)e Gs. Therefore

let us assume that (Xl, v) G. This means that

f(,, ..., ,) f(]c + (h 1),, ]c ,, ]c , O, ..., O) O.

Ilk+ (h- 1)h#0andz <- h, thenk-h 0;otherwise

(k + (h- 1)},, k- h, ...,/c- },, 0, ..., 0)

would have h _>-z positive coordinates. This would mean that it would
belong to G, which is a contradiction. Therefore X /c trace (H)/h.
Now h_-< k+ (h- 1)}, kh <__ 1. But kh trace (H) ’__

EThus hh --<_ .=h. --_< h. But h- -> 0 (j 1,..., v), and therefore it
follows that 2 },= 0 and k+ (h- 1)k= 1. Therefore
((Hx, xj)) and B0 have the same eigenvalues, and consequently H and B0
have the same eigenvalues.

If k + (h- 1)}, 0 and h > z, then it follows that (k- h) 0 and
hence 1 h 0, i.e., H and B0 are both the zero matrix.

Proof of Theorem 6. Theorem 5 with h v implies that f(H) >= f(B*).
Suppose now that f is strictly concave, that (Xl, h) e G, and that

f(H) f(B*). Let x (1IV’v, ..., 1IV’v). Then (Xl, Xl) 1 and

(Hx, Xl) t/v k* + (v- 1)X*.
Complete x to an orthonormal basis {x,..., x,}. Then, by the argument
in the proof of Theorem 5, ((Hx, x)) is a diagonal matrix whose eigen-
values are It* -+- (v 1),*, k* ?*, It* ,*, and in fact

((Hx, x)) diag (k* + (v- 1)),*, k*- ,*, ...,/c*- *).
Now (B*x ,xl) (k*-- *) + ,*(Jxl ,Xl) k* + (v- 1)*, and

(B*x x) (It* ,*) + X*(Jx xj)
k*--,* if i=j# 1,

=0 if i#j.
Thus

((B*x, x.)) diag (k* + (v 1)X*,/c* X*, ,/c* X*) ((Hx,, xi))
and H B*.
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Suppose now that f is strictly concave, that there exists an integer z such
that G is the set of x with at least z positive coordinates, and that
f(H) f(B*). We have just considered the case inwhich (X, h) e G].
Therefore ussume thut (),, X) t Gf. This means that

f(X, X) f(lc* -t- (v 1)X*, k* X*, ,/c* X*) 0.

If k* + (v 1)X* 0 and z __< v, then/c* X* 0; otherwise

(k* -t- (v- 1)X*, lc*- X*, ..., lc*- X*)
would have v -> z positive coordinates and would therefore belong to G],
which is a contradiction. Thus/* X*. Now clearly

trace (H) trace (B*) /c* -k (v 1)X*

__
X /v.

It follows, since H is nonnegative hermitian, that ),-< /v <-X. Thus
EX -< = X _-< X. Once again X -> 0 for i 1, ..., v. Consequently

X ]c*- (v- 1)X*andX. X= 0. Thus

B x, xi)),((gxi,xj)) (( *

and so H B*. If/c* + (v 1)X* 0 and z < v, then clearly/* X* 0.
Thus H and B* are both equal to the zero matrix. This completes the proof.

III. Applications
In .this section we describe the region Gf for various choices of f, indicate

how Ryser’s results follow from ours, and exhibit two applications of the
results.

Let f(a)--(Er(a)/E,._,(a))11 for 0 < p _-< r, where E,.(a) is the rth

elementary symmetric function, i.e.,
il ivE.(a)

_
al a,.

l-. .i v----_

If a has fewer than r positive coordinates, then clearly E(a) 0, and so
f(a) 0. If a has at least r positive coordinates, then E(a) > O, and
certainly E_(a) O. Thus in this case G is the set of nonnegative vectors
with at least r positive coordinates. It has been shown [4] that f is concave
for nonnegative vectors a and strictly concave. Since

trace (Cr(H) Er(Xl ,’’’, ),

Theorems 5 and 6 with f(a)= (E(a)/E_(a))1 (with p r) imply
Ryser’s results, Theorems 1 and 2, respectively.
Now let f(a) (h(a))1/, where hr(a) is the completely symmetric

function of degree r, i.e.,
il ivh(a) al

l-b" -hi
0_<_
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If a has at least one positive coordinate, then clearly f(a) > O, and if a 0,
then f(a) 0. Thus in this case Gf is the set of nonnegative vectors with at
least one positive coordinate. It is known [5] that h",.l"(a) is convex for
nonnegative a and is strictly convex. Since trace (P.(H)) h,.(hl, hv),
once again Theorems 5 and 6 with f(a) (h,.(a)) I/r imply Ryser’s results,
Theorems 3 and 4 respectively.

Let f(a) Tl/’(a), where

where

(-1)() if k <0,

and k is any number, provided that if k is positive and not an integer then
n < k 1. Suppose k is a positive integer, and let

m [n/k] if k divides n,

[n/k] -- 1 if k does not divide n.

(Here [x] denotes the greatest integer in x.) If . (.) is to be defined,
then i can not be greater than k. This means that no exponent in a term
til i a a can be greater than k. On the other hand il, ...,iv
must sum to n. Thus if k divides n, then the minimum number of the ex-
ponents which must be positive is [n/k], and these exponents will each be k.
If k does not divide n, then the minimum number of the exponents which
must be positive is [n/k]-- 1, and of these [n/k] will be k and one will be
between 0 and k. Thus if k is a positive integer, then f(a) 0 if a has fewer
than m positive coordinates, and f(a) > 0 if a has at least m positive coordi-
nares. Therefore if k is a positive integer, then Gf is the set of nonnegative
vectors with at least m positive coordinates. Suppose now that k is positive
but not an integer. Recall that in this case we restrict n to being less than
k - 1. Thus if a has at least one positive coordinate, say at, then Tn(a)
will bepositive sincethe choice (il, it, iv) (0, ..., O, n, O, O)
assures us that there is at least one positive term in the summation. So in
the case k positive and k not an integer, G is the set of nonnegative vectors
with at least one positive coordinate. Suppose now that k is negative. Then
(t) is defined for all nonnegative integers t. Clearly (-1) (t) is positive for
all nonnegative t. Thus if a has at least one positive coordinate, say at, then
Tn(a) is positive since, as before, the choice (i, it, iv)
(0, 0, n, 0, 0) assures us that at least one of the terms in T(a) is
positive. Thus in the case that k is negative, G is the set of vectors with at
least one positive coordinate. Whiteley shows [5] that T/’ is convex for
/c < 0 and concave for k > 0. Clearly Tn/’ is symmetric. It can be shown
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that T/ is strictly convex for k < 0 and strictly concave for k > 0. It is
interesting to note that for ] 1, T,(a) En(a), and for k -1,

T,(a) hn(a).

Thus Theorems 5 and 6 can be specialized directly to the functions -n

Ryser applies Theorem 2 to the problem of determining whether or not a
finite oriented graph is complete. A graph consists of a nonnull set V of
objects called points and a set W of objects called lines, the two sets having
no elements in common. With each line there are associated just two distinct
points, called its endpoints. The line is said to join its endpoints. Isolated
points, i.e., points having no lines associated with them, are permitted, and
two or more lines may join the same endpoints. If the number of lines joining
distinct point pairs is the same for each such pair, then G is complete. G is
finite if both V and W are finite. G is oriented if each line is assigned a
direction in one of the two possible ways. Let G be a finite oriented graph.
Let P, P be the points, and let L, L be the lines of G. Let
p 1 if P is the initial point of the directed line L. let p. --1 if P is
the terminal point of the directed line L-; and let p. 0 if P is not an
endpoint of L-. Then P (p.) defines a matrix of size v by w. This
matrix is called the incidence matrix of G. The matrix PPr is nonnegative
symmetric. As before let

trace (H) *v, JHJ tJ, (/c* + (v- 1)*)v.
Then

k* 2w/v, * -2w/v(v 1).

The matrix B (k*-- *)I + h*J is of order v, and G is complete if and
only if PPr B.
We hve

THEOnEM 7. If f is a nonnegative symmetric concave function, then the
incidence matrix P of an oriented graph G of v points and w lines satisfies

f(PPr) <__ f(n).

If f is strictly concave, and if (h, ), the vector of eigenvalues of PPr,
belongs to G then equality holds if and only if G is complete.

This follows as a consequence of Theorem 6. Ryser’s result is obtained by
takingf Elf/r.

Let v elements x, x be arranged into v sets s, s such that.
every set contains exactly /c distinct elements and such that every pair of
sets has.exactly )t elements in common, 0 < X < k < v. Such an arrangement
is called a v, k, ) configuration. It turns out that every v, k, ), configuration
satisfies X k(k 1)/(v- 1). For such a configuration, let a. 1 if x.
is an element of s, and let ai 0 if x. is not an element of s. The v by v
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matrix A (ai.) of O’s and l’s is the incidence matrix of the v,/c, X configura-
tion. Define the matrix B of order v by

B= (-X)[+XJ.

It is clear that if 0 < X </c < v, then a v,/, X configuration exists if and only
if there exists a 0, 1 matrix A of order v such that AAr B.
Then we may generalize Ryser’s results.

THOE 8. Let Q be a 0, 1 matriz of order v, containing exactly lcv l’s.
Let X /c(/ 1)/(v 1) and B (/ X)I -t- XJ, where 0 < X < < v.

If f is concave nonnegative symmetric, then

f(QQr) <__ f(B).

If f is strictly concave, and if (hi, "", h), the vector of eigenvalues of QQr,
belongs to G], then equality holds if and only if Q is the incidence matrix of
a v, It, configuration.

Once again Ryser proves Theorem 8 for the choice f E/.
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