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Introduction

Consider the family consisting of all pairs of valuation rings R c S such
that S dominates R and the field of quotients of S is a finite algebraic ex-
tension of the field of quotients of R. Then for each such pair R c S, the
ramification index r(S/R) is by definition e(S/R)[q"/], where [’/]
is the degree of inseparability of the residue class field extension D / and
e(S/R) is the reduced ramification index which is the index of the value
group of R in that of S (see [8, pp. 50-82]). This integer-valued function
on this family has the following basic properties"

(1) r(S/R) 1 if and only if S is unramified over R.
(2) r(T/R) r(T/S).r(S/R).
(3) r(S/R) [S’R] (the degree of the field extension of the field of

quotients of R) if S is a finitely generated R-module and the residue
class field extension/ c is purely inseparable.

Our main purpose in this pper is to show that there exists one and only one
integer-valued function r(S/R) hving the above properties, where R and
S are local, integrally closed noetherian domains instead of vlution rings.
Before we can give a more detailed account of the min results, we need
some definitions which will hold throughout the rest of the paper.
By a ring we mean commutative, noetherin ring with a unit element 1

different from zero. If R is a ring, a ring S together with a ring homomor-
phismf R - S such that f(1) 1 will be called an R-algebra. An R-algebra
S will be called a local R-algebra if R and S are local rings nd if there is an
R-algebra A which is finitely generated as n R-module such that S is iso-
morphic, as an R-algebra, to A for some maximal ideal in A. Thus if
S is a local R-algebra, then the residue class field extension/ c q is of finite
degree, and mS is n ideal of definition of S where m is the maximal ideal of
R (i.e., mS contains some power of the maximal ideal of S). Since mS
and m are ideals of definition in S and R, we can talk about es(mS), the
multiplicity in the sense of Samuel (see [7] or [8, VIII, Section 10]) of mS
in S, and eR(m), the multiplicity of m in R. The rational number
e(mS)/eR(m) will be called the multiplicity or reduced ramification index
of the local R-algebra S and will be denoted by e(S/R). In analogy with
the valuation ring situation, we define the ramification index r(S/R) of the
local R-algebra S to be e(S/R)[$’].
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Now let a0 be the family of pairs, R c S of local, integrally closed domains
such that S is an R-algebra. We show ia Section i that r(S/R) on a0 is
an integral-valued function having the properties given above. In Section
2 we show that r(S/R) is the only integral-valued function having these
properties, and we also give another way of computing r(S/R) for R c S
in a0 using the notion of a fibre algebra. The paper then concludes with a
discussion of tame ramification in terms of the reduced ramification index
given above.

1. Ramification index and reduced ramification index

In the following lemma we give some elementary facts from multiplicity
theory which are essentially well known. While we sketch a proof, the reader
is referred to [8, VIII, Section 10] and [7] for definitions and more complete
accounts of this theory.

LEMMA 1.1. (a) Let S be a local R-algebra such that dim R dim S, q an
ideal of definition of R, and E a finitely generated R-module. Then

e(R)RE(qS) <--_ Ls( (R) R S)eE(q),

and equality holds if S is fiat as, R-module (i.e., tensoring with S over R pre-
serves exact sequences of R-modules) where is the residue field of R, and Ls(,)
denotes the length of the S-module ,.

(b) Let R be a local domain, S a finite integral extension of R (and hence
semilocal) such that dim S dim R for all maximal ideals g in S. If E
is a finitely generated S-module, we have that

eR(q)[E’R] . e()(qS)[’/]
where [E:R] denotes the ran] of E over R, and ti runs through all maximal
ideals of S.

Proof. (a) It is clear that

Ls(S/qS (R),E) Ls(S (R)E/qE) <- Ls(S (R),R)LR(E/qE)

for all positive integers . Therefore we get es(R)R(qS) --<_" Ls(S (R)R/)e(q)
if direR dimS. Now assume thatSisR-flat. Then ifE E

E qE is a composition series of R-module E with successive factors
isomorphic to R, then

is a composition series of S-module S (R) R E with successive factors isomorphic
to S (R)R/. Then we have that Ls(S/q’S (R)RE) L(S (R)R [)L,(E/qE)
for all , which implies that es(R)R(qS) Ls(S/mS)eE(q).

(b) Let 0 --, F --, E -- ElF -- 0 be an exact sequence of R-modules with
F a free R-module such that IF:R] [E: R]. Then ElF is a torsion R-module,

When (i) is a second-order subscript, it is to be read as 93.
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and hence e/r(q) 0. But e(q) e(q) + e/(q). Since e(q)
[F’R]ea(q) [E’R]e,(q) we have that e(q) [E’R]e,(q). On the other
hand, we know that

L,(E/qE) IL.(E/qE) Ls<)(E/qE)[’]
for all where !) runs through all the maximal ideals in S. Therefore we
get e(q) e()(qS)[3=’/] [E’R]e.(q) since dim S dim R
for all !): by the hypothesis.

Now let ( be the family of pairs R S of local domains in which R is
integrally closed and S is a local R-algebra. Clearly a contains the family
a0 of pairs R S of local domains in which both R and S are integrally
closed and S is a local R-algebra which was mentioned in the introduction.
We observe here that if R S and S T are in a, then so is R T. In-
deed, let R A and S B S[a,..., at] be finite integral extensions
such that S A and T B where m, ! are maximal ideals in A, B
respectively. Since a is integral over S A, we can find u in A m
such that ua is integral over A. It follows that, for some u in A m,
B’ A[uax, ua] is integral over A and hence is integral over R. If
we set !ff’ n B’, then u becomes a unit in B’, and hence B’, contains
a, a and consequently B’, B T. Therefore R T is also in
a. It is then clear that if R S and S T are in a0, then so is R T.
We also observe that if R S is in a, then dim R dim S by the Cohen-
Seidenberg "going-down theorem" since R is integrally closed [8, p. 299].

In this section we show that the ramification index, the definition of which
was given in the introduction, enjoys the necessary basic properties in a.
The following proposition gives us a useful way of computing the reduced
ramification index e(S/R) for R c S in a.

PROPOSITION 1.2. Let R S be in (. Then given an element a in ,
we can find an R A in ( with R A c S such that

(a) =/(a).
(b) A is a fiat R-module.
(c) S is a finitely generated A-module.

Further, if q is any ideal of definition of R, then

es(qS)/e(q) L.(A/mA)([S’A]/[S’A])

where m is the maximal ideal in R.

Proof. Since S is a local R-algebra which is a domain, we can find an
R-algebra B which is a domain and a finitely generated R-module such that
S B for some maximal ideal ) in B. Let )1, ff be the maximal
ideals in B with 1. By the Chinese remainder theorem, we can choose
an element u in i= but not in ff such that the canonical image of u
inB/ is. Set V--R[u]and A Vrwhere T V- (nV).
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Since R is integrally closed and B is a domain which is integrally dependent
in R, we know that R[u] is a free R-module. Since A is R[u]-flat, we know
that A is R-flat. Further it is clear that A is a local R-algebra and that
2: / (a). Thus A satisfies conditions (a) and (b) of the proposition.

Since u is in T and u is in l i=2
, but not in 1, we know that Br is a

local ring with maximal ideal FI Br. Thus Br B S. But B is a
finite V R[u]-module and T is a multiplicative set contained in V. There-
fore Br is a finite Vr A-module, which shows that S is a finite A-module.
Suppose now that q is an ideal of definition in R. Since A is R-flat, we

know by Lemma 1.1(a) that eA(qA) LA(A/mA)e(q). On the other
hand, since S is a finitely generated A-module, we have by Lemma 1.1 (b)
that es(qS)[S:A] e(qA)[S:A]. Consequently we have that

e(qS)/e(q) e(qS)/e(qA .e(qA )/e(q) L,(A/mA )([S:A]/[:]).
COROLLARY 1.3.
()
(b)
(c)
(d)

(e)

For each R c S in ( we have
e(S/R) es(qS)/e(q) where q is any ideal of definition of R.
r( S/R e( S/R [" /]i is a positive integer.
If is a simple extension, then e( S/R is a positive integer.
If S T is also in a, then R c T is in a, and e(T/R)
e(T/S) .e(S/R).
If R S is unramified, S is R-fiat and integrally closed.

Proof. (a) and (b). Let a in be such that/(a) is the separable closure
of/ in . Let R A be an R-algebra in Ct such that 2: /(a) and satis-
ties the other conditions of Proposition 1.2. Then we know that [:2:]
["/]i, and thus for any ideal of definition we have that

es(qS)/e,(q) L.(A/mA ([:/]),
an expression which does not depend on the choice of q. Thus we have proved
(a). Since e(S/R)[:[] L(A/mA)[S:A], we have also proved (b).

(c) If/(a) , we know there exists an R A in Ct such that fi $
and such that e(S/R) L(A/mA)([S:A]/[:]). Therefore

e(S/R) L(A/mA)[S’A]
which is a positive integer.

(d) We already know that if R S and S T are in a, then R T
is in a. Let q be an ideal of definition in R. Then,qS is an ideal of definition
in S, and we have that

e(T/R) er(qT)/e(q) er(qT)/es(qS).es(qS)/e,(q) e(T/S).e(S/R)

since by (a) any ideal of definition can be used to compute the multiplicity
e(S/R) for R S in Ct.

(e) Let R S be unramified. Then/ c is separably algebraic, and
hence we can find R A ( S) in ( such that 2: and S is finitely
generated as A-module. We claim that S A. Indeed, S is unramified
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over A since S is unramified over R, and thus S/JS A/) where !gt is
the maximal ideal of A. Therefore S is generated by one element as A-module
by Nakayama’s lemma, and hence S A. Therefore S itself is a localiza-
tion of V R[a] where a is integral over, R. Let f(x) be a minimal poly-
nomial of a over R. Then the different of V over R is the ideal f’(a)V,
and it is contained in the conductor of V in its integral closure [8, vol. 1,
pp. 303-305]. Since S which is a localization of V is unramified over R, we
must have that f’(a)S S, and in particular the conductor of S is the whole
ring. Therefore S is integrally closed.
Remark. The reduced ramification index e(S/R) is not in general an

integer [6].

THEOREM 1.4. The ramification index has the following properties:
(a) For R c S in (, S is an unramified R-algebra ifand only if r( S/R 1.

Moreover if S is unramified, then S is R-fiat.
(b) r(T/R) r(T/S)r(S/R) if R S and S T are both in a.
(c) Suppose S is an R-algebra which is a finite R-module and S and R

are both domains with R a local ring. Then

[S’R]-- ir(S/R)[’l]8
where J runs through all the maximal ideals in S and [’/]8 is the degree
of separability of the extension of [. Thus S is an unramified R-algebra
if and only if [S’R] [’].

Proof. (a) By Proposition 1.2, we know that there exists an R c A
in a such that R A S, fi is the separable closure of/ in , e(S/R)
LA(A/mA )([S’A]/[’]),andA isR-flat. Thusr(S/R) e(S/R)[’]
LA(A/mA)[S’A]. Therefore if r(S/R) 1, then L(A/mA) 1 and
IS’A] 1. Therefore A is unramified over R and hence is integrally closed,
and thus we must have A S since S is integral over A and [S’A] 1.
Consequently S is unramified. Conversely, if S is unramified over R, then
S is R-fiat, and hence, by Lemma 1.1(a), e(S/R) Ls(I (R)R S) 1.
Therefore r(S/R) e(S/R)["/]i 1.

(b) follows immediately from the definition r(S/R) e(S/R)[$"/]i
and the fact that e(S/R) is multiplicative (see Corollary 1.3) and the fact
that the degree of inseparability is multiplicative.

(c) By Lemma 1.1 (b) we have that

eR(q)[S’R] es()(qS)[’/],
and thus [S’R] e(S/R)[3’[]. Since

r(Z/n) e(Z,/)[$ "],
it follows that [S’R] r(S/R)[$’/],. Now S is an unramified
R-algebra if and only if S is an unramified R-algebra for all i, or in view

For a simple extension over an integrally closed domain, the various notions of
different coincide [5].
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of (a), if and only if r(S/R) 1 for all i. Since the r(S/R) are all
positive integers, we have that [S’R] [’/], if and only if
r(S/R) 1 for all i, which finishes the proof of the theorem.

PROPOSITION 1.5. (a) Let R c S be in (. If the completion [ is an in-
tegral domain, then r( S/R) [’/]/[’/]8 where the circumflex denotes the
completion.

(b) Let R S be in (o and let the quotient-field extension ]c K be Galois.
Then r( S/R the order of the inertia group of S over R.

Proof. (a) r(S/R) e(S/R)[’] e(//)[’/]. Since / is
complete and (R) R/ is finitely generated, is a finitely generated/-module,
i.e., is integral over/. Therefore by Lemma 1.1 (b) we get

e(//) --[’/]/[’/],
and consequently r(S/R) ["/]["/]/["/] ["/]/["/],.

(b) Let G be the inertia group of S over. R, and let U be the subring of
S which is left fixed by G. Then we know that R U is unramified, S is
finitely generated as U-module, and is purely inseparable [1, pp.
35-40]. Therefore r(S/R) r(S/U)r(U/R) r(S/U) e(S/U)[’].
But S is finitely generated as U-module, and thus by Lemma 1.1 (b) we get
e(S/U) [S" U]/[" ]. Therefore r(S/R) [S" U] the order of the
inertia group G.

2. Axioms for ramification index

We now consider the ramification index as a function in a0, the family of
pairs R S of integrally closed local domains such that S is a local R-algebra.
We know that if R c S and S c T are in a0, then R c T is also in (0.
Since a0 is contained in a, we know by Theorem 1.4 that the ramification
index restricted to (0 has the following properties:

(A1)
(A2)

(A3)

If R S in a0 is unramified, then r(S/R) 1.
IfR SandS T are in a0 and either R SorSc Tis un-
ramified, then r( T/R r( T/S) or r( S/R respectively.
If R S in a0 is such that is a purely inseparable extension of
/ and S is a finite R-module, then r(S/R) [S:R].

THEOREM 2.1. Properties (A1) through (A3) completely characterize the
ramification index restricted to (o.

This theorem follows easily from the following result.

PROPOSITION 2.2. Given R S in ao there exists an unramified extension
S V in (o with the property that there exists an unramified extension U of

4This shows that our definition of the ramification index coincides with that of
Abhyankar in the geometric case (see [1]).

The inertia group G of S over R is the subgroup of G, the Galois group of K over
k, consisting of all a in G such that a(S) C S (see [1, pp. 35-40]).
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R in ao such that V contains U and is a finitely generated U-module, and such
that is a purely inseparable extension of .

Proof. Let ]c c K be the fields of quotients of R and S respectively, let
K’ be the separable closure of k in K, and let S’ K n S. Then it is easily
seen that R c S’ and S’ c S are in (0 and also that S is a finitely generated
S’-module since K’ c K is a purely inseparable extension and hence every
integral extension of S’ in K is a local ring. Let L be the normal closure of
K over lc, and L’ the separable closure of/ in L. Then/ L’ is a finite
Galois extension, and the integral closure A of R in L’ is a finitely generated
R-module. Let be a maximal ideal in A such that A dominates S’,
and let U be the inertial ring of A over R, i.e., U is the intersection of A
with the fixed field of the subgroup of the GMois group of ]c L’ which
sends into itself. It follows from Krull’s ramification theory in Galois
extensions (see [1, I, Section 7]) that R U is the maximal unramified
extension of R in A, that A is a finitely generated U-module, and that
is the separable closure of R in A. Letting S’U be the composite of S’
and U in A, we see that U S’U A and thus SrU is a local ring which
is a finitely generated U-module, and also that S’/is a purely inseparable
extension of U. Since S is finitely generated as an S’-module, it follows
that SU is finitely generated as an S’U-module. Also SU is local since
the field of quotients of S’U is purely inseparable over SU. For the same
reason S’ is purely inseparable over S---0. Finally, since U is unramified
over R, SU is unramified over S and thus integrally closed, by Corollary 1.3(e),
since S is integrally closed. Therefore SU is our desired V, nd the proposi-
tion is complete.

We now return to the proof of Theorem. 2.1. Let f be a function from
a0 to the rationals which satisfies properties (A1) through (A3). Let R S
be in a0, and S c V and R U elements in a0 which satisfy the hypothesis
of Proposition 2.2. Then f(V/R) f(V/U)f(U/R) f(V/U) [V: U].
But we also have that f(V/R) f(V/S)f(S/R) f(S/R). Thus
f(S/R) [V:U] which is independent of the choice of f. Thus if f satisfies
(A1) through (A3), f equals the ramification index on (0.
As an application of Theorem 2.1, we conclude this section of the paper

by giving another method of computing the ramification index of R S
in a0 in terms of the fibre algebra of S over R.
Given local R-Mgebra S over a local ring R we have an exact sequence

Og-- S (R)S S-O

where ,p(x (R) y) xy and 09 is the kernel of . Let -1() where
is the maximal ideal of S. We define S (S (R) R S) and call it the fibre
algebra of a local R-algebra S. As usual we use the notation S for S (R) S.
The map S - S (R) S given by s -- s (R) 1 induces a ring homomorphism
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S S, and through this map S becomes a local S-algebra. Now S, being
a local R-algebra, is equal to A for some finite integral extension A of R
andforsomemultiplicativesetAirA. ThereforeSe-- S (R)S= (A (R)A)a,
whereA’ u (R) v lu, yeA} isamultiplicativesubset of A (R)A. Con-
sequently S is a noetherian ring. Thus we know that S is unramified over
R if and only if S is S-projective [2, 7] i.e., S is (S) -free for all maximal
ideals in S. But if , then S 0, and hence S is S%projective
if and only if S S is (Se) SS-free. However

Ss S--O

is exact, and thus S is SS-free if and only if is an isomorphism. Since the
composite map S - S -- S is identity, we see that S is unramified over R
if and only if S S as a local S-algebra. Thus the deviation of S from
being identical to S measures a degree of the ramification, and thus we are
led to consider e(S/S). The rest of this section is devoted to showing that
r(S/R) e(S/S) if R S is in a0. We begin with the following lemma.

LEMMA 2.3. Let S be a local R-algebra, and ,T a local S-algebra. If S is
an unramified R-algebra, then the homomorphism T{ --> T induced from the
natural map T (R) T - T (R) s T is an isomorphism.

Proof. Since S is an unramified R-algebra, the exact sequence

0 - N --+ S (R).S- S-0

splits as Se-modules. Therefore 0 -+ T; (R) se 05 - T -- T (R) se S --, 0
is exact and splits as T;-modules. By one of the standard associativity laws
we have that T (R) s S T (R) R T) (R) s(R)s S T (R) s T T Thus we
find that the natural epimorphism T -- T splits as T-modules. Let

be the maximal ideal of T, and u the preimage of under the
map T (R), T -- T. Localizing by , we see that T -- T splits as T-module
since (T), T and (T) T. Consequently T T since T is a
local ring.

PROPOSITION 2.4. Let S be a local R-algebra, and T a local S-algebra.
Then we have the following:

(a) If S is an unramified R-algebra, then e(T/T) e(Ts/T).
(b) If T is an unramified and fiat S-algebra, then e(T/T) e(S/S).

Proof. (a) If S is an unramified R-algebra, we have that T T
by Lemma 2.3, and hence e(T/T) e(T/T).

(b) The fact that T is a flat and unramified S-algebra entails that T
is a flat and unramified S-algebra [4, Proposition 1.5], and hence T (R) s, S
is a flat and unramified S-algebra [4, Corollary 1.6]. However T is a

Sflocalization of T, (R) s by a maximal ideal, and consequently T{ is a fiat
and unramified SY-algebra. Now applying Lemma 1.1(a), we have that
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es(Ss) er(9:T) and ea(r) er(gJT) where gJ is the maximal
ideal of S. Since 9JT is the maximal ideal of T and g)lT{ (gJT)T{, we
have that e(T/T) e(S/S).
THEOREM 2.5. For a local algebra R

e(S/S).
Proof. Since S S if S is an unramified R-algebra, we know that

e(S/S) i if S D R is unramified. Thus e(SS/S) satisfies condition (A1).
The fact that e(S/S) satisfies condition (A2) follows immediately from
Proposition 2.4 and the fact that if R S is in (0 and S is an unramified
R-algebra, then S is R-flat (see Theorem 1.4). Thus if we show that e(S/S)
satisfies (A3), we will be done.

Suppose S is a finite R-module, and that N is purely inseparable over/.
Then S (R) S is a local ring, and consequently S N (R) S is a finite local
S-algebra with IS (R) S:S] [S:R]. However by Lemma 1.1(b) we have
that e(S/S) [S (R) S:S]/[’S (R) S’S] [S’R] since N is purely insep-
arable over / and thus N S (R) S. Therefore e(S/S) satisfies (A1)
through (A3), and thus e(S/S) r(S/R).

3. Tame ramification

Let R S of local domains be in a, i.e., R is integrally closed and S is
local R-algebra. Then the ramification index r(S/R) is an integer, and thus
the notion of tame ramification is well defined. Namely R S in a is
called tamely ramified if is separably algebraic over/ and r(S/R) is not
divisible by the field characteristic of/. More generally, let R be an in-
tegrally closed local domain, and let R
separable quotient-field extension of finite degree. Then, for each maximal
ideal 1 in S, R S is in (. We shall simply say that R S is tamely
ramified if there exists at least one maximal ideal
is tamely ramified. We observe that in the ease when S is the integral
closure of R in a Galois extension of finite degree, then all maximal ideals are
conjugate, and consequently if R S is tamely ramified in our sense, then
every maximal ideal is tamely ramified.
The main purpose of this section is to prove Theorem 3.2. If R is an

integrally closed domain, and if R S is an integral extension with the
quotient-field extension k K of finite degree, then t(x; K[k) is in R for
all x e S, where t(x; K I/c) the trace of x e Hom (K,K) given by x(y) xy.
If R is a local ring, t(x; K to) will denote the image of t(x;K k) under the
canonical map R -- R. For each maximal ideal g)i in S we set Si S
and denote by h the canonical map S --PROPOSITION 3.1. Let R be an integrally closed local domain, and let. R S
be an integral extension with the quotient-field extension k K being separably
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algebraic oJ" finite degree. Then for each x e S we have

t(x; K Ik r(S/R)t(hx; )
where j ranges through all maximal ideals of S.

Proof. (i) Assume that S is R-free. Then t(x; K to) t(x; $]/)
where S/mS and m is the maximal ideal of R. However, if

V’0 -- -- V -- V" -- 0

V’0 --- -- V --- V" --- 0

is an exact commutative diagram of vector spaces over a field, then
Tr(f) Tr(f’) + Tr(f")where Tr(,) trace of the linear transformation ,.
It folows from this fact and Lemma 1.1(a) that

t(x; K Ik) t(x; ) Ls(S/mS)t(h x; i [)

i e(S/R)t(h x; i
Since t(h x; I/) 0 for all i for which i is not separably algebraic
over /, and e(Si/R) r(S/R) if/ c is separably algebraic, we see
that our proposition is valid for a free extension.

(ii) General case. Among the maximal ideals 1, ), of S,
let !)1, t be such that is separably algebraic over /. Thus
is not separably algebraic over/ for j _-< 1. Our proof proceeds in two
steps" (a) Assume that x e S has the property that/(h x) is not separable
over/ for all i _-< 1. Set T R[x], and let L be the field of quotients
of T. Then the hypothesis on x implies that if S T and T. is separably
algebraic over/, then 1 _-< i -< t. Now T R[x] is R-free sinceRisin-
tegrally closed. Therefore

t(x; L ) e(T/R)t(hx;
by (i) where j ranges through only those subscripts for which P- is separably
algebraic over/. On the other hand we have

(**) er(mT)[K’L] es.(mS)[." .]
by Lemma 1.1. If P. is separably algebraic over/, then - is also separably
algebraic over / by the hypothesis on x. It follows from Corollary 1.3
that e(S/R) are all integers. In other words, all es., (mS.) (and of course

er.(mT)) are divisible by e,(m). Therefore from (**) we get

e(T/R)[K’L] e(S/R)[" ].
Consequently we have
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t(x;K t [K’L]t(x;L k [K’L]e(T/R)t(hx;

,k e(Sk/R)[k" j]t(h x; ] ) ,e(S/R)t(h x; )
l<_i<__te(Si/R)t(hix; ]) r(S/R)t(hix;

since t(hx; 1/) 0 forj > and e(S/R) r(S/R) for 1 -<_ i -<_ t.
(b) Let x e S be arbitrary. Let

A {j It < j <= and h. x is separable over/}.
Since $ is not separable over/ for each j e A, we can find a. e such that
h. x a. is not separable over/. Then a. is also not separable over/ since
h. x is separable over/. By the Chinese remainder theorem we can find
y e S such that

hy=O if jt/,

=at if jeA.

Then z x y and y both have the property that h z and h y are not
separable for all < j _-< 1. Therefore we are brought to the above case (a),
and we get

t(x;K lc) t(y - z; K Ik) t(y; K llc + t(z;K lc)

r(S/R)t(hi y; [) - r(S/R)t(h z; [)
r(S/R)t(hx; [/).

This completes the proof.

THEOREM 3.2. Let R be an integrally closed local domain, and R c S
an integral extension with the quotient-field extension ]c K being separably
algebraic of finite degree. Then S is tamely ramified over R if and only if
t(S; Kite) R.

We have from Proposition 3.1 that

t(x; g lk r(S/R)t(hx;

for all x e S. Assume that t(S; K Ik) R. Then there exists x in S such
that t(x; K Ik 1 and consequently r(S/R)t(hix; 1) 0 for some
i. Therefore t(hi x; 1[) 0 and r(S/R) 0 in/, i.e., is separably
algebraic over /, and r(S/R) is not divisible by the field characteristic.
Conversely, assume that S is tamely ramified over R, i.e., for some i, is
separably algebraic over R and r(S/R) is not divisible by the field char-
acteristic of/. Then from the above formula and the Chinese remainder
theorem we can find x in S such that t(x; K I O. Thus t(S; Kite) = ,and consequently t(S; K Ik) R where m is the maximal ideal of R.

COROllaRY 3.3. Let R be an integrally closed domain (which need not be
local), and let S R be an integral extension with the quotient-field extension
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k K being separably algebraic of finite degree. Then the set of prime ideals
in R such that S, is not tamely ramified over R, form a closed set

lO t(S; K Ik) }.

For the Galois extensions we find an interesting connection between
tamely ramified extensions and the twisted group ring. Given a representa-
tion of a finite group G by ring automorphisms of S, the twisted group ring
S(G) is defined as follows: S(G) is free (left) S-module with free basis
{zl e G} and multiplication (az)(b-) az(b)z-. This is nothing but the
trivial factor set in H2(G, U(S)) where U(S) the group of units in S.

LEMMA 3.4. For any S(G)-module A and S-module C we have

Exts(A, C) Exts(o)(A, S(G) (R)8 C).

Consequently, hd8 A _-< hds(e) A, and the equality holds if hds(e)A < .
Proof. For S(G)-module A and S-module C, define

p" Homs(A, C) -- Homs(o)(A, S(G) (R) C)
--1by pf(a) o g (R) f(g a) as in the ordinary group algebra. This is

well defined since for any x e S and h e G we have

pf(sha) o g (R) f(g-isha) o g (R) g-i(s)f(g-iha)

ao sg (R) f(g-iha) o shg-1 (R) f(ga) sh(pf(a) ).

Consider e Homs(S(G) (R)8 C, C) given by (og (R) c) cl. Then
it is clear that x o g (R) b(g-lx) for all x e S(G) (R)8 C. Thus given
f e Homs(o)(A, S(G) (R)8 C) we have

[p(f)](a) -’.o g (R) dpf(g-la) ao g (R) (g-lf(a) f(a),

i.e., p is an epimorphism. However p is clearly a monomorphism, and thus
p establishes the isomorphism Horns(A, C) Homs(o)(A, S(G) (R) C).
Consequently Exts(A, C) Exts(o)(A, S(G) (R) C), and hence

Exts(o) (A, S(G)) 0, andhdsA _-< hds(o) A Ifhds(o) A d < then d

hence Ext’(A, S(G)) # O, and consequently hd8 A hds(o)A.

PROPOSITION 3.5. Let a finite group G be represented as ring automorphisms
of S. Then the following statements are equivalent:

(1) hd(o) S < .
(2) hds(o) S 0.
(3) There exists an element x e S such that o g(x 1.
(4) hds(o) A hd8 A for all S(G)-modules A.

Proof. (1) (2) follows immediately from the above lemma.
Consider the S(G)-epimorphism

(2) (3)"

S(G) ’) S 0
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given by o(Eoo so g) Eo,o so. S being S(G)-projective, the epi-
morphism o" S(G) -- S admits a cross-section k" S -- S(G). Let
b(1) oo so g. Then

k(1) k(h(1))= h(oosog) Y’ooh(so)hg
for all h e G entails that so g(sl) for all g e G, i.e., k(1) oo g(s)g for
some s eS. Then 1 k(1) oog(s). (3) =, (4)" For S(G)-
modules A, B, it is clear that

Home,o) (A, B) Homs(o)(S, Homs(A, B) ).

Since S ---+ S(G) given by b(s) o,o sg(x)g provides a cross-section
for the map " S(G) ---+ S, S is S(G)-projective. Therefore we have

Ext(o(A, B) Homs(o)(S, Ext,(A, B)),

and consequently h(oA <= hds A. However we have hds(o) A __> hds A
by Lemma 3.4, and hence hd(o> A hds A. (4) (1) is obvious.

COROLLY 3.6. Let R be an integrally closed domain with field of quotients
k, and let S be the integral closure of R in a Galois extension of k with Galois
group G. Then S is tamely ramified over R if and only if hds(o) A hds A
for all S G -modules A

Let R c S be as in the above corollary with Galois group G, and assume
that R is a Dedekind domain. Then it follows from the above corollary
that S(G) is an hereditary order if and only if S is a tamely ramified exten-
sion of R. On the other hand, we have S(G) Hom(S, S), and then
S(G) is a maximal order if and only if S(G) Hom(S, S), i.e., if and only
if S is unramified over R (see [4, p. 398, AS, A6]). Thus if S is tamely rami-
fied over R with the ramification index > 1, then S(G) is an hereditary order
without being maximal. An example of nonmaximal hereditary order given
in [3] is actually of this kind. We studied above only the trivial factor set
in H"(G, U(S) ). S. Williamson has recently shown (unpublished) that
if S R is tmely ramified, every order corresponding to any factor set in
H (G, U(S) is hereditary.

4. Trace map
We conclude this paper with a proof of the tact that if R is an integrally

closed, noetherian domain and S is an integral extension of R in a finite,
separable field extension of the field of quotients of R, then t(S)S contains
(S/R) where is the trace map of S into R, and g(S/R) is the homological
different of the R-algebra S as defined in [2]. This result will follow quickly
from the following general remarks concerning the trace.

Suppose S is an arbitrary commutative R-algebra where R is also an arbi-
trary commutative ring. Then we have an exact sequence
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0 q S (R)S
,

S - 0

of Se-modules where (x (R) y) xy. Then if we let 0 be the annihilator
of o9 in Se, the homological different of the R-algebra S is defined to be the
ideal (a) contained in S. The R-algebra S is said to be separable (or
unramified) if there is an element a in a such that O(a) 1, or what amounts
to the same thing, if S is Stprojective. The reader is referred to [2] for the
basic properties of (S/R) and its connections with ramification theory.
Now suppose feHomR(S, R). Then we define a(f)’S -- S by

a(f) (x (R) y) f(x)y. It is clear that a(f) is an S-homomorphism if S (R) S
is considered an S-module by means of the operation s(x (R) y) x (R) sy
but not in general an Sthomomorphism. However a simple calculation
shows that a(f) la is an Sthomomorphism. For an element xi (R) yi

is in 0 if and only if (x (R) 1)(xi (R) y) (1 (R) x)(xi (R) y) for all
x in S. Therefore if x (R) y e a, then we have that

(x (R) Y)(E xi (R) yi) (1 (R) y)((x (R) 1)(E xi (R) yi))

(1 (R) )((1 (R) x) E x (R) ) E x (R) x.
Therefore

a(f)((x (R) y)(Ex (R) y,)) a(f)(x (R) yixy) xyf(xi)Yi
( (R) )((/)(5: x (R) )).

Thus we have a homomorphism a: HomR(S, R) --, Home(a, S). Now
if we consider Hom(S, R) an S-module by (xf)(y) f(xy) for all s, y in
S and all f in Hom(S, R), and consider Homs,(a, S) an S-module by
(xg)(a) x(g(a)) for all x in S, g in Homs,(a, S), and a in a, then a is
an S-homomorphism. For if x (R) yi is in 6, then

a(xf) xi (R) y _,f(xx)y (f)((x (R) 1)( x (R) yi))

(f)(x (R) x) f(x,)x (x(f))(x (R) ).
Viewing S as an R-module, then it is well known that S is a finitely gen-

erated projective R-module if and only if there exists a finite number of
elements bl,..., b in S and gl,..., g in Hom(S, R) such that
x g(x)b for all x in S. Such a system of elements will be called a
projective coordinate system. Assuming that S is a finitely generated,
projective R-module, we define in Hom(S, R) by bg
(i.e., t(x) g(xb)). Then it is well known that it is independent of
the particular coordinate system used, and in case S is a free finitely generated
R-module, is the ordinary trace map [3, p. 21]. We will call this the trace
map in the case S is a finitely generated, projective R-module.

PROPOSITION 4.1. Let S be an R-algebra.
(a) If S is a finitely generated, projective R-module, then a(t) a.
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(b) If S is a separable R-algebra, then S is a finitely generated, projective
R-module if and only if there is an f in HomR(S, R) such that a(f) (.

(c) If S is a separable R-algebra which is a finitely generated, projective
R-module, then f in Hom,(S, R) is if and only if a(f) 1 (.

Proof. (a) Suppose bl,..., bn in S and gl,’", gn in HomR(S, R)
are a projective coordinate system for S and x. (R) y. is in a. Then

(t)(E x (R) y) .(E b g.)(E x (R) y) E, b((g)(E x (R) y))

(b) and (c). If S is a finitely generated projective R-module, then we
know by (a) that a(t) [a. So suppose S is separable, and there is
an f in Hom,(S, R) such that a(f) 1 a. Since S is separable, there is
an element E--1 xi @ y in a such that(x (R) y) 1. Now

(f)((x (R) 1)(E x (R) y,)) (X)(E xx (R) y) Ef(xx)y
However, by hypothesis a(f) ]a. Therefore

a(f)((x (R) 1)(Ex (R) y))
also equals x x y x. Thus we have that x f(xxi)y. Therefore
Yl, Yn and xlf, Xnf is a projective coordinate system for S over
R, and thus S is a finitely generated projective R-module. Also by the
definition of we have

t(x) E y(xf)(x) Ef(xxy) f(Exxyi) f(x)

for all x in S. Therefore we have that f, which also proves (c).
Remark. It should be observed that Proposition 4.1 essentially gives an

intrinsic characterization of the trace for separable R-algebras S which are
finitely generated projective R-modules. It is therefore tempting to say
that an element f in Hom.(S, R) for an arbitrary R-algebra S is a trace if
and only if a(f) la. Since there are separable R-algebras which are
not projective, not every R-algebra has a trace in this sense. It would be
interesting to know if a trace map is unique if it does exist. While what
follows sheds a little light on the question, it does not settle it.

THEOREM 4.2. Let R be a noetherian integrally closed domain with field of
quotients K. Let L be a finite, separable algebraic extension of K, and S an
integral extension of R in L such that S (R) K L. Then the trace map of
L with respect to K maps S into R and is the only element of Hom.(S, R) such
that a(t) a. From this it follows that t(S)S contains (S/R).

Proof. Since R is integrally closed, the trace maps S into R. Tensoring
the exact sequence 0 -- 09 -+ S (R) R S --+ S -- 0 with K (over R) we deduce
the exact sequence 0 - (R). K -- L (R) L --. L -- 0. Since S is a finitely
generated R-module (because L is a finite, separable extension of K), we
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have that S (R) S is noetherian, and therefore Ct is a finitely generated
S (R) S-module. Consequently, it follows that a (R) K is the annihilator
of 09 (R) K in L (R)K L S (R)R S (R)R K. Also we know that
every f in Hom(S, R) has a unique extension fK L - K. From the facts
that S L and that the diagram

S(R)S -- L(R)L

S ,L

commutes, it follows that a(f) a if and only if a(f) 1 a (R)R K.
Since the trace L -- K is the only element of Hom(L, K) with the prop-
erty that a(t) a (R) K (see Proposition 4.1) and t(S) R (because
R is integrally closed), it follows that is the only element in Hom(S, R)
such that a(t) [a. It is clear that the image of a(t) S (R) S- S
defined by t(x (R) y) t(x)y is t(S)S. Now by definition ,(S/R) is(a);
therefore since a(t)] a ] a, we have that t(S)S contuins (S/R).
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