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Introduction

Although we shall be primarily concerned with positive-definite functions
on euclidean spaces and on groups of lattice points, we begin by stating the
extension problem in a more general context.

If S is a subset of a locally compact abelian group G, we define PD(S) to
be the class of all continuous complex-valued functions on S S (the set
of all points x y e G, with x e S, y e S) which satisfy the inequality

(1) ,.= c (x x) 0

for every positive integer N, for every choice of complex numbers c, c,
nd for every choice of points x, x in S. If S is finite set, the bove
requirement my lso be written in the form

(2) ,c(x)c(y)(x y) 0

for every complex function c on S.
We emphasize that the members of PD(S) are functions defined on S S,

not on S (unless S is subgroup of G). Also, PD(G) is precisely the class
of all continuous positive-definite functions on G, in the usual terminology.

If a function e PD(G) is restricted to S S, we clearly obtain member
of PD(S). We are concerned with the following question" Under wht
circumstances do these restrictions cover PD(S) ? In other words, under what
circumstances is it true that every e PD(S) has an extension which lies in
eD(a)

In this direction, M. G. Krein [7] proved that if [ is an interval on the real
line R, then every e PD(I) has an extension which lies in PD(R).
The muin contribution of the present paper is proof that the nlogue of

Krein’s theorem fails to hold in euclidean spaces of higher dimensions"

THEOREM. If n > 1, and if [ is an n-dimensional cube in R, there exists a

function e PD (I) which cannot be extended to a member of PD(R).
For recent literature on Krein’s theorem, in particular on the question of

the uniqueness of the extension, we refer to Akutowicz [1], [2] nd Devintz
[4]. Applicutions to information theory hve been discussed by Chover [3].
Higher-dimensional situations re also discussed in [4].
Our method of attack is quite different from the ones used by the above-
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named authors. In Section 1 we consider a finite set S in a discrete group G,
and we show that the extension problem can be rephrased as the problem of
representing certain positive trigonometric polynomials on the dual group
of G as sums of squares. In Section 2 these considerations are used to prove
that our extension problem always has a solution if G Z, the additive group
of all integers, and if S is a finite arithmetic progression in Z. This in turn
leads to an easy proof of Krein’s theorem. In Section 3 we use a theorem of
Hilbert [6], which states that there exist positive polynomials of 2 real variables
which are not sums of squares of polynomials, to derive an analogous result
for trigonometric polynomials on the 2-dimensional torus T2, and hence prove
that our extension problem may fail to have a solution if G Z2, the group
of all lattice points in the plane, and if S is a square of lattice points (with at
least 16 points). An interpolation theorem transfers this negative result from
Z to R, and hence to R, for any n _>_ 2.

After completion of the present paper the author learned that one of its
main results (Theorem 3.3, the possible nonexistence of a positive-definite
extension in Z) was proved earlier by Calderdn and Pepinsky [8], in a publica-
tion devoted primarily to crystallography, and that the two methods of proof
are the same. As far as new results are concerned, the main contributions of
the present paper are therefore contained in Theorems 3.4 and 3.5. Theorem
1.4 is new in the generality in which it is stated here, but the same idea is
used in [8].

1. Connections with sums of squares

In this section, G is a discrete abelin group, S is finite subset
of G, A S S, F is the (compact) dual group of G, and the symbol (x, ,)
denotes the value of the character , e F at the point x e G. Functions of the
form

(3) f(’) xs c(x)(x, /) (’ye F)

will be called S-polynomials; A-polynomials are defined similarly. If (3)
holds, we have

c(x) d,

where d/denotes the Haar measure of 1;/ is the Fourier transform of f.
We let X be the real vector space consisting of all real A-polynomials,

we let P be the set of all nonnegative members of Xs, and we let Qs be the
set of all finite sums f of the form

(5) f " g"

where each g. is an S-polynomial.
It is clear that Xs is finite-dimensional (dim Xs cardinality of A)

that Ps and Qs are convex cones in Xs, and that Ps contains Qs.
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If e is a function on A such that (-x) (x---, the equation

(6) L,(f) (x)(x)
defines a real linear functional on Xs. Conversely, every real linear func-
tionM on Xs is L for some such .

1.1 :LEMMA. A function q on S- S belongs to PD(S) if and only if
L(f) >= 0 for every f e Q

If g(’r) c(x) (x, ") is an S-polynomiM, then

() ,c(x)c()( , ),(7)

so that

(s) L(I e [) Z:, c()c-((x U).

The lemma follows from (2), (5), and (8).

1.2 LEMMA. A function defined on S- S can be extended to a member
of PD(G) if and only if L(f) >= 0 for every f e Ps

Proof. If e PD(G), Bochner’s theorem shows that there is a nonnegative
measure on F such that

(9) (x) f (-x, ) d,() (x G).

For f e Xs, we then have

(10)

so that L,(f) >- 0 if f e Ps.
Conversely, suppose L,(f) >- 0 for all f e Ps. If f e X and -1 -< f =< 1,

the relation L,(1) (0) shows that L,(f) -< q(0). If (0) 0, it
follows that L 0 on Xs, and hence that q 0 on A. Otherwise, we may
assume without loss of generality that (0) 1. Then L is a linear func-
tional of norm 1 on Xs (relative to the supremum norm). By the Hahn-
Banach theorem, L extends to a linear functional of norm 1 on the space of
all real continuous functions on r, and by the Riesz representation theorem
there is a measure on F, of total variation II 11 1, such that

(11) L,(f) fr f(- v) d(’r) (f eXz).

Since 1=L(1) t(r) -< ]It, ll 1, we havet -> O. Applying (11) to
f(x) (x, ") q- (-x, "r) and to f(x) i[(x, "r) (-x, ,)], with x e S, we
conclude that

() f (-x,) d() (z ).(12)
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The right side of (12)-defines a member of PD(G), since u ->_ 0, and hence
furnishes the desired extension of .

1.3 LEMMA. The cone Qs is closed in Xs

Proof. Let d be the number of points in A. Then dim Xs d. Suppose
r > dand

(13) f lg" 12
each g. being an S-polynomial. Each ]g 12 is in Xs, and since r > d, there
is a nontrivial relation

(14) X[g ] 0

with rel coefficients X. Renumbering the g, if necessary, we my ssume
that X, X for j ( r. We solve (14) for g, [ nd substitute into (13)
obtaining

Since X/X, 1, we hve shown that every sum of r squres ]gi is lso
sum of r 1 such squres. Hence every f Qs is a sum of d squares g .
If now]Qs (n 1, 2, 3, ...) ndff uniformly on F, there re

S-polynomials gi. such that

(5) f ]= I, ( , , 3, ...).

Thef re unormly bounded on F; hence so re the g., by (15). It follows
that there is sequence {n}, n , such that

(16) lim fi.(x) c(x)

exists for 1 j d nd for 11 x e S. Putting

(7) g() c()(x, ) ( d, r)

we see that f gil . Thus f Q, nd this proves that Qs is closed.

1.4 THEOREM. The following wo conditions on a finite set in a discrete
abelian group G are equivalent:
() P Q.
(B) Every ePD(S) can be extended o a function in PD(G).

Poof. IfPD(S),Lemm 1.1 shows that L(]) 0 for llfeQs.
If (A) holds, it follows that L(f) 0 for 11 f e P, nd then Lemm 1.2
shows that (B) holds.

Conversely, if (A) is flse, there exists f0 e Ps such that f0 Qs Sinee
Qs is closed convex eone in Xs (Lemm 1.3), there is hyperplne H through
the origin of Xs such that f0 is on one side of H nd Qs is on the other. In
other words, there is rellinear functionalL onXs such that L(G) 0 but
L(f) 0 for llf e Qs Then L L for some function on A. Lemm 1.1
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shows that e PD(S), and Lemma 1.2 shows that cannot be extended to
function in PD(G). Thus (B) fails if (A) fails.

2. A proof of Krein’s theorem
2.1 THEOREM. If S {m, m 1, ..., m N} c Z, the group of integers,

then every e PD(S) has an extension to a function in PD(Z).

Proof. If f(ei) _s an ein and f(ei) _>_ 0 for all real 0, then f [g 12
for some g of the form g(e) nsbneiE (Fejr-Riesz [5]). Thus
Ps Qs, in the terminology of Section 1, and Theorem 1.4 completes the
proof.

2.2 LEMMA. _f e PD (Z), and if
(18) (I,(t)= (n-- l t)(n) -- (t--n)(n-- l) (neZ, n <= <= n-- l),

then e PD(R), and (n) (n) for n e Z.

Proof. It is evident that coincides with on Z. If we set

(19) K(t) max (1 It I, 0) (te R),

(18) is equivalent to

(20) I,(t) (n)K(t n) (t e R).

For 0 < r < 1, define

(21) I,(t) nz (n)rl’lK(t n) (te R),

and note that

(22) nz (n)rlle >= 0 (x e R)

since e PD(Z). Since the Fourier transform/ of K is nonnegative, and
since

(23) (t) /(x){z (n)rl’e’}e-t dx,

we see that is the Fourier transform of a nonnegative function. Hence
e PD(R), for 0 < r < 1, and the sme is true of lim.
2.3 THEOREM (Krein). If S is an open segment in R, every e PD(S) can

be extended to a function in PD(R).

Proof. For k 1, 2, 3, ..., let G be the subgroup of R which is generated
by the number 1//c, and put S S G. If e PD(S), its restriction
to S S belongs to PD(S), and since G is isomorphic to Z, Theorem 2.1
shows that can be extended to a function in PD(G). By linear inter-
polation (Lemma 2.2) we obtain functions e PD(R) which coincide with
on S- S. If J is a closed subinterval of S- S, the continuity of
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shows that {} tends to on S- S, uniformly on J, and that {k} is an
equicontinuous sequence on J.
Each is the Fourier-Stieltjes transform of a nonnegative measure on

R. Hence

(x) -<

and the Schwarz inequality yields

(25) (x) -(y)

for any x, y e R.
Since } is equicontinuous on J, (25) shows that {} is equicontinuous

on all of R, and therefore a subsequence {} will converge to a function
e PD (R) which coincides with on S S. This completes the proof.

3. The extension problem in R", for p > 1

We begin with a statement of the theorem of Hilbert which was alluded
to in the Introduction.

3.1 THEOREM. If N 3, here are polynomials F(s, ) of degree 2N which
are positive for all real s, ) and which are no$ sums of squares of polynomials.

Hilbert worked with homogeneous polynomials; hence the number of
variables in his statement is 3. He also obtained analogous results for
polynomials in more variables, for N 2. For simplicity in writing the
proof of Theorem 3.2 we restrict ourselves to 2 variables.
We let Z be the group of all lattice points in the plane, i.e., the set of all

points in R with integer coordinates. For N 1, 2, 3,..., we let S be
Zthe set of all n (i, j) e whose coordinates satisfy 0 i N, 0 j N.

3.2 THEOREM. Fix N 3. IfS S and G Z, then (in the erminology
of Section 1) Qs Ps.

Proof. Let X be as in Section 1, let Y be the space of all polynomials

2 8ptq(26) F(s, t) ,q=o aq (aq real),

and let T be the linear map of Xz into Y given by

(27) (f)(s,)= (1
--i’t

(This change of variables was suggested by A. P. Calderdn.) Since dim X
(2N 1)= dim Y, and since T eidently preserves linear independence,
it follows that is a 1-1 map of X onto Y.

Suppose now that f e Q. Then f ]g ], each g being an S-poly-
nomial. Setting
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we see that G is a (complex) polynomial of degree at most N in each of the
variables s, t, and that

(29) (Itf) (s, t) slGs(s, t) .
Setting F f and Gs us + ivs (us, vs real for real arguments), we have
F e Y, u and v are polynomials, and F (u + v).

Hence, if Ps and Qs were equM, every positive F of the form (26) would
be a sum of squares of polynomials, in contradiction to Hilbert’s theorem.

3.3 TnEOnEM. For N 3, there exists PD S) which cannot be extended
to a member of PD (Z).

Proof. This follows immediately from Theorems 1.4 und 3.2.

3.4TnEonEM. LetS= S A S-- S, both in Z. Let S* be the convex
hull of S in R. To each e PD (S) there corresponds a e PD (S*) such
that n n for all n e A.

Proof. The proof is suggested by the construction in Lemma 2.2.
Let U be the open square with vertices at (, ), let h be a measurable

function which vanishes outside U, such that [ 1, and put

f R(30) g(x) h(x + y)X(y) dy (x e ),

 (n)K(x n)

(It is understood that integrMs without subscripts re extended over R,
with respect to Lebesgue mesure.)

If m e Z nd m 0, then K(m) 0, nd K(0) 1. Hence (n) (n)
for n e A. Also, is clearly continuous. To show that e PD (S*) we
hve to prove that

(32) .ci(x x) E 0

for every choice of finitely mny complex numbers c nd points x e S*.
If we set (n) 0 outside A nd

(33) A(y) c h(.y x) (ye R),

substitution of (30) into (31) shows that the left side of (32) is equal to

(34) ,z (n) f A(y + n)A(y) dy.

The integrals in (34) re equal to

z, f A(y + n + m)A(y + m) dy;
v
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since h 0 outside S* + U, only finitely many terms of the sum in (35)
are different from zero. It follows that (34) is equal to

(36) f dy ,.rz2 A(y + r)A(y + m)(r m).

S* S*IfyeUandy-l-re - U, thenre U- U;since

Z(S*+ U- U) =S,

(36) is not changed if we restrict m and r to lie in S. But PD (S), and
hence (see (2)) the integmnd in (36) is nonnegative for every y e U. This
establishes (32) and completes the proof.

3.5 TEOnEM. Let S* be a closed square in R. There exists iP PD (S*)
which cannot be extended to a function in PD (R).

Proof. Assume, without loss of generality, that S* is the convex hull of
S, in the notation of Theorem 3.2. By Theorem 3.3 there exists e PD (Sa)
which cannot be extended to a function in PD (Z). By Theorem 3.4, there
exists e PD (S*) such that on S S. If could be extended to a
function * e PD (R), the restriction of )* to Z would be an extension of
and would be in PD (Z), which is a contradiction. The theorem follows.

3.6 Remarlcs. (a) Iu Theorem 3.4 we could have replaced the square S
by a rectangle of lattice points in the plane or in R" for any p ->_ 2, without
any change in the proof.

(b) The fact that the extension problem may fail to have a solution in R
(Theorem 3.5) implies immediately that the same is true in R" for any p -> 2.
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