
A NOTE ON SPLITTING FIELDS OF REPRESENTATIONS OF FINITE
GROUPS

BY

Let @ be a finite group, and let x be the character of an absolutely irreducible
representation of @. An algebraic number field K is defined to be a split-
ring field of x if can be written in the field K(x), where K(x) is the field gen-
erated by K and the values of x. The existence of splitting fields with suit-
able properties has been of fundamental importance in the study of group
characters. In [1, Lemma 1], Brauer proved the following result.

(A) Let @ be a finite group of order g pare, where p is a rational prime
and (p, m) 1. Then there exists an algebraic number field K with the
following properties:

(i) K contains the mth roots of unity era.
(ii) The prime p does not ramify in K.
(iii) K is a splitting field of every irreducible character x of @.

Fields K which satisfy the conditions of (A) are called splitting fields of
least possible ramification. A recent result by Solomon [9, Corollary, p. 163]
is related to (A).

(B) Let @ be a finite group of order g pare, where p is a rational prime
and (p, m) 1. Let Q be the rational field, and let K Q(e,) if p is odd,
K Q(em, /-1) if p 2. If x is an irreducible character of @, then the
Schur index inK(x) of x with respect to K divides p 1.

In this paper an improvement of Solomon’s result will be given. Namely,
the conclusion of (B) can be strengthened to the following: The Schur index
inK(x) 1. In particular, for p odd, the field Q(e) is a splitting field of
least possible ramification. A modification of the proof will show that for
p 2, the field Q(e, /[) is a splitting field of least possible ramification.
The proofs are based on a theorem of Solomon together with some results
from modular representation theory. The use of the Hasse Theorem of class
field theory, which up to now has been necessary in the proof of (A), can thus
be avoided.

Notation. @ will always be a fixed finite group of order g pare, where
p is a rational prime and (p, m) 1. A subgroup @ of @ is elementary if

is a direct product @ 9 X , where N is a cyclic group, and where is
a q-group for some prime q not dividing the order (N: 1) of N. A subgroup
of @ is a p’-subgroup if p does not divide (@: 1). Absolutely irreducible char-
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acters or representations will simply be referred to as the irreducible characters
or representations of @.

1. Results from modular representation theory
In this section, the prime p will be fixed. All reference to modular repre-

sentation theory will then be with respect to this prime p. The following
lemma is due to Brauer [2, Theorem 5]. The proof below is a modified version
of the original proof.

LEMMA 1. Let qp be a modular principal indecomposable character of the
finite group @. Then qp is a linear combination with integer coeicients of char-
acters of (R) induced by characters of elementary subgroups of p’-order.

Proof. By a theorem of Brauer [4, Theorem A], the 1-character of @ can
be expressed as

1 a*,
where a are rational integers, and where * is the character of @ induced by
an irreducible character of an elementary subgroup g) of @. In particular,

The character . g) vanishes on p-singular elements of g), and hence
must be a linear combination of the principal indecomposable characters of
g)i. The coefficients in such a linear combination are moreover integers
by [3, Theorem 17]. But since g) is an elementary subgroup, g) can be fac-
tored into a direct product g) 3 X 9i, where is a p-group and 9 is
a p’-group. Each principal indecomposable character of g) is thus the
product of the character of the regular representation of 3 with a suitable
irreducible character of 9. The principal indecomposable characters of
g) are therefore induced by the irreducible characters of 9. This proves
the lemma.

IEMMA 2. Let @ be a finite group of order g pam, where p is a rational
prime and (p, m) 1. Let qp be a principal indecomposable character of @.
If llo is a representation of @ with character qo then 1I can be written in the

Proof. By Lemma 1

(1)

where the a are rational integers, and where is an irreducible character of a
p’-subgroup g) of @. Rearrange the sum (1) so that

where the integers b and cj are positive. Each is the character of a repre-
sentation which can be written in Q(em), since the order of g$ divides m.
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We may assume that the are actually representations written in Q(c).
If is the representation of @ induced by , then (2) implies that

(3)

where the sum of representations denotes the direct sum. The representations
b *, c- are written in Q(c). If these have common components

over Q(), remove the component from both representations. Repeat this
until (3) reduces to

where and are representations of gO written in Q(), such that and ![9
have no common components over Q(). If is not the zero representation,
then and would have a common absolutely irreducible component, which
is impossible. Therefore lip --- , and the lemma is proved.

LEMMA 3. Let be a finite group with a normal cyclic Sylow p-subgroup ?.
If /? is abelian, then the decomposition numbers d,p are 0 or 1.

Proof. We proceed by induction on (: 1). Let be a maximal normal
subgroup of @, =< < . The index (:) is then a prime q p. The
irreducible modular representations of @ contain in their kernel, and can
therefore be identified with the ordinary irreducible representations of /.
In particular, if (@’) r, then @ has r irreducible modular characters, and
these are all linear. Let x, be an irreducible character of @, and let

be the decomposition of x into a sum of irreducible modular characters ,.
Case . If x, I is irreducible, then (x, ]) E d,,(, ]) is the

modular decomposition of (x ). The numbers d,, are therefore summands
of the decomposition numbers of (x, ); by induction the dvp can only be
0orl.

Case 2. If x,l is reducible, let , be an irreducible constituent of the
restriction. Let , ,, 6 be the modular decomposition of , by
induction the ,, are 0 or 1. Since /3 is abelian, each irreducible modular
character 6, of has q distinct extensions to , and indeed, the character
of 3 induced by 6p is the sum of these q extensions. For 6, # 6, the charac-
ters of induced by 6,, 6, respectively have no common modular constituent.
Now :, induces x,, and for p-regular elements, this is the character of @
induced by , 6. Therefore the d,p are 0 or 1. This proves the lemma.

LEMMA 4. Let be a finite group with a normal cyclic Sylow p-subgroup 3.
Then the decomposition numbers d, are 0 or 1.

Proof. If p 2, then by a theorem of Burnside [5, p. 327], @ 3 X ,
where 3 is a group of odd order. The lemma then follows immediately. We
may therefore assume p is odd; the proof for this case is by induction on
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(" 1). If () is the centralizer of in @, then ()
is a p’-subgroup. In fact, must be the maximal normal p’-subgroup of
Since @/() is isomorphic to a subgroup of the automorphism group of
@/() must be cyclic. Let x, be anirreducible character of @, and let
x, d,o 40 be the modular decomposition of x,. If x,l involves two
distinct irreducible characters of as constituents, then by [6, Theorem 2B],
X, is induced by an irreducible character x, of a proper subgroup of . More-
over, the decomposition numbers of x, and x, are the same, so that the d,o are
0 or 1 by induction. We may therefore assume x,] is the multiple of one
irreducible character of . By [6, Theorem 2D], there is a group :), having
a cyclic p’-subgroup in its center, such that !Ft/ @/. Moreover, there

tt
is .an irreducible character x, of such that the decomposition numbers of

t!
x, and x, are the same. Let be a Sylow p-complement of . Then

-< and :5/ - 3/(). :5 is then a cyclic extension of a central sub-
group, and consequently :5 is abelian. The decomposition numbers of x, are
therefore 0 or 1 by Lemma 3, and thus the d,p are 0 or 1.

LEMMA 5. Let be a finite group of order h pare, where p is a rational
prime .and (p, m) 1. If the Sylow p-subgroup of is cyclic and normal,
then the field Q( e,) is a splitting field for every irreducible character of .

Proof. Let x, be an irreducible character of . By Lemma 4 there exists
a principal indecomposable character p of which contains x as a con-
stituent with multiplicity 1. Since the representation with character can
be written in Q(e) and hence fortiori in Q(, x), it follows by the work of
Schur [8], that Q(s) is a splitting field of

2. The main theorem

Let be a primitive gth root of unity, and Q() the cyclotomic field Q(e)"
The Galois group of Q(e)/Q is isomorphic to the multiplicative group of
residue classes of integers modulo g. If is an automorphism of Q()/Q and-- , can be identified with the integer i, i being uniquely determined
modulo g. Let L be an algebraic number field; the subgroup in the Galois
group of Q(s)/Q corresponding to Q() n L can therefore be identified with a
certain multiplicative group (L) of integers modulo g. An integer i is in
(L) if and only if the automorphism of Q(s)/Q defined by s --+ si leaves
Q (v) n L fixed. It is clear 6(L) can also be regarded as the Galois group of
L(s)/L.

Let @ be a finite group of order g. If A is an element of @, define the
L-normalizer of A in @ to be the subgroup of all elements X in @ such that
X-lAX A for some integer i in t (L). A subgroup of @ is L-elementary
if is a product :5, where is a normal cyclic subgroup/A} of ,
where is a q-group for some prime q not dividing (?I: 1), and where the
L-normalizer of A in 55 is .
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THEOREM 1. Let @ be a finite group of order g pm, where p is a rational
prime and (p, m) 1. Let Q be the rational field, and let K Q(v,,) if p is
odd, let K Q(,, %/-1) or K Q(,,, /) if p 2. Then K is a
splitting field of every irreducible character of gO.

Proof. Let x be an irreducible character of @. Let L be the field K(x).
Define a character of any subgroup of @ to be a character in L if its values
lie in L; in particular, x is a character in L. By [9, Theorem 2], it follows
that

where the ai are rational integers, and where the * are characters of @ in-
duced by characters i in L of L-elementary subgroups.
Suppose we can show each is the character of a representation written

in L. Then by an argument exactly like that used in the proof of Lemma 2,
it follows that the representation E with character x can be written in L,
and this proves the theorem. We have thus reduced the theorem to the
following case. Let 9.1 be an L-elementary subgroup of @. If is a
character in L of , then the representation with character can be written
in L. We may assume is an irreducible character in L, that is, is not the
sum of two characters in L of . This implies that

where the are s distinct irreducible characters of @ which form a complete
set of algebraic conjugates over the field L. We show each is the character
of a representation i of which can be written in L(i).

Consider the case p odd first. If p does not divide (@:1), then L contains
the (:1) th roots of unity, and can be written in L(i). If p divides
(: 1), then L contains the (?I: 1)h roots of unity, and hence can be
written in L() by [9, Theorem 5]. If p divides (/:1), then @ has a normal
cyclic Sylow p-subgroup. can therefore be written in L(i) by Lemma 5.
Now the case p 2. If K Q(sm, %/--1) the argument used for the case
p odd applies, since the result of Solomon can still be used. If
K Q(vm, /), this result cannot be used for the subcase where ! is a
2-group. But now we use the fact is an L-elementary subgroup (so far we
have really used only the fact @ is a semidirect product of a cyclic group ?I by
a q-group :, q a prime not dividing the order of ?I). Since @ is the
L-normalizer of A in @, and since L contains the (t:1)t roots of unity, it
follows from the definitions that i is in the center of @. Therefore

l X . It is then sufficient to show that K is a splitting field of the
irreducible characters of . Roquette has shown in [7] that Q is in fact a
splitting field for: unless is a (generalized) quaternion group. Moreover,
for the irreducible characters of a (generalized) quaternion group which are
not split by Q, the corresponding skew field is the ordinary quaternion algebra
over Q [7, Bemerkung, p. 249]. The skew field in question contains Q(/)
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as a maximal subfield, and hence K is a splitting field of the characters of
[10, Chapter VII, 9].
To complete the proof, let 1 be written over L(I). If 1, ., , are

the s automorphisms of L()/L, we may take i to be [, where i is applied
to the coefficients in each of the matrices of. The representation

i 0

is therefore equivalent to a representation in L, and its character is .
As a corollary we have

TIEOnEM 2. Let @ be a finite group of order g pare, where p is a rational
prime and (p, m) 1. Let K Q(e,) if p is odd, let K Q(e,, /[) if
p 2. Then K is a splitting field of least possible ramification.

Proof. K is a splitting field by Theorem 1; furthermore, the prime p does
not ramify in K by the well-known behavior of the decomposition of primes
in cyclotomic extensions [11, Chapter III, 12].
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