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1. Introduction

The notion of a spectrum, introduced by Lima [12], has proved useful in
homotopy theory. Spanier [17] used it for the study of stable homotopy
theory, while E. H. Brown, Jr. [1] and G. W. Whitehead [18] have shown
that there is a very close relationship between spectra and (co-) homology
theories which satisfy all Eilenberg-Steenrod axioms but the dimension axiom.
Our present purpose is to define spectra in the semisimplicial context. Al-

though the notion of a (topological) spectrum is a rather complex one (a
sequence of spaces and maps), it turns out that a semisimplicial spectrum
consists of only one object which very much looks like a semisimplicial complex
with base point. The main differences are (i) that simplices are also allowed
to have negative dimensions, and (ii) that every simplex y has an infinite
number of faces do y, dl y, (but only a finite number of them are not "at
the base point") and an infinite number of degeneracies So y, sl y, ....
Some applications will be given in [10] and [11].

There are two chapters. Chapter I deals with semisimplicial spectra and
their relation to topological spectra. We also consider group spectra and
show that the category of abelian group spectra is isomorphic with the care-
gory of abelian chain complexes.

In Chapter II a homotopy relation is introduced in the category of semi-
simplicial spectra. As for semisimpliciM complexes this relation is, in general,
not an equivalence relation. However on a suitable subcategory (that of
spectra which "satisfy the extension condition") the homotopy relation is an
equivalence relation. Consequently one has in this category the notions of
homotopy equivalence and homotopy type. We end with considering minimal
spectra and homotopy groups.

1.1 Notation and terminology. We shall freely use the results of [7] and
[8] with the following changes in notation and terminology:

(i) the face and degeneracy operators will be denoted by di and si and
will be written on the left;

(ii) c.s.s, complexes will be called set complexes, or for short, complexes;
c.s.s, groups will be called group complexes.

The author is much indebted to E. H. Brown, Jr., A. S. Shapiro, and G. W.
Whitehead for helpful discussions.
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CHAPTER I. SEMISIMPLICIAL SPECTRA
2. Suspension

We start with some well known facts on the topological suspension, the
semisimplicial suspension, and their relationship.

2.1 DEFINITION. Let W, be the category of topological spaces with base
point which have the homotopy type of a CW-complex with base point.
The base point will be denoted by ,. Then the suspension functor
S W, -- , is the functor which assigns to a space Y e , the space
with base point SY obtained from Y X I (I unit interval) by shrinking
the subset Y 0 u Y 1 u I to a point, the base point, and which
maps maps accordingly.

2.2 DEFINITION. Let S, be the category of set complexes (1.1) with base
point. A base point or any of its degeneracies will be denoted by ,. Let P
be a set complex which has exactly one n-simplex, , for every integer n >= 0.
Then for L e $, its suspension is the set complex with base point of which the
n-simplices are the appropriate degeneracy of the base point and all pairs
(, ) such that e L, ,, e P, and dim z -[- dim n 1; the face
and degeneracy operators are given by

d(a, ) (dz, ), s(z, ) (so-, ), 0 =< i -< p,

-(, di-_l), -(, si__l), p < i _-< n

(where p dim ) whenever this has a meaning, and de(a, ) otherwise.
Similarly, the suspension of a map k L L e 8, is the map SX SL --> SL
given by (a, ) -- (Xa, ) whenever this has a meaning, and (, ) -otherwise. The function S so defined is a functor S $, - $,, the suspension
functor.

The topological and the semisimplicial suspension functors are closely re-
lated.

Let A be the Euclidean n-simplex with vertices A0, ..., An, and for
Y e W, and a map w A -- Y denote by Zw in-t-1 SY the map given by

Zw(a0 A0 + + a+lA+) (W(oAo - - ,,An), +)

where/ /(a0-k + ) for0 N i _-< n. LetR’g,--W, bethe
geometric realization functor [13], and for L e , and every nondegenerate
n-simplex L let c() A -- RL be the corresponding characteristic map.
Then a rather lengthy but completely straightforward computation yields

2.3 PROPOSITION. Let L e , Then there is a unique map

j RSL --+ SRL e W,

s.uch thatjc(z, 0) Zc(a) for every nondegenerate ( e L. Moreover this map is
natural and is a homeomorphism.
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A similar result holds for the singular functor Sin W, -- g, [6].

2.4 PROPOSITION. Let Y e W. Then there is a unique map

j S Sin Y-- Sin SY .
such that j(o5 0) 2:z for all (r Sin Y. Moreover this map is natural and
is a weatc homotopy equivalence, i.e., its geometric realization is a homotopy
equivalence.

This is proved by observing that the map j" S Sin Y --. Sin SY is the
composition

j’ Sin Sh
SSinY ,SinSRSinY SinSY

where j’ is adjoint to the map of 2.3 (L Sin Y) and h R Sin Y -- Y is
adjoint to the identity map of Sin Y [9]. The proposition then follows
readily from the main result of [13]’.

3. Topological spectra and their semisimplification
In this section we consider topological spectra and their semisimplieial

analogues (called prespectra) and prove that, in some precise sense, the
homotopy theories of topological spectra and of prespectra are equivalent.

3.1 DEFINITION. Call a map w Y --. Z e W. a proper inclusion if (i)w
maps Y homeomorphically onto its image, and (ii) the pair (Z, image w)
has the homotopy type of a pair of CW-complexes. A topological spectrum Y
then consists of

(i) a sequence of spaces Y e W., i 0, 1, ...,
(ii) a sequence of proper inclusions a SY -- Y+ i O, 1, ....

Notation" Y {Y, a} or Y {Y}. For two spectra Y {Y, a}
and Z {Z, b} a map w Y -- Z will be a sequence of maps

w" Y- Z . (i 0, 1, ...)

such that W+l a b(Sw) for all i. Notation" w {w}. The category
of topological spectra and their maps will be denoted by Ws.

3.2 DEFiNITIOn. A prespectrum L consists of
(i) a sequence of set complexes L e ., i 0, 1, ...,
(ii) a sequence of maps X’SL -- L+ e . which are 1-1 (into),

i 0, 1, ....
Notation" L {L, X} or L {L}. For two prespectra L {L, X} and
M {M, #} a map b L M is a sequence of maps

" L --. M e , (i 0, 1, ...)

This definition is more restrictive than the one used by G. W. Whitehead [18]. How-
ever, his results can be readily adapted to this definition by iterated use of mapping
cylinders and the homotopy extension theorem.
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such that +1 ),i v(S6) for all i. Notation: @ {b}.
of prespectra and their maps will be denoted by

The category

3.3 DEFINITION. 2_ map w {Y} -- {Z} e s is called a weak homotopy
equivalence if for every integer q (also negative) the induced homomorphism
IS]

r(w) lim r+(Y) -- lim r+(Z)

is an isomorphism. Similarly a map k {L} -- {Ms} e (9s is called a wealc
homotopy equivalence if for every integer q the induced homomorphism

"(k) lim= r+(L) -- lim r+.(M)
is an isomorphism.

The geometric realization R and the singular functor Sin induce functors
R (Ps -- Ws and Sin Ws - (Ps. They are given by the formulas

R{L, } {RL, (R)j-1}, n{,}

Sin {Y, a} {Sin Y, (Sin ai)j}, Sin {w} {Sinwi},

where j is as in 2.3 or as in 2.4. Clearly, we have

3.4 PROPOSITION. The functors R s s and Sin s ----> s map weak
homotopy equivalences into weak homotopy equivalences.

For Y e , let hY R Sin Y -- Y e , be the natural map of [13, The-
orem 4]. It iS a homotopy equivalence. The function h induces for every
Y {Y} e s a natural map hY R Sin Y -- Y e eCs given by hY {hY}.
Similarly for L e $, let hL L ---, Sin RL $, be the natural map of [13,
Lemma 5]. It is a weak homotopy equivalence. This function h induces
for every L {L} e (Ps a natural map hL {hL} L SinRL s.
Clearly we have

3.5 PROPOSITION. Let Y e s and L s. Then the natural maps

hY:RSinY-->Y and hL:L--->SinRL

are weak homotopy equivalences.

3.6 DEFINITION. Let be category in which certain maps are called weak
homotopy equivalences. A functor -- 0 we then call a homotopy functor
on the category with values in the category 0 if it maps every weak homo-
topy equivalence into an equivalence.

We can now make clear what we mean by the equivalence of the homotopy
theories of topological spectra and of prespectra, namely that the following
proposition holds.

3.7 PROPOSITION. The functors R and Sin induce a 1-1 correspondence be-
tween the homotopy functors on s and those on (Ps.

Proof. This follows at once from Propositions 3.4 and 3.5.
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4. Semisimplicial spectra
The prespectra introduced in the previous section do not seem to have any

advantage over topological spectra. In fact they are just as complicated,
and it is rather cumbersome to apply to them the usual semisimplicial tech-
niques. However,

(i) It is possible to associate with a prespeetrum L one rather simple
mathematical object which strongly resembles a set complex with base point;
the main differences are that simplices are also allowed to have negative
dimensions, and that every simplex has an infinite number of faces (although
only a finite number of them are not "at the base point") and an infinite
number of degeneracies.

(ii) Although in general the prespectrum L cannot be recovered from it,
this new object contains all the homotopy information of the prespectrum L.
In fact the homotopy theory of these new objects turns out to be equivalent
to that of prespectra.

In view of this and the fact that the similarity of these new objects to set
complexes enables one to apply to them many of the semisimplicial techniques,
these objects deserve to be called spectra. Their definition is as follows.

4.1 DEFINITION. A semisimplicial spectrum (or set spectrum, or for short,
spectrum) X consists of

(i) for every integer q a set X(q) with a distinguished element (called
base point);the elements of X(q) will be called simplices of degree q,

(ii) for every integer q and every integer i __> 0 a function

di" X(a) -- X(a-1)

such that di (the i-face operator), and a function

si" X(q)

such that s (the i-degeneracy operator).
to satisfy the axioms

I. The following identities hold"

di d. d’_l di for i < j,

dsj s’_ld for i <j,

These operators are required

identity for i =j,j+ 1,

Sj di-1 for i > j + 1,

II.

ss sjs_l for i>j.

For every simplex a X all but a finite number of its faces are the
base point, i.e., there is an integer n (depending on a) such that di a for
i>n.
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A subspectrum of a spectrum X is a subset of X which is closed under all
face and degeneracy operators.

For two spectra X and Y a map w X -- Y is a degree-preserving function
which commutes with all face and degeneracy operators. An isomorphism is
a map which is 1-1 and onto.

Clearly the set spectra and their maps form a category which will be denoted
by

We proceed by relating the categories (s and Sp by means of two functors
Sp (Ps -- p and Ps Sp - (s.

4.2 DEFINITION. Let L {L, hi} e s. For L denote by XP the
simplex Xti z X(z, 0) e L+I. Clearly dim kt z 1 - dim z. Because
the X are 1-1 (into), an equivalence relation can be introduced on the set
of all simplices of all the L by calling two simp[ices z e L, r e L+ (n => 0)
equivalent if ki+_l X r. The resulting quotient set will be denoted
by Sp L. For z e L we write [z] for its equivalence class. In order to turn
Sp L into a spectrum, we define for every integer j __> 0 and for every z e L

degree [] dim i,

d[4 Ida. Xi+ X],

s[4 [s. X+.... X,:

The elements [.] will be the base points. A simple computation shows that
these definitions are independent of the choice of in [], and that indeed
they turn Sp L into a spectrum.

Similarly it is easily seen that for a map {} {L} - {M} e (s the
function Sp Sp{L} -- Sp{M} given by [] -- [6] for all e L is well
defined and is in Sp. Clearly the function Sp so defined is a functor
Sp (s-- p.
An immediate consequence of this definition is

4.3 PROPOSITION. Let {L} e s, and let e L be an n-simplex.
degree In] n i, do d[z] =., and d-[z] for j > n.

Then

It is obvious that, in general, it is impossible to recover a prespectrum L
from the spectrum Sp L. However Proposition 4.3 suggests

4.4 DEFINITION. For X e Sp denote by Ps X X, } the following pre-
spectrum. An n-simplex of X is any a e X such that degree a n i,
do d a =., and d. a for j > n; will be the appropriate degeneracy
of the base point; the face and degeneracy operators are those induced by the
corresponding operators of X. It is not difficult to verify that X is indeed a
well defined set complex, i.e., that for every n-simplex a X, d-a and s. a
are also simplices of X for 0 _-< j =< n. Clearly a e X implies a e X+.
The maps SX ---. X+ S. are therefore defined as the unique mps such
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that i(a, 0) a (e Xi+l) for every a e Xi. Again it is not difficult to verify
that this is well defined.

Similarly a map w X --, Y e Sp induces a map Ps w Ps X -- Ps Y e (s,
and the function Ps so defined clearly is

4.5 PROPOST05. Let X e $p. Then there is a unique map

j X-- Sp Ps X

such that ja [a] for all a e X. Moreover this map is natural and is an iso-
morphism.

This is an immediate consequence of the definitions of the functors Sp
and Ps.

4.6 PROPOSITION. Let {L} 5)s. Then there is a unique map

lJ} {L} -- Ps Sp{L} (s

such that ji o- [z] for all e L Moreover this map is natural and is a wealc
homotopy equivalence.

Proof. Existence, uniqueness, and naturality are easily verified. In order
to prove that lJ} is a weak homotopy equivalence, it suffices, in view of 3.4
and 3.5, to show that {Rj} is so. Let Ps Sp L {M}, let q be an integer,
and let e limi_ +q(RM). For suitably large i one can represent by
a map b S+q RM , (Si+q the (i + q)-sphere). As Si+q is compact,
the image of b is contained in a finite subcomplex of RM. Hence there are
an integer k and a map a S+q+k RL+k such that (Rj+)a also represents
ft. If a e limi_ -+q(RL) is the element represented by a, then clearly
-q{Rj}a /, i.e., q(Rj} is onto. The proof that kernel vq{Rj} 0 is

similar.

In view of these propositions we can state

4.7 DEFINITION. A map w :X Y e 8p is called a wealc homotopy equiva-
lence if Ps w is so.

Then clearly we have

4.8 PROPOSITION. The functors Sp (s $p and Ps Sp ---> (s map wealc
homotopy equivalences into weat homotopy equivalences. Moreover they induce
(3.6) an equivalence between the homotopy theories of prespectra and of set
spectra.

5. Group spectra

A very useful class of spectra is formed by the group spectra. Their
usefulness lies in the facts that

(i) the homotopy theory of group spectra is equivalent to that of set
spectra, and
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(ii) one can apply to them semisimpliciM as well as group theoretical
techniques, a combination which has already been applied so successfully
to group complexes (see [2], [3], [6], [14]).

5.1 DEFINITION. A spectrum X is called an (abelian) group spectrum
if X(q) is an (abelian) group for all q and all operators are homomorphisms.
For two group spectra X and Y, a map w" X -+ Y e Sp is called a homo-
morphism if the restriction w lX(q)’X( -+ Y() is a homomorphism for
all q. The category of group spectra and homomorphisms will be denoted
by Spa, and its full subcategory of abelian group spectra by Sp. A map
in Sp is called a weatc homotopy equivalence if it is so when considered as a
map in Sp.

In order to relate the categories Sp and Sp we define a functor F "Sp ---+ $pe
as follows.

5.2 D,FINITION. For X e Sp let (FX)() be the (free) group with a generator
Fa for every a e X() and one relation F, ,; the face and degeneracy homo-
morphisms are given by

di Fa Fdi a, si Fa Fsi a for all i >= 0.

Similarly for a map w X -+ Y e Sp, let Fw FX FY be the homomorphism
given by Fa ---4 Fwa for all a X. Clearly the function F so defined is a
functor F 8p Spa.

5.3 PnOeOSlTION. Let X Sp, and let fX" X -+ FX be the map given by
a ---> Fa for all a X. Then fX is natural and is a weak homotopy equiva-
lence.

5.4 COIOLLAnY. A map w’X -4 Y Sp is a wealc homotopy equivalence
if and only if Fw FX --+ FY is so.

Proof of Proposition 5.3. For L e $, let E L denote the n-Eilenberg sub-
complex, i.e., the largest subcomplex of L which has no nondegenerate simplices
in dimension < n except the base point. Define a commutative diagram

{Xi, } {f{} {Y, n{}

PsX {X,,2,} PsfX {f,} PsFX {Y,,?,}

as follows" X’ E()X where d(i) is the largest integer _-< i, ’y is the subgroup complex (1.1) of Y generated by the image of X under
fi, v l Y’i,fi fi[X; and a and b are the inclusions. Then it is
easily verified that Sp {a} and Sp {bi} are isomorphisms, and hence (4.8)
{a} and {b} are weak homotopy equivalences. Moreover Y’ FX where
F denotes the "loops on the suspension" functor of Milnor [14], [7]. The
maps f" X Y’ therefore induce isomorphisms of the homotopy groups
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in the stable range. This readily implies that {f} is a weak homotopy
equivalence, and hence so is lfi}. The naturality of f is obvious.

5.5 PROPOSITION. Let X 6pa, and let g: FX -- X be the homomorphism
given by Fa ---> a for all a X. Then g is natural and is a weat homotopy
equivalence.

Proof. Naturality is obvious. That g is a weak homotopy equivalence
follows from 5.3 and the fact that the composite map g(fX) X -- X is the
identity map of X.

5.6 COROLLARY. The functor F 6p - 6pa and the inclusion functor
Spa --> 6p induce an equivalence between the homotopy theories of set spectra and
of group spectra.

We end this section by showing that the category of abelian group spectra
SpA is "isomorphic" to the category of abelian chain complexes 0.

5.7 DEFINITION. For G 6pA its Moore chain complex MG= {(MG)q,
is the chain complex defined by

MG)q G(q) [3 ----1 kernel di
Oq do

for all q. Similarly for a homomorphism g: G -- G’ let Mg MG -- MG’
be the induced chain map. Then clearly the function M so defined is a
functor M 6pA - 0. Its main property is given by

5.8 PROPOSITION. The functor M 6pA O is an isomorphism of cate-
gories, i.e., there exists a functor M O9 -- 6pA such that the composite functors
M’M 6pA -- SpA and MM’ O O9 are naturally equivalent to the identity
functors of 6pA and O respectively.

This is proved in exactly the same manner as the corresponding result
for abelian group complexes [3], [9].

CHAPTER II. THE HOMOTOPY RELATION

5. The reduced product
In order to define a homotopy relation for maps of set spectra, we need a

suitable notion of (reduced) product of the standard 1-simplex I [8] and a
set spectrum.

Let 6 be the category of set complexes, and let ^ :6, 6, -- S, be the
reduced product functor, i.e., the functor which assigns a complex K e 6 and
L e 6, the complex with base point K ^ L obtained from K X L by identifying
the simplices of the form (, ,) with the appropriate degeneracy of the base
point. If I e S is the standard 1-simplex, X e Sp and Ps X IX, i}, then
one would expect the reduced product of I and X to be a set spectrum of the
form Sp /I ^ X, (ii ^ ),} where the would be suitable maps
S(I ^ X)-- I ^ SX. However, although clearly the spaces RS(I ^X)
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and R(I ^ SXi) are homeomorphic, the complexes S(I ^ Xi) and I ^ SX
are, in general, not isomorphic, and it is not difficult to see that there is not
even a natural map S(I ^ X) -- I ^ SX. However there exists a natural
map in the "wrong" direction.

6.1 PROPOSITION. For K eS and L e $, there is a unique map

"’K ^ SL-+ S(K ^ L),
such that

(, (, )) ((d._ d. , ), )

for all (r e K, r L, and , e P. Moreover ./ is natural.

where j dim

Proof. Verification of the existence, uniqueness, and naturality of is
straightforward.

By using this natural map , it is now possible to construct another
functor , $, - $, which is better suited for our purpose. First we state

6.2 DEFINITION. For L e S, and every integer j => 0 let JL e $, be the
complex, an n-simplex of which is any (n -[- j)-simplex e L such that
do dn a and d for n < i __< n + j will be the appropriate
degeneracy of the base point and the operators on JL will be those induced
by the operators of L (with omission, of course, of the last j face and de-
generacy operators). A map ), L - L’e , induces a map L -- 0L’ e $,,
and the function so obtained is clearly a functor i:g, -+ $,. A
simple calculation yields

6.3 PROPOSITION. Let L , and j >- O. Then there is a unique map
tj So+1L -L , such that tj((r, o) (r for all (r o+IL. Moreover this
map is 1-1 (into) and is natural.

Now we state

6.4 DEFINITION.
mutative diagram

Let K e and L e ,, and consider the (infinite) corn-

i ^ toL

K^L
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where S denotes the j-fold suspension. Define an equivalence relation on
K ^ L by calling two simplices ao, ale K ^ L equivalent if there is an
integer j and simplices o, fl K ^ So% such that

(i: ^ to L) (iK ^ S-lt’- L)3 a, e 0, 1,

(kJ--l’) (S))’’0 (t-J--l’/) (t.’)’l.

Denote by K.L the resulting quotient eomplex, and by r K ^ L -- K.L e $,

the projection. Clearly maps K--, Ke $ and X: L ---> L’e g, induce a
map .X:K.L -- K’.L’e $,, and the function so defined is a funetor

g, g, -- $,. Clearly, we have

6.5 PROPOSiTiON. Let K e $ and L g,. Then the map - K ^ L K.L
is natural.

6.6 PROPOSITION. Let KeS and L e S.. Then there is a unique map
j K.SL -- S(K.L) . such that the diagram

K ^ SL " S(K ^ L)

K.SL .J S(K.L)

is commutative. Moreover j is natural and is an isomorphism.

This follows readily from the fact that to" olL -- 0L SL is n
isomorphism. In view of this proposition we finally state

6.7 DEFINITION. For K e , X e Sp, and Ps X {X, } simple calcula-
tiou shows that {K.X, (i.)ff} is a prespectrum, and hence we muy
define a set spectrum K-X by

K.X Sp {K.X, (i.},)j-’}.

K’ X’Similarly for maps X’K and X e3p let Ps {}
Then X K.X e $p is the map given by X. Sp {X.} Clearly
the function so defined is a funetor "$, $p $p, the reduced product
funetor.

A useful consequence of this definition is

6.8 PROPOSITION. Let K e g, X e Sp, and Ps X {X, i}. Then the map
{Jd {K.Xi, (i.()j-} Ps (K.X) 4 Proposition 4.6 is an equivalence.

7. lhe homoopy relation

7.1 DEFINITION. For L e $, identify L with P.L under the correspondence
z v(, ). This induces an identification X P.X for all X e $p.
Furthermore let jo, j P I e g be the maps given byj, 0 d_ i where
.1

e I is the on nondegenerate 1-simplex and e 0, 1. Then two maps
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w0, wl X -- Y e Sp will be called homotopic if there is a map w" I.X --> Y Sp
(called homotopy) such that w(jo.ix) Wo and w(jl.ix) w. Nota-
tion" w’w0 wlorw0wl.

As in [8] one read,ily proves

7.2 PnOPOSITION. Let w’ W -- X, Wo w X Y, and wpp Y Z e Sp
be such that Wo wl Then wPwo w’ ww w’.

As for set complexes [8] the homotopy relation is, in general, not an
equivalence relation. But, as will be shown below, this can be remedied by
restriction to a suitable subcategory SpE of Sp.

7.3 DEFINITION. Let X Sp, and let Ps X {X}. Then X is said to
satisfy the extension condition if X satisfies the extension condition [7] for
all i. The full subcategory of Sp generated by such spectra will be denoted
by SpE.

7.4 Example. For every topological spectrum Y, clearly Sp Sin Y e 8p..

7.5 Example. Every group spectrum satisfies the extension condition be-
cause every group complex does so [16].

Combining this with Corollary 5.6 we get

7.6 PROeOSITION. Let E Spo -- $p, be the inclusionfunctor. Then the com-
posite functor EF Sp -- Sp and the inclusion functor Sp ---> Sp induce an
equivalence between the homotopy theories of all set spectra and of those satisfying
the extension condition.

7.7 DEFINITION. For every integer n > 0 let A $ denote the standard
n-simplex [8], and i Ae the only nondegenerate n-simplex, and for every
integer j with 0 _-< j =< n let

(d’) A-1 - A $ and A(s.) "A+

be the maps given by A(d.)i- di and A(s.)i+ si". For X, Y e Sp
the function complex yX e 8 then is the complex an n-simplex of which is

Aany map z .X --. Y e 8p its faces d z and degeneracies s z are the com-
positions

A,_.X A(d).ix A .X Y, 0 <-j <- n,

.X Y, O<_j<=n.

7.8 PnOeOSITON. If X e Sp and Y e Sp, then yX satisfies the extension
condition.

Proof. If A A" is as in [8], then it must be shown that any
map z A-X -- Y e $p can be extended over all of

Let L e $,, let A L be a subcomplex, and let M e $, satisfy the extension
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condition. By a suitable modification of the main result of [5] one gets that
every map A.A o A’.L --+ M e $. can be extended over all of A.L. If
Ps X {Xi, i}, Ps Y {Y, i}, and Ps z {zi}, then the map
zo h .Xo Yo admits an extension Wo .Xo Yo Now construct for

0 maps

Sp{w} .X Y p
is an extension of z.

Finally applying to Proposition 7.8 the argument of [8, 2] we get

7.9 PROPOSITION. Let X $p and Y e $p. Then the homotopy relation is
an equivalence relation on the maps X Y e $p.

8. Homotopy types =nd minim=l speclr=

In view of 7.2 and 7.9 it makes sense to introduce the notions homotopy
equivalence and homotopy type.

8.1 DEFINITION. A map w" X Y e $p is called a homotopy equiva-
lence if there is a map w’ Y + X e Sp (called homotopy inverse of w) such
that w’w ix and ww’ ir. In view of 7.2 and 7.9 any two homotopy in-
verses of w are homotopic, and w’ is a homotopy equivalence itself. Also the
composition of two homotopy equivalences is again one.
Two spectra X, Y e Sp are said to have the same homotopy type if there

exists a homotopy equivalence w’X Y. Clearly "having the same
homotopy type" is an equivalence relation.

As for set complexes a (theoretical) homotopy-type classification of spectra
may be obtained using an appropriate notion of minimal spectrum.

8.2 DEFINITION. Let M e $p, and let Ps M {M}. Then M will be
called minimal if M is minimal [15] for all i. For X e Sp a subspectrum
M X is called a minimal subspectrum (i) M is minimal, and (ii) the
inclusion map M + X is a homotopy equivalence.

As for set complexes one then has

8.3 PaOeOSTION. Every spectrum X e Sp has a minimal subspectrum.

8.4 PROPOSITION. Let M, N e 8p be minimal, and let w M N be a ho-
motopy equivalence. Then w is an isomorphism.

The proof of 8.3 is essentially the same as for set complexes [4] by using
induction on the integer n(a) (a e X) where n(a) denotes the smallest integer
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such that dj a for j > n(a) and do d,(,) a 8.4 follows at once
from the corresponding result for set complexes [15].

8.5 COROLLAaY. Let X e $pE, let M, N X be minimal subspectra, let
j M --> X be the inclusion, and p X --> N a homotopy inverse of the inclusion.
Then the composition pj M --> N is an isomorphism.

8.6 COROLLARY. Let X, Y e SpE. Then X and Y have the same homotopy
type if and only if they have isomorphic minimal subspectra.

9. Weak homotopy equivalences and the homotopy relation

The main purpose of this section is to prove

9.1 PROeOSTON. Let be a category. Then a functor Q" spE --> is a
homotopy functor (3.6) if and only if w w’ implies Qw Qw’.

Proof. Let Q sp -- a be a homotopy functor, let w0, w X -- Y e Sp
and let w’w0 w. If p" I-- P e Sis the only such map, thenpj0
pj i,, and it is not difficult to verify that jo.ix, j.ix, and p.ix are weak
homotopy equivalences. So are (5.4) the maps F(jo.ix), F(j .ix), and
F(p.ix). Consequently QF(jo.ix) QF(p.ix)- QF(j.ix), and it fol-
lows that

Qwo (QfY)-l(QfY)(Qw)(Q(jo.ix)

(QfY)-i(QFw)(QF(jo.ix))(QfX)

(QfY-I)(QFw)(QF(jl.ix))(QfX)

(Qfy-i) (QFy) (QW) (Q(jl.iz)) Qw.

The other half of the proposition follows at once from

9.2 PROPOSITION. A map in $p is a wealc homotopy equivalence if and only
if it is a homotopy equivalence.

Proof. Letw’X-- YeSpE, and letPsX {X}, Ps Y {Y}, and
Ps w {w}. Then by definition [7],

r(X) rr+(X+) and r(Y) r+l(Y+l)

for all n and i (the n-simplices of X which have all their faces coincide
with the (n q- 1)-simplices of X+, with this property).
Now if w is a homotopy equivalence, then so is w" X -+ Y for all i.

This implies that the w induce isomorphisms of all homotopy groups, and
hence w is a weak homotopy equivalence.

Conversely if w is a weak homotopy equivalence, we may (8) assume that
X and Y are minimal. Hence so are X and Y for all i. The maps
w X -+ Y induce isomorphisms of aI1 homotopy groups, and hence [15] are
isomorphisms. And so is therefore the map w.
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10. Homotopy groups
We end by defining the homotopy groups of a spectrum and expressing

(weak) homotopy equivalences in terms of them. The definition will be in
two stages, first for spectra which satisfy the extension condition, and then
for all spectra. Both definitions agree, of course, on the category Sp.

10.1 DEFINITION. Let X e 8p, and let Ps X {X}. Then (see 9.2)
(X) r+(X+) for all n and i. Hence for eery integer q we may define

X, the qth homotopy group of X, by

X +(X) where q + i > 0.

Similarly for a map w X -- Y e p with Ps w [we} we put

w r+(w) rX -- Y where q + i > 0.

The functions so defined are clearly functors.

10.2 DEFINITION. For X e 8p and every integer q we define r X, the
homotopy group of X by

rq X q FX.

Similarly for a map w X -- Y e Sp we define rq w q Fw. The functions
rq so defined are clearly functors, and an argument similar to the one used
in the proof of Proposition 9.1 yields

10.3 PROPOSITION. Let Wo, w’X -+ Y e Sp be homotopic. Then
q Wo rq w for all q.

Immediate consequences of 5.4 and 9.2 are

10.4 PnOeOSITON. A map w X --> Y Sp is a wea homotopy equivalence
if and only if w induces isomorphisms of all homotopy groups.

10.5 PnOeOSTON. A map w X -- Y $p is a homotopy equivalence if
and only if it induces isomorphisms of all homotopy groups.

That the two definitions of homotopy groups agree on Sp is stated in the
following proposition, which readily follows from 5.3.

10.6 PnOeOSITON. Let X $p. Then the natural homomorphism

q(fX) - X - FX rq X

is an isomorphism for all q.
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