SEMISIMPLICIAL SPECTRA
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1. Introduction

The notion of a spectrum, introduced by Lima [12], has proved useful in
homotopy theory. Spanier [17] used it for the study of stable homotopy
theory, while E. H. Brown, Jr. [1] and G. W. Whitehead [18] have shown
that there is a very close relationship between spectra and (co-) homology
theories which satisfy all Eilenberg-Steenrod axioms but the dimension axiom.

Our present purpose is to define spectra in the semisimplicial context. Al-
though the notion of a (topological) spectrum is a rather complex one (a
sequence of spaces and maps), it turns out that a semisimplicial spectrum
consists of only one object which very much looks like a semisimplicial complex
with base point. The main differences are (i) that simplices are also allowed
to have negative dimensions, and (ii) that every simplex y has an infinite
number of faces dyy, diy, - -+ (but only a finite number of them are not “at
the base point”’) and an infinite number of degeneracies sy y, s1 ¥, * .

Some applications will be given in [10]} and [11].

There are two chapters. Chapter I deals with semisimplicial spectra and
their relation to topological spectra. We also consider group spectra and
show that the category of abelian group spectra is isomorphic with the cate-
gory of abelian chain complexes.

In Chapter I a homotopy relation is introduced in the category of semi-
simplicial spectra. As for semisimplicial complexes this relation is, in general,
not an equivalence relation. However on a suitable subcategory (that of
spectra which “‘satisfy the extension condition’”) the homotopy relation is an
equivalence relation. Consequently one has in this category the notions of
homotopy equivalence and homotopy type. We end with considering minimal
spectra and homotopy groups.

1.1 Notation and terminology. We shall freely use the results of [7] and
[8] with the following changes in notation and terminology:

(i) the face and degeneracy operators will be denoted by d; and s; and
will be written on the left;

(ii) c.s.s. complexes will be called set complexes, or for short, complexes;
c.s.s. groups will be called group complexes.

The author is much indebted to E. H. Brown, Jr., A. 8. Shapiro, and G. W.
Whitehead for helpful discussions.
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CHAPTER I. SEMISIMPLICIAL SPECTRA
2. Suspension

We start with some well known facts on the topological suspension, the
semisimplicial suspension, and their relationship.

2.1 DeriNiTION. Let W4 be the category of topological spaces with base
point which have the homotopy type of a CW-complex with base point.
The base point will be denoted by %. Then the suspension functor
S ¢ Ws — Wy is the functor which assigns to a space Y e Wx the space
with base point SY obtained from ¥ X I (I = unit interval) by shrinking
the subset ¥ X O u ¥ X 1 u * X I to a point, the base point, and which
maps maps accordingly.

2.2 DEFINITION. Let Sy be the category of set complexes (1.1) with base
point. A base point or any of its degeneracies will be denoted by *. Let P
be a set complex which has exactly one n-simplex, ¢, , for every integer n = 0.
Then for L e $4 its suspension is the set complex with base point of which the
n-simplices are the appropriate degeneracy of the base point and all pairs
(o, ¢) such that ¢ ¢ L, ¢ 5% *,¢ ¢ P, and dim ¢ + dim ¢ = n — 1; the face
and degeneracy operators are given by

di(") ¢) = (dz 7, d’)y Si(O', ¢’) = (si () ¢)7 0 = T = D,
= (07 di-—?—l ¢)) = (”7 Si—p—1 ¢)’ p < t=n

(where p = dim ¢) whenever this has a meaning, and d;(c, ¢) = * otherwise.
Similarly, the suspension of a map \ : L — L' € 84 is the map S\ : SL — SL'
given by (o, ¢) — (Ao, ¢) whenever this has a meaning, and (s, ¢) — =*
otherwise. The function S so defined is a functor S : 84 — 84 , the suspension
functor.

The topological and the semisimplicial suspension functors are closely re-
lated.

Let A" be the Euclidean n-simplex with vertices 4o, ---, 4., and for
Y ¢ W and a map w : A" — Y denote by Zw : A" — SY the map given by

Zw(ag Ao + -+ + angr Anga) = (w(Bo Ao + -+ + BnAr), any1)

where 8; = a;/(a0 + -+ + a,) for 0 = 7 = n. Let R : 84 — W4 be the
geomelric realization functor [13], and for L e 84 and every nondegenerate
n-simplex ¢ e L let ¢(o) : A® — RL be the corresponding characteristic map.
Then a rather lengthy but completely straightforward computation yields

2.3 ProPoSITION. Let L € $x. Then there is a unique map
j: RSL — SRL ¢ Wy

such that je(o, ¢o) = Zc(o) for every nondegenerate o ¢ L.  Moreover this map is
natural and s a homeomorphism.
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A similar result holds for the singular functor Sin : Wy — Sx [6].
2.4 ProposITION. Let Y € Wy . Then there is a unique map
7 :88inY — Sin SY € 8%

such that j(o, ¢o) = Zo for all o € Sin Y. Moreover this map s natural and
18 a weak homotopy equivalence, i.e., ils geometric realization is a homotopy
equivalence.

This is proved by observing that the map j : 8 Sin ¥ — Sin SY is the
composition
. 7 . . Sin Sh .
S Sin Y Sin SR Sin Y ———— - Sin 8Y
where 5’ is adjoint to the map of 2.3 (I = Sin Y) and h: R Sin ¥ — Y is
adjoint to the identity map of Sin V¥ [9]. The proposition then follows
readily from the main result of [13].

3. Topological spectra and their semisimplification

In this section we consider topological spectra and their semisimplicial
analogues (called prespectra) and prove that, in some precise sense, the
homotopy theories of topological spectra and of prespectra are equivalent.

3.1 Dermnirion.” Call a map w : Y — Z e Wy a proper inclusion if (i) w
maps Y homeomorphically onto its image, and (ii) the pair (Z, image w)
has the homotopy type of a pair of CW-complexes. A topological spectrum Y
then consists of

(i) a sequence of spaces Y, e Wy, ¢ = 0,1, ---,

(ii) a sequence of proper inclusions a; : 8Y; = Yia,2=0,1, - -+,
Notation: Y = {Y,, a;} or Y = {¥;}. For two spectra ¥ = {Y,, a;}
and Z = {Z;, b;} amap w: Y — Z will be a sequence of maps

w;t Y, = Z; e Wi (i=011:"')

such that w;y; a; = b;(Sw,) for all . Notation: w = {w;}. The category
of topological spectra and their maps will be denoted by Ws.

3.2 DEFINITION. A prespectrum L consists of
(i) a sequence of set complexes L; e 8,7 =0, 1, ---,
(ii) a sequence of maps \; : SL; — L1 € 8¢ which are 1-1 (into),
i=0,1,---.
Notation: L = {L;,\;} or L = {L;}. For two prespectra L = {L;, \;} and
M = {M,;, u;} amapy : L — M is a sequence of maps

zh:Li—)MiES* (i=0717"')

2 This definition is more restrictive than the one used by G. W. Whitehead [18]. How-
ever, his results can be readily adapted to this definition by iterated use of mapping
cylinders and the homotopy extension theorem.
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such that ¢;1 N\; = w:;(SY:) for all 7. Notation: ¢ = {¢;}. The category
of prespectra and their maps will be denoted by ®s.

3.3 DeFiNITION. A map w : {Y.} — {Z.} ¢ Ws is called a weak homotopy
equivalence if for every integer ¢ (also negative) the induced homomorphism

8
® Tg(w) : limgse Tipq( Vi) — limse mipo(Z:)
is an isomorphism. Similarly a map ¢ : {L; — {M.} e ®s is called a weak
homotopy equivalence if for every integer ¢ the induced homomorphism
mo(¥) ¢ imyse mipg( L) — limy,o oo (M)
is an isomorphism.
The geometric realization R and the singular functor Sin induce functors
R : ®s — Ws and Sin : Ws — ®s. They are given by the formulas
R{L:, N} = {RLqi, (BN); T, R{yd = {Rydl,
Sin {Y;, a;} = {Sin Y,, (Sin a;)j}, Sin {w;} = {Sinw,},
where j is as in 2.3 or as in 2.4. Clearly, we have

3.4 ProrosiTioN. The functors R : ®s — Ws and Sin : ‘Ws — ®s map weak
homotopy equivalences into weak homotopy equivalences.

For Y;eWxlet hY;: R Sin Y; — Y, e W« be the natural map of [13, The-
orem 4]. It is a homotopy equivalence. The function h induces for every
Y = {Y.} e Wsanatural map hY : RSin Y — Y ¢ ‘Ws given by hY = {AY,}.
Similarly for L; € $x let hL; : L; — Sin RL; € $x be the natural map of [13,
Lemma 5]. It is a weak homotopy equivalence. This function A induces
for every L = {L;} ¢ ®s a natural map hL = {hL.;} : L — Sin RL ¢ ®s.
Clearly we have

3.5 ProrosiTioN. Let Y e Ws and L ¢ ®s. Then the natural maps
RY :RSinY —-Y and hL:L — Sin RL
are weak homotopy equivalences.

3.6 DeFmNiTION. Let @ be a category in which certain maps are called weak
homotopy equivalences. A functor @ — D we then call a homotopy functor
on the category € with values in the category © if it maps every weak homo-
topy equivalence into an equivalence.

We can now make clear what we mean by the equivalence of the homotopy
theories of topological spectra and of prespectra, namely that the following
proposition holds.

3.7 ProrositioN. The functors B and Sin induce a 1-1 correspondence be-
tween the homotopy functors on “Ws and those on ®s.

Proof. This follows at once from Propositions 3.4 and 3.5.
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4. Semisimplicial spectra

The prespectra introduced in the previous section do not seem to have any
advantage over topological spectra. In fact they are just as complicated,
and it is rather cumbersome to apply to them the usual semisimplicial tech-
niques. However,

(i) It is possible to associate with a prespectrum L onme rather simple
mathematical object which strongly resembles a set complex with base point;
the main differences are that simplices are also allowed to have negative
dimensions, and that every simplex has an infinite number of faces (although
only a finite number of them are not “at the base point”’) and an infinite
number of degeneracies.

(ii) Although in general the prespectrum L cannot be recovered from it,
this new object contains all the homotopy information of the prespectrum L.
In fact the homotopy theory of these new objects turns out to be equivalent
to that of prespectra.

In view of this and the fact that the similarity of these new objects to set
complexes enables one to apply to them many of the semisimplicial techniques,
these objects deserve to be called spectra. Their definition is as follows.

4.1 DerintTION. A semisimplicial spectrum (or set spectrum, or for short,
spectrum) X consists of

(i) for every integer q a set X, with a distinguished element * (called
base point); the elements of X, will be called stmplices of degree g,

(ii) for every integer ¢ and every integer ¢ = 0 a function

dit X = X
such that d; * = = (the ¢-face operator), and a function
8it X = Xgtp

such that s; * = % (the 7-degeneracy operator). These operators are required
to satisfy the axioms
I. The following identities hold:

d; dj = dj_l d; for 7z < j,

dis;j = sj1d; for ¢ <y,

I

identity for ¢ =4,7+1,
= Sj di—l fOI' Z > J + 17
$:8; = 8j8i1 for 7> j.

II. TFor every simplex a ¢ X all but a finite number of its faces are the
base point, i.e., there is an integer n (depending on ) such that d; @ = * for
> n.
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A subspectrum of a spectrum X is a subset of X which is closed under all
face and degeneracy operators.

TFor two spectra X and Y a map w : X — Y is a degree-preserving function
which commutes with all face and degeneracy operators. An zsomorphism is
a map which is 1-1 and onto.

Clearly the set spectra and their maps form a category which will be denoted
by $p.

We proceed by relating the categories ®s and $p by means of two functors
Sp : ®s — $p and Ps : $p — @®s.

4.2 DeFiNiTION. Let I = {L;, N} € ®s. For ¢ ¢ L; denote by ;o the
simplex \; o = M\i(o, ¢o) € Lipr. Clearly dim ;o = 1 4+ dim ¢. Because
the X\; are 1-1 (into), an equivalence relation can be introduced on the set
of all simplices of all the L; by calling two simplices ¢ € L;, 7 € Ly, (n = 0)
equivalent if Ajyn—y -+ Njo = 7. The resulting quotient set will be denoted
by Sp L. Tor ¢ ¢ L; we write [¢] for its equivalence class. In order to turn
Sp L into a spectrum, we define for every integer 7 = 0 and for every o ¢ L;

degree [¢] = dim ¢ — ¢,
dilo] = [d; Niws - -+ Nidl,
8]‘[0'] = [Sj )\;_H' e )\; 0'].

The elements [+] will be the base points. A simple computation shows that
these definitions are independent of the choice of ¢ in [¢], and that indeed
they turn Sp L into a spectrum.

Similarly it is easily seen that for a map ¢ = {¢;} : {Li} — {M} € ®s the
function Sp ¢ : Sp{L;} — Sp{M.} given by [¢] — [¥:0] for all ¢ ¢ L, is well
defined and is in $p. Clearly the function Sp so defined is a functor
Sp : ®s — $p.

An immediate consequence of this definition is

4.3 ProprosiTioN. Let {L;} € ®s, and let o ¢ L; be an n-simplex. Then
degree [6] = n — 4, dy - - - dulo] = *, and dj{c] = * forj > n.

It is obvious that, in general, it is impossible to recover a prespectrum L
from the spectrum Sp L. However Proposition 4.3 suggests

4.4 DeriniTioN. For X e $p denote by Ps X = {X, &} the following pre-
spectrum. An n-simplex of X; is any « ¢ X such that degree &« = n — 1,
do ++- dna= %and dj a = xforj > n; % will be the appropriate degeneracy
of the base point; the face and degeneracy operators are those induced by the
corresponding operators of X. It is not difficult to verify that X is indeed a
well defined set complex, i.e., that for every n-simplex @ ¢ X;, d; o« and s;
are also simplices of X; for 0 = j < n. Clearly a ¢ X; implies @ ¢ X1 .
The maps & : SX; — X1 € S« are therefore defined as the unique maps such
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that £;(a, ¢o) = a (e Xiy1) forevery e e X,;. Again it is not difficult to verify
that this is well defined.

Similarly a map w : X — Y € 8p induces a map Psw : Ps X — Ps YV ¢ ®s,
and the function Ps so defined clearly is a functor Ps : Sp — ®s.

4.5 PrRoPOSITION. Let X € $p. Then there is a unique map
J:X—>SpPsXesp

such that jo = [o] for all « ¢ X. Moreover this map is natural and is an vso-
morphism.

This is an immediate consequence of the definitions of the functors Sp
and Ps.

4.6 ProrosiTioN. Let {L;} € ®s. Then there is a unique map
{7:4 + {L:} — Ps Sp{Li} ¢ ®s

such that j; o = [o] for all ¢ € L; .  Moreover this map s natural and is a weak
homotopy equivalence.

Proof. Existence, uniqueness, and naturality are easily verified. In order
to prove that {j;} is a weak homotopy equivalence, it suffices, in view of 3.4
and 3.5, to show that {Rj,;} is so. Let Ps Sp L = {M}, let ¢ be an integer,
and let 8 e lim; o mio( RM;). For suitably large ¢ one can represent 8 by
amapb : 87— RM;eWs (87 = the (¢ + ¢)-sphere). As 8™ is compact,
the image of b is contained in a finite subcomplex of R} ;. Hence there are
an integer k and a map a : 87" — RL. such that (Rj.z)a also represents
B. If a e lim; o, mirq(RL;) is the element represented by a, then clearly
miRjila = B, i.e., w{Rj:} is onto. The proof that kernel m {Rj;} = 0 is
similar.

In view of these propositions we can state

4.7 DErINITION. A map w : X — Y € 8p is called a weak homotopy equiva-
lence if Ps w is so.

Then clearly we have

4.8 ProprosiTiON. The functors Sp : ®s — 8$p and Ps : $p — ®s map weak
homotopy equivalences inio weak homotopy equivalences. Moreover they induce
(3.6) an equivalence between the homotopy theories of prespectra and of set
spectra.

5. Group spectra

A very useful class of spectra is formed by the group spectra. Their
usefulness lies in the facts that

(i) the homotopy theory of group spectra is equivalent to that of set
spectra, and
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(ii) one can apply to them semisimplicial as well as group theoretical
techniques, a combination which has already been applied so successfully
to group complexes (see [2], [3], [6], [14]).

5.1 DErinrrioN. A spectrum X is called an (abelian) group spectrum
if X is an (abelian) group for all ¢ and all operators are homomorphisms.
For two group spectra X and Y, a map w : X — Y e S$p is called a homo-
morphism if the restriction w | X : X — Y(p is a homomorphism for
all g. The category of group spectra and homomorphisms will be denoted
by $pe, and its full subcategory of abelian group spectra by $p.. A map
in Spe is called a weak homotopy equivalence if it is so when considered as a
map in §p.

In order to relate the categories $p and $pe we define a functor I :8p — 8pe
as follows.

5.2 DeEFiNtTION. For X e 8p let (FX) (g be the (free) group with a generator
Fa for every a e X, and one relation Fx = x; the face and degeneracy homo-
morphisms are given by

d; Fa = Fd; a, $;Fa = Fs;a forallz = 0.

Similarly for a map w : X — Y € 8p, let Fw : FX — FY be the homomorphism
given by Fa — Fwa for all «e X. Clearly the function F so defined is a
functor F : $p — Spe .

5.3 ProrosiTioN. Let X eSp, and let fX : X — FX be the map given by
a — Fa for all aeX. Then fX is natural and is a weak homotopy equiva-
lence.

54 CoroLLary. A map w: X — Y eSp is a weak homotopy equivalence
of and only of Fw : FX — FY s so.

Proof of Proposition 5.3. For L eS8+ let E, L denote the n-Eilenberg sub-
complex, i.e., the largest subcomplex of L which has no nondegenerate simplices
in dimension < n except the base point. Define a commutative diagram

(X!, &) L) (Y], 1)

| e |

PsX = (X, 6] —SIX =W popx = (v,
as follows: X = Eau X where d(7) is the largest integer < %1, £ = &|X5:,

Y’ is the subgroup complex (1.1) of ¥, generated by the image of X’ under
fi,mi = n:| Y, fi = fi| X5, and a; and b; are the inclusions. Then it is
easily verified that Sp {a:} and Sp {b;} are isomorphisms, and hence (4.8)
{a;} and {b;} are weak homotopy equivalences. Moreover Y, = FX; where
F denotes the “loops on the suspension” functor of Milnor [14], [7]. The

maps f; : X; — Y therefore induce isomorphisms of the homotopy groups
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in the stable range. This readily implies that {f;} is a weak homotopy
equivalence, and hence so is {f;}. The naturality of f is obvious.

5.5 ProposiTION. Let X €8pg, and let g : FX — X be the homomorphism
given by Foa — o for all ae X. Then g is natural and 1s a weak homotopy
equivalence.

Proof. Naturality is obvious. That g is a weak homotopy equivalence
follows from 5.3 and the fact that the composite map ¢g(fX) : X — X is the
identity map of X.

5.6 CoroLLARY. The functor F :8p — Spe and the inclusion functor
8pa — Sp induce an equivalence between the homotopy theories of set spectra and
of group spectra.

We end this section by showing that the category of abelian group spectra
Sp4 is ‘“isomorphic” to the category of abelian chain complexes 9G.

5.7 DerFINITION. For G e 8p,4 its Moore chain complex MG= {(M@),, 84}
is the chain complex defined by

(MG)q = G n N kernel d;,
9 = do | (MG),

for all ¢. Similarly for a homomorphism ¢ : G — @ let Mg : MG — MG’
be the induced chain map. Then clearly the function M so defined is a
functor M : Sp4 — 3G. Its main property is given by

5.8 ProrositioN. The functor M : Spys — 3G s an isomorphism of cale-
gories, i.e., there exists a functor M’ : G — Sp. such that the composite functors
M'M : $ps — Spa and MM’ : 8§ — G are naturally equivalent to the identity
Sfunctors of $pa and G respectively.

This is proved in exactly the same manner as the corresponding result
for abelian group complexes [3], [9].

CuaprrEr 1I. Toe Homorory RELATION
6. The reduced product

In order to define a homotopy relation for maps of set spectra, we need a
suitable notion of (reduced) product of the standard 1-simplex I [8] and a
set spectrum.

Let 8 be the category of set complexes, and let A : 8§, 8% — 84 be the
reduced product functor, i.e., the functor which assigns a complex K ¢ 8 and
L € 84 the complex with base point K A L obtained from K X L by identifying
the simplices of the form (e, *) with the appropriate degeneracy of the base
point. If Ie$ is the standard 1-simplex, X e$p and Ps X = {X,, &}, then
one would expect the reduced product of I and X to be a set spectrum of the
form Sp {I A X, (i A &)v:} where the v; would be suitable maps
S(I A X;) -1 A 8X;. However, although clearly the spaces RS(I A X,)
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and R(I A SX;) are homeomorphic, the complexes S(I A X;) and I A SX;
are, in general, not isomorphic, and it is not difficult to see that there is not
even a natural map S(I A X;) > I A SX,;. However there exists a natural
map in the “wrong” direction.

6.1 ProposiTiON. For KeS and L €Sy« there is a unique map
vy:K ASL—S(K A L)eSx
such that
'Y(a" (T) ¢)) = ((di—n s dj g, 7'): ¢n) wherej = dim ¢
for all ceK, reL, and ¢, e P. Moreover v is natural.

Proof. Verification of the existence, uniqueness, and naturality of v is
straightforward.

By using this natural map v it is now possible to construct another
functor « : 8§, 8+ — Sx which is better suited for our purpose. First we state

6.2 DerFiNiTioN.  For L e 8« and every integer 7 = 0 let 'L e S« be the
complex, an n-simplex of which is any (n -+ j)-simplex ¢ e L such that
dy---dyo =%and d;o0c = xforn <¢=n -+ j; * will be the appropriate
degeneracy of the base point ; and the operators on w’L will be those induced
by the operators of L (with omission, of course, of the last j face and de-
generacy operators). A map \ : L — L €84 induces a map 'L — 'L €8x,
and the function o’ so obtained is clearly a functor w’:8x — Sx. A
simple calculation yields

6.3 ProrosiTiOoN. Let Le8x and j = 0. Then there is a unique map
&+ S’ L — 'L e 84 such that (s, ¢o) = o for all oew™L. Moreover this
map is 1-1 (into) and is natural.

Now we state

6.4 DerFiniTION. Let K eS8 and Le 8y, and consider the (infinite) com-
mutative diagram

-_— e Y

l |

K A SPL —Y S(K a So’L) AN SHK A o'L)

g A St L 18(’&1{ At L)
K A So'L —Y5 S(K A o'L)

ix A toL

K AL
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where 87 denotes the j-fold suspension. Define an equivalence relation on
K A L by calling two simplices ay, a1e K A L equivalent if there isan
integer 7 and simplices Bo, Bie K A S’&’L such that
(ix A toL) - (ixg & S L)B: = ac, e=0,1,
(87y) o+ (Sv)vBo = (87) -+ (Sv)¥B:.

Denote by K+ L the resulting quotient complex, andbyn : K A L — K+L €8x
the projection. Clearly maps x : K — K e8 and X\ : L — L’ €84 induce a
map kA : K<L — K'<L' €84, and the function « so defined is a functor
+ 18, 8 — 8. Clearly, we have

6.5 ProrositioN. Let KeS and LeSy«. Thenthe mapw: K A L — K+L
s natural.

6.6 ProposiTioN. Let KeS and LeSs«. Then there is a unigue map
j i KeSL — S(K+L) €8+ such that the diagram

K AaSL -, S(K AL

[
K-8L —? S(K-L)

1s commuitative. Moreover j is natural and ts an isomorphism.

This follows readily from the fact that t,: Sw'SL — «'SL = SL is an
isomorphism. In view of this proposition we finally state

6.7 DerintTION. For K eS8, X e8p, and Ps X ={X;, &} a simple calcula-
tion shows that {K+X;, (ix+£)j '} is a prespectrum, and hence we may
define a set spectrum KX by

K-X = Sp {K+X:, (ix£)7 '}
Similarly for maps N: K — K'es and ¢ : X — X' eSp let Ps ¢ = {¢}.
Then Ny : K+X — K'+X' ¢ $p is the map given by Aoy = Sp {A+¢}. Clearly
the function < so defined is a functor « : 8, Sp — 8p, the reduced product
functor.

A useful consequence of this definition is

6.8 ProposiTioN. Let K €8, X €Sp, and Ps X = {X;, &}. Then the map
(i} 1 {K+X;, (ix+£)j "} — Ps (K+X) of Proposition 4.6 is an equivalence.

7. The homotopy relation

7.1 DerFiNiTION. For L e 8y identify L with P+L under the correspondence
o — w(¢, o). This induces an identification X = P+X for all X e $p.
Furthermore let jo, j1 : P — I €8 be the maps given by, ¢o = di_. i° where
¢' eI is the only nondegenerate 1-simplex and ¢ = 0, 1. Then two maps
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wy, w1 : X — Y e 8p will be called homotopic if thereisa mapw: I+X — Y € $p
(called homotopy) such that w(joeix) = wo and w(ji*ix) = wi. Nota-
tion: w :wy ~ w; or wo ~ Wy .

As in [8] one readily proves

7.2 ProPoSITION. Letw' : W - X, wo, w1 : X > Y, andw” : Y — Z eSp
be such that wy ~ wy. Then wwyw’ ~ w”w, w'.

As for set complexes [8] the homotopy relation is, in general, not an
equivalence relation. But, as will be shown below, this can be remedied by
restriction to a suitable subcategory Spz of Sp.

7.3 DerFINITION. Let X eSp, and let Ps X = {X,}. Then X is said to
satisfy the extension condition if X, satisfies the extension condition [7] for
all 2. The full subcategory of $p generated by such spectra will be denoted
by Sz .

7.4 Example. For every topological spectrum Y, clearly Sp Sin Y € Spx .

7.5 Example. Every group spectrum satisfies the extension condition be-
cause every group complex does so [16].

Combining this with Corollary 5.6 we get

7.6 ProrosiTioN. Let E : Spe — Sprbe the incluston functor. Then the com-
posite functor EF : 8p — Spz and the inclusion functor $pz — S$p tnduce an
equivalence between the homotopy theories of all set spectra and of those satistying
the extension condition.

7.7 DerFiNiTION. For every integer n = 0 let A" ¢ $ denote the standard
n-simplex [8], and " ¢ A" the only nondegenerate n-simplex, and for every
integer j with 0 < 7 = n let

A(d;) : A" —> A"es and A(s;) 1 A" A"eS

be the maps given by A(d;)i" " = d;¢* and A(s;)e" = s;4". For X, YeSp
the function complex Y™ ¢ $ then is the complex an n-simplex of which is
any map o : A"<X — Y e8p ; its faces d; ¢ and degeneracies s; o are the com-
positions

A(di) *ix

AN X A" X

IIA

Y, 0=<j=n,

A(Sj)'?:x [

An+1 'X An ’X

7.8 ProposITION. If X € Sp and Y e Spx, then Y™ satisfies the extension
condition.

Y, 0=j=n

Proof. If A7 C A" is as in [8], then it must be shown that any
map 2 : A7 +X — Y € $p can be extended over all of A"+X.
Let L € $x, let A C L be a subcomplex, and let M e S satisfy the extension
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condition. By a suitable modification of the main result of [5] one gets that
every map A"<A u A7+L — M e 8« can be extended over all of A"-L. If
Ps X = {X;, &}, Ps Y = {Y., o}, and Ps 2 = {z;}, then the map
20 1 A7+ Xy — Y, admits an extension w, : A"+X; — Y,. Now construct for
k > 0 maps

Vg o A"-(image Ek—l) U A?’X}c — Yk and Wy - An'Xk — Yk

by requiring that vx(Zan+;1) = n(Swr—1)7 where j is as in 6.6, that
v [(A7 +X3%) = 2, and that w;, be an extension of v, . Then clearly

Sp{we} : A" X — Y e $p
is an extension of z.

Finally applying to Proposition 7.8 the argument of [8, §2] we get

7.9 ProrosiTION. Let X € Sp and Y e Spr. Then the homotopy relation s
an equivalence relation on the maps X — Y ¢ $p.

8. Homotopy types and minimal spectra

In view of 7.2 and 7.9 it makes sense to introduce the notions homotopy
equivalence and homotopy type.

8.1 DeFiniTiON. A map w : X — Y € $pg is called a homotopy equiva-
lence if there is a map w' : ¥ — X € $px (called homotopy snverse of w) such
that w'w ~ ix and ww’ ~ iy . In view of 7.2 and 7.9 any two homotopy in-
verses of w are homotopie, and w’ is a homotopy equivalence itself. Also the
composition of two homotopy equivalences is again one.

Two spectra X, Y e Spr are said to have the same homotopy type if there
exists a homotopy equivalence w: X — Y. Clearly “having the same
homotopy type’ is an equivalence relation.

As for set complexes a (theoretical) homotopy-type classification of spectra
may be obtained using an appropriate notion of minimal spectrum.

8.2 DeriNiTION. Let M € Spx, and let Ps M = {M,}. Then M will be
called minimal if M, is minimal [15] for all 2. For X e Spz a subspectrum
M C X is called a minimal subspectrum if (i) M is minimal, and (ii) the
inclusion map M — X is a homotopy equivalence.

As for set complexes one then has
8.3 ProrosiTiON. Every spectrum X e $pz has a minimal subspectrum.

8.4 ProrosiTioN. Let M, N € Spr be minimal, and let w : M — N be a ho-
motopy equivalence. Then w is an tsomorphism.

The proof of 8.3 is essentially the same as for set complexes [4] by using
induction on the integer n(a) (a € X) where n(a) denotes the smallest integer
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such that d; @« = = forj > n(a) and dy *++ do(ey @ = *; 8.4 follows at once
from the corresponding result for set complexes [15].

8.5 CoroLLARY. Let X € Spr, let M, N C X be minimal subspectra, let
j i+ M — X be the inclusion, and p : X — N a homotopy inverse of the inclusion.
Then the composition pj : M — N is an isomorphism.

8.6 CoroLLARY. Let X, Y ¢ 8pr. Then X and Y have the same homotopy
type of and only if they have isomorphic minimal subspectra.

9. Weak homotopy equivalences and the homotopy relation
The main purpose of this section is to prove

9.1 ProrosiTioN. Let @ be a category. Then a functor Q: Spr — C is a
homotopy functor (3.6) if and only if w ~ w’ implies Quw = Qu'.

Proof. Let @ : $pz — @ be a homotopy functor, let wy, wy : X — Y ¢ Spx’
and let w:wy ~ wy. If p: I — P e 8§ is the only such map, then pj, =
pj1 = 1p , and it is not difficult to verify that joeix , ji*¢x , and p+ix are weak
homotopy equivalences. So are (5.4) the maps F(josix), F(ji *ix), and
F(peix). Consequently QF (joeix) = QF(p+ix)”" = QF(ji*ix), and it fol-

lows that
Quo = (QFY)7H(QFY) (Qw)(Q(jo+ix))
= (QfY) 7/ (QFw) (QF (jo+ix) ) (QfX)
= (QFY ) (QFw)(QF (jr+ix)) (QfX)
= (QFY ) (QFY)(QW)(Q(ji+ix)) = Qui.

The other half of the proposition follows at once from

9.2 PROPOSITION. A map in Spg is a weak homotopy equivalence if and only
if 1t is a homotopy equivalence.

Proof. Letw:X — Y e 8pr, and let Ps X = {X,}, Ps Y = {V}, and
Psw = {w;}. Then by definition [7],

Wn(Xz) = 7rn+1(X'i+1) and m,(Y;) = 7rn+1(Yi+1)

for all n and ¢ (the n-simplices of X; which have all their faces = * coincide
with the (n + 1)-simplices of X, with this property).

Now if w is a homotopy equivalence, then so is w; : X; — Y, for all 2.
This implies that the w; induce isomorphisms of all homotopy groups, and
hence w is a weak homotopy equivalence.

Conversely if w is a weak homotopy equivalence, we may (§8) assume that
X and Y are minimal. Hence so are X; and Y; for all 2. The maps
w; ¢ X; — Y; induce isomorphisms of all homotopy groups, and hence [15] are
isomorphisms. And so is therefore the map w.
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10. Homotopy groups

We end by defining the homotopy groups of a spectrum and expressing
(weak) homotopy equivalences in terms of them. The definition will be in
two stages, first for spectra which satisfy the extension condition, and then
for all spectra. Both definitions agree, of course, on the category Spx .

10.1 DerFiniTION. Let X € Spr, and let Ps X = {X,}. Then (see 9.2)
Ta(X:) = Tnt1(Xsp1) for alln and <. Hence for every integer ¢ we may define
7q X, the ¢** homotopy group of X, by

Fq X = weri(X5) where ¢ + ¢ > 0.
Similarly for a map w : X — Y e $pr with Ps w = {w.} we put
FoW = wgri(w;) t T X > m Y where ¢ + ¢ > 0.
The functions #, so defined are clearly functors.

10.2 DerFinITION. For X e 8p and every integer ¢ we define w, X, the ¢t*
homotopy group of X by
me X = 74 FX.

Similarly fora map w : X — Y € $p we define myw = 7y Fw. The functions
mq 50 defined are clearly functors, and an argument similar to the one used
in the proof of Proposition 9.1 yields

10.3 ProposiTioNn. Let w,, wi:X — Y e 8p be homotopic. Then
me Wy = mewy for all q.
Immediate consequences of 5.4 and 9.2 are

10.4 ProposiTiON. A map w : X — Y € 8p is a weak homotopy equivalence
if and only if w induces isomorphisms of all homotopy groups.

10.5 ProrositioN. A map w : X — Y € $pz s a homolopy equivalence if
and only if it induces tsomorphisms of all homotopy groups.

That the two definitions of homotopy groups agree on Spg is stated in the
following proposition, which readily follows from 5.3.

10.6 ProrosiTioN. Let X € Spr. Then the natural homomorphism
TF(fX) : Tg X > 7 FX = 7, X
s an tsomorphism for all q.
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