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Introduction

By an application of the Smith classes to the tubular neighborhood of the
diagonal of the topological square X of a finitely triangulable space X,
W.-T. Wu [8] introduced his immersion classes xI/n(X) for every n 1, 2,
and proved that a necessary condition for X to be immersible into the n-
dimensional Euclidean space R is (X) 0. By means of this condition,
he proved that the n-dimensional skeleton of the unit (m 2)-simplex
cannot be immersed in R if n _-< m _-< 2n 1. His method is purely com-
binatorial, and hence it cannot be extended to general spaces.

In a recent paper on isotopy invariants [1], the author defined the envelop-
ing space E,(X) of any given topological space X for each integer m 1.
If X is finitely triangulable, then En(X) has the same homotopy type as the
boundary of a tubular neighborhood of the diagonal in the topological power
Xm.
The objective of the present paper is to pply the Smith theory to E,(X).

This leads to the immersion classes I,,(X) defined for every topological
space X. If X is a metric space, we consider u subspace E,(X, ) of E,(X)
for every real number ti > 0 and prove that the inclusion E,(E, ) E,n(X)
is homotopy equivulence. This enubles us to loculize the situation and to
establish the muin theorem thut necessary condition for a compact metric
spuce X to be immersible into R is I, (X) 0.

CHAPTER I. GEOMETRICAL CONSTRUCTIONS

1. Residual and enveloping spaces
Let X be an arbitrary topological space, and m > 1 a given integer. Con-

sider the m (topological) power
W X

of the spuce X; in other words, W denotes the topological product
X X X X of m copies of the spuce X. There is a natural imbedding

d" X--.W

defined by d(x) (x,..., x) W for every x in X. This imbedding d is
called the diagonal imbedding of X into its m power X. By means of d,
the space X can be identified with a subspace d(X) of X, namely, the
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diagonal of the mh power Xm. Thus, we obtain a pair (W, X) of a space
W X and a subspace X of W.
The mth residual space of the space X is defined to be the subspace

R X) w\x xmx
of the mt’ topological power X, where W\X denotes the set-theoretic differ-
ence.

Next, let us consider the space P(W) of all paths z I- W in the topo-
logical power W X of the space X with the usual compact-open topology.
The m enveloping space of the space X is defined to be the subspace

E,(X) E(W, X) E(X, X)

of the space P(X) which consists of all paths z [-- W such that a(t) e X
if and only if 0. In other words, a path e P(W) is in E,(X) if and
only if it issues from X and never comes back to X again.
As shown in [1], the isotopy types of the spaces R,(X) and E,(X) are

isotopy invariants of the space X. Hence, every isotopy invariant of Rm(X)
or E,(X) is an isotopy invariant of X. In particular, every homotopy
invariant of R,(X) or Era(X) is an isotopy invariant of X, [2].

2. Operations of the cyclic group
Let m > 1 be a given integer, and let G denote the cyclic group of order

m with ( as a generator. Then G acts on the topological power W X
as a group of left operators defined by

(Xl X2 ", Xm--1, Xm) (X2 X3 "’’, Xm

for every point x (xl,..., xm) of X". Then the diagonal X of X is
precisely the set of all fixed points of and hence of all elements in G. Fur-
thermore, maps the subspace R,(X) of X homeomorphically onto itself.
It follows that G acts on the mh residual space R.(X) of X without fixed
point provided that m is a prime.

Next, let e Em(X) be arbitrarily given. Since leaves X pointwise
fixed and sends R,(X) into itself, it follows that the composed map

o:I--X
is in Era(X). Therefore, the cyclic group G acts on the mh enveloping space
Era(X) of X by means of the operation defined by

()

Since (1) e R(X) and has no fixed point in Rm(X),for every e Em(X).
it follows that

(o-) o" ( eE,(X)).

Hence G acts on Era(X) without fixed point provided that m is a prime.
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The orbit spaces

R*(X) R,(X) /G and E*(X) E,(X) /G
will be called the m cyclic residual space and the m cyclic enveloping space
of X respectively. If i X- Y is an imbedding, then i induces imbeddings

,() R.(X) -- R.(Y), E;(i) E*(X) ---> E*(Y)
in the obvious way. Furthermore, if the imbedding i is an isotopy equivalence
[2, p. 168], it follows as in [1, p. 343] that the imbeddings R()* and E.(i)*
re isotopy equivalences. Hence the isotopy type of the spaces R*(X) and
E*(X) are isotopy invnriants of the space X.

3. The natura projections
Consider the m’ enveloping space E,(X) and the m’ residual space

R,(X) of a given space X as defined in 1. Let be an arbitrary point in
E(X) then is a path a I - X such that (t) e X if and only if 0.
In particular, (1) is a point of R,(X). Hence, the assignment r-- (1)
defines a function

,:(x) R(X)

which will be called the natural projection from E.(X) to R.(X). Since
En(X) is a subspace of the space P(X") of pths in X with the compact-
open topology and R.(X) is subspce of X, it is obvious that r is con-
tinuous.

Next, considering the homeomorphisms on both E,(X) and R,n(X) as
defined in 2, we obtain the following diagram"

E,(X)

E.(X) ----, R,( X).
From the definitions of the mappings and , one can easily see that the
preceding rectangle is commutative, i.e.,

o=or
holds. It follows that r induces a mapping

* E.,(X) - R.,(X)

in the orbit spaces. This continuous map will be called the natural projection
from E*(X) to R*(X).

4. The subspace E.(X, )
Throughout the present section, let X be an arbitrarily given metric space
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with a distance function
d:XXX--R.

This distance function d in X induces a distance function

d X" X X’.__. R

in the topological power X defined by

d(u, v) Max {d(ui, vi) i 1, ..., m}
for arbitrary points u (ul, -.., urn) and v (vi, ..., vm) in Xm.

For any positive real number ti, let E(X, 6) denote the subspace of the
mu enveloping space E(X) which consists of all paths e E,(X) satisfying
the condition

d[(0), (t) <
for every e I. Obviously, E,(X, 6) is invariant under the operators G
defined on E(X) in 2. In fact, sends E(X, ) onto itself. Therefore,
we have the orbit space

E(X, 6) E,,,(X, 6) /a.

TnonM 4.1. There exists a homotopy

h Era(X) --+ E(X) (re I)

satisfying the.following conditions"
(4.1A) ho is the identity map on E,(X).
(4.1B) hl sends E(X) into E,(X, 6).
(4.1C) For every e I, ht sends the subspace E,(X, 6) into itself.
(4.1D) For every e I, ht ht

Proof. Define a real-valued function on the topological product
E(X) X I by taking

(, t) - sup__<_ d[(0), ()

for every r e E(X) and every e I. Continuity of is obvious. Further-
more, for any given a in E,(X), the function m I --+ I defined by

(t) min [(r, t), 1] (te I)

is continuous and nondccreasing. By the definition of E,(X), we have
(t) 0 if and only if t= O. Hcncc we my define a continuous real
function

:E,,,(X) ---> I

by tking u() to be the unique solution of the cqu’-ation

a(t) 1

in the variable e I. It is easily verified that 0 < **() < 1 for each in
E(X)
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By means of the continuous real function , we may define a homotopy

ht E,(X) -- E,n(X) (t e I)

as follows. For each path a e E,n(X) and each I, ht((r) E,(X) is defined
to be the path in X given by

[ht(o’)](s) a[s- st "t- st(z)]

for every s e I. Intuitively speaking, ht(o’) is obtained from z by omitting
the part of z outside of the point [1 -t- t(z)].

It follows immediately from the definition of the homotopy ht that h0
is the identity map on E,n(X). Hence (4.1A) holds.
By the construction of , one can easily verify that

d{[hl(a)](0), [hl()](t)} d{(0), z[tt(z)]} [1 t(z)] <
for each e Era(X) and each e I. Hence hi() is in Era(X, ). This proves

By the definition of ht, it is clear that ht sends E,(X, ) into itself. Hence
(4.1C) is satisfied.
Since ht is defined essentially coordinatewise, we obviously have (4.1D).

This completes the proof of (4.1).
Because of (4.1D), the homotopy ht induces a homotopy

h*t E*(Z) --> E*(X) (t e I)

of the m cyclic enveloping space

E*(X) E,(X) /G.

The conditions (4.1A-C) imply that h’ is the identity map on E*(X), h*
sends E*(X) into the subspace

and ht* sends E(X, ) into itself. Hence, we have the following corollary.

CooA: 4.2. The inclusion map

, E (X, c E (X)

is a homotopy equivalence.

CHAPTER II. APPLICATION TO IMMERSIONS

5. Immersion classes

By an imbedding of a space X into a space Y, we mean a continuous map

f X-->Y
which carries X homeomorphically onto a subspace f(X) of Y.
By an immersion of a space X into a space Y, we mean a continuous map

g" X---Y
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such that, for each point x X, there exists a neighborhood U of x in X such
that the restriction g U is an imbedding of U into Y.

Let X be an arbitrarily given space, and m > 1 any prime number.
Consider the mh residual space R,(X) and the mh enveloping space

Era(X) of the given space X together with the periodic homeomorphisms on
Rm(X) and E(X) induced by the operation

(x, x, ..., _, x) - (x, x, -.-, x, x).

The Smith invariants defined in [4] and [8] cn be obviously generalized to
singular homology. Since the homeomorphisms ure free of fixed points,
the Smith characteristic classes of the pairs (R,(X), ) and (E,(X), ) are
well-defined. Let us denote for each integer n 1, 2, 3,

.:(x) xn[(X), ], (X) Xn[E(X), ].

The classes ff% (X) are exactly the imbedding classes of X studied by W.-T.
Wu in [8]. The classes %(X) will be called the immersion classes of the
given space X. In case X is a finite simplicial complex, one can prove that
these immersion classes are essentiMly those introduced by Wu [8] by means
of the tubular neighborhood of X in Xm. The method of proof is similar to
that used by the author in [1] and hence is left to the interested reader.
For the important special case ra 2, we will use the simpler notation"

(x) ; (x), (x) (x).

The class (X) will be called the n-dimensional imbedding class of X, and
(X) will be called the n-dimensional immersion class of X.
The natural projection

"E(X) -- R(X)induces a homomorphism

*" H * G) H E*(R(x) ((x) )

for each integer n and every abelian coefficient group G. Since rr is induced
by the natural projection

"E(X) - R(X)

which commutes with , we have the following proposition.

PnOeOST,ON 5.1. For every n 1, 2, -.., we have
r...(x)] %n(x).

6. Homomorphisms induced by imbeddings

Let us consider an arbitrarily given imbedding i" X--+ Y of a space X
into any space Y. According to 2, this imbedding i induces imbeddings

R*(i) * *R(X) R(Y),

R* i) E* X) -- E* Y)



IMMERSIONS OF COMPACT METRIC SPACES 421

As continuous mps, these imbeddings induce homomorphisms

R*m* i) Hn R* Y) G) --> Hn R* X) G)

Hn(E*(X);G)E** i) H E* (Y) G) ---+

for each dimension n and every abelin coecient group G. In cse i is an
isotopy equivalence, thenR() nd (z) are obviously isotopy equivalences,
nd hence we get the following proposition.

PROPOSITION 6.1. If i" X Y is an isotopy equivalence, then the induced
homomorphisms R*(i) and E* (i) are isomorphisms.

The following proposition is obvious.

PROPOSITION 6.2. For an arbitrary imbedding i X Y we always have

R*(i)[ (Y)] (X) E (i)[(Y)] (X)

It follows from (6.1) and (6.2) that the immersion classes =(X), as well
as the imbedding classes :(X), of any given topological space X ure isotopy
invariants [2].

7. Homomorphisms induced bI immersions

In the present section, we are concerned with an arbitrarily given immersion
j X Y of a compact metric space X into any topological space Y.

For each point x of X, choose an open neighborhood U of x in X such that
j[U is an imbedding. Since X is compact, the open cover

hs a finite subcover if; in other words, there exists a finite number of points
Xl, "", xq in X such that the subfamily

of covers the space X. Let > 0 denote Lebesgue number of if, that
is to say, is a positive real number such that every subset of X with diameter
not greter than v is contained in at least one member of ft.

Let -, and consider the subspace Era(X, 5) of the m enveloping
spuce E(X) of the metric space X as defined in 4.

Let e E(X, ) be arbitrarily given. Since I X is a path in the
m topological power X of X, we my compose z with the m topological
power

3"’X Y

of the given immersion j X Y and obtain a path

fro.3 oz

By the choice of the real number > 0, one can easily see that jo z is in
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the mh enveloping space Era(Y). In fact, jm defines an imbedding

E(j) E,(X, ) - E,(Y).

Since E,(j) commutes with the periodic homeomorphisms , it induces
an imbedding

E(3) E(X, ) E(Y).

For each dimension n and every abelian coefficient group G, *E(3) induces
a homomorphism

E*(j, ) H(E(Y); G) U (E(X, ); G).

The following lemmu is obvious.

LEMM7.1. For each n 1,2, we have

E:* (j, ) [:(Y)] x[E(X, ) ].

Next, consider the inclusion map

E(X, ) E(X)

induced by the inclusion map

i" E(X, ) E(X)

which commutes with the periodic homeomorphisms on E(X, ) and

For each dimension n and every abelian coefficient group G, i* induces a
homomorphism

$ S$z S [E(X);G] H (X, );Gl.

The following lemma is obvious.

LEMM7.2. For each n 1,2, we have
$$[(X)] x [E(X, ), ].

Since i* is a homotopy equivalence by (4.2), we have the following lemma.

LE 7.3. The homomorphism i** is an isomorphism.

By means of the inverse of i**, we may define a homomorphism

E**" - ** [E(Y) G] H [E(X) G](3) (i**) o E (j, )’H *

for each dimension n and every abelian coefficient group G. One can easily
verify thut E*(j) is independent of the choice of the positNe real number
used in the construction.
Combining (7.1) and (7.2), we get the following theorem.

ToanM 7.4. For each n 1, 2, we have

* 2E ()[(Y)] (Z)
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8. Main theorem
THEOREM 8.1. If a compact metric space X can be immersed in the n-di-

mensional Euclidean space R’, then n(X) O.

Because of (5.1) and (7.4), this theorem is a consequence of the following
lemma which was known to W.-T. Wu [8].

LEMMA 8.2. n(Rn) O.

Proof. Consider the unit (n 1)-sphere S- in Rn, and define a con-
tinuous map

f n(n) -as follows. Let (x, y) be an arbitrary point of the second residual space
R(R). Then x and y are two distinct points in R and hence determine a
directed line x. From the origin 0 of R, draw a half line along the direction
x. This half line meets S- at a unique point f(x, y). The assignment
(x, y) f(x, y) defines u continuous mup f from R(R) into Sn-.
Now consider the homeomorphisms

" n(n) (n), - -defined by (x, y) (y, x) for every point (x, y) e R(R’) and (z) -z
for every z e Then we have

R(R’) R(Rn)/, P’-= S’-/,
where P- denotes the (n 1)-dimensional real projective space.

Since f f, f induces continuous mup

f*. n(n) p-.

For each dimension q and every abelian coefficient group G, f* induces a
homomorphism

f** H(P-; G) H[ (R’)G]R*
As in [4] and [8], we obtain

(n’) f**[x s-, f) ].

For the special case q n, we have

x(Z-, ) 0

since P’- is of dimension n 1. This implies

(n) 0

and completes the proof of (8.2).
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