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The lgebm of differential forms on smooth mnifold forms an anticom-
muttive cochain lgebm which hs been studied for mny years. As is
shown by the theorems of Borel nd Chevlley (see Chapter 2), such lgebms
hve direct ppliction in topology. Other pplictions, such as to symmetric
spces, s well as to topics directly related to differential geometry, re now
well-known.
The purpose of this pper is to construct n nticommuttive cochin

lgebr, over the rel numbers, for ny countable simplicil complex. This
algebr has the expected properties with respect to mps, and the derived
lgebm is isomorphic to the rel, singular cohomology lgebm. In the sec-
ond chapter, I use this lgebm to give n extension of Borel’s theorem.

It is easy to see that nticommutative cochins show the existence of new
secondary cohomology operations, which re similar to the triple product of
Mssey. These operations will be the subiect of subsequent pper.

I would like to thnk W. S. Massey nd N. Stein for their help and en-
couragement in connection with this work.

I. THE COCHAIN ALGEBRA

The purpose of this chapter is to describe the construction of n anti-
commutative cochin algebra with rel coefficients for countable simplicil
complex. After preliminary lgebric section, the construction is described
in Section 2. In Section 3, I show that the derived lgebm of this cochain
lgebm is isomorphic to the singular cohomology lgebm of the space of the
complex.

1. Algebraic preliminaries
Do 1.1. A real DG-algebra will mean graded, ssocitive l-

gebm over the rel numbers, endowed with unit, 1, nd differential, d, of
degree 1.

We denote the degree of n element by superscript.
In order to study systems of rel DG-lgebras, we introduce some notions

which, in the case of groups, re discussed in [7]. Let M be directed set.
Then, there is the notion of n inverse fmily of rel DG-lgebrs over M,
in which we require that the proiection mps be degree-preserving lgebra
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ANTICOMMUTATIVE COCHAIN ALGEBRAS 377

homomorphisms, which commute with the differential. Given any set of
real DG-algebras, in particular an inverse family, one may define their direct
product, with the obvious coordinatewise multiplication and differentiation.
The inverse limit may then be defined as a subalgebra of the direct product,
and clearly has the structure of a real DG-algebra.

I shall use the following notations"

{ ;r} is the inverse family of real DG-algebras, , with pro-
iection maps, v, defined whenever

inv lim is the inverse limit algebra.
d, d(R) are the differentials on and , respectively.
d], d shall mean d I] and d I, respectively.

H Ker d/Im n-1d H Kerd/Im d(R)-l,
H--- nH], H- H.

The following lemma is immediate.

LEMMA 1.1. Let I ;r} be an inverse system of real DG-algebras, over a
directed set M. Then, the collection of derived groups and induced maps,
{H, (r)*}, is an inverse system of real, graded algebras, with multiplication
induced from the multiplication in the

In standard fashion, we define the algebra inv lim HI. For what
follows in Sections 2 and 3, we must consider the relation between

n inv lim HI and H. If all of the algebras which we have mentioned
above were finite-dimensional vector spaces, then Theorem 6.1 of VIII in [7]
would imply that these two were isomorphic. Unfortunately, we cannot
restrict attention to the case of finite-dimensional vector spaces. The fol-
lowing lemmas and theorem discuss the relation between these two algebras.

IEMMA 1.2. Let {x} stand for a class in H,, represented by x, in .
Write an element x in by (x), indicating that the ath coordinate is x De-
fine a map

F H-- inv limH by F{(x)} ({x}),

where F acting on an element is written as F followed by that element. Then F
is a natural (algebra) monomorphism.

Proof. F is clearly well-defined because if r x x, then ()*/x}
x}. F is obviously an algebra homomorphism, and is easily seen to have
zero kernel.
For completeness, I shall show that F is natural. Let , /, etc. be

another such system. Suppose that we are given, for each a, an algebra
homomorphism f which preserves all structures. Then f (f)

In the remainder of the paper, such verifications will be left to the reader.
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H and a map f. H --./,induces a map ] inv lim H$ --. inv lim -both of which clearly extend to algebra homomorphisms of the direct sums.
That F is natural means that the following diagram is commutative"

H. f*
../ B.

E- inv lim. H ] E- inv lim B.
But this is immediate, since Ff.{x} Ff.{(x.)} F{(.)} ({a.});
IF{ (a.)} ]({x.}) ({.}), also. This completes the proof of the lemma.

Remark. I do not know whether F is onto, in general. I shall now give
conditions on the directed set M, and on the maps r{ which will insure that
F is onto. These conditions will be sufficient for the applications in later
sections.

:LEMMA 1.3. Let M be a directed set which is countable and (hence) has a

cofinal sequence. Consider an inverse family of real DG-algebras over M, and
assume that all the projection maps are onto. Suppose further that M has a
least element. Then the map F of the previous lemma is onto.

Proof. We must show that F is onto. That is, if (y.) e inv lim. H,
y. being a cohomology class of H, we must find, for each a, an element
x., xeKerd"., such that {x.} y and if a < , then z{xo x..
We proceed to construct (x.) satisfying these conditions.

Let u e M be the least element. Write the cofinal sequence

<2 < "".

We may clearly extend this sequence to a mximal cofinl sequence, which
we shll write as # < < # <....
The proof has two parts. First, I shall show how to construct the elements

x,, corresponding to the mximal cofinl sequence. Choose x e y,, i.e.,
x, is a representative for y. Now, (rl)*y y. Hence, there are

UD1 and u., such that {u.} y., {u.} y., and z.u. u.. Choose
" is onto, we may pick w, vw’ w.w so that x. u. + dw. Because .

"dw u. + dw x.. Hence, we mayNow, "(u W dw’) u + v.
define x. u dw, and the relation is satisfied, i.e., "X X.
As the mximgl cofinal sequence is countable, one may use this process to

define x. by induction, so that the two requirements are met.
Secondly, I show how the above construction permits us to define x,

for ech eM. Suppose that eM, a ,, for anyi. Let k be the
smallest integer such that < . x, has been defined. Define x
"x. This defines x for each a M. Clearly, x Her d and {x} y
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To prove that if a < /, then , x x, I distinguish four simple cases"

Assume in each of these cases that a < .
1. a and both belong to the cofinal sequence. This case is obvious.
2. f belongs to the cofinal sequence, a does not. There is a 7 such that

a < 7 < (possibly 7 ), where 7 belongs to the sequence and by defini-
X@ Xa a Xtionx= x. But thenx vx x

3. a belongs to the sequence, does not. x is defined in terms of x,,
where 7 belongs to he cofinal sequence. Then x r x, x,

4. Neither a nor belongs to the cofinal sequence. Suppose that the

quence, a’ < ’. Then x rx, r, x,
r x. This completes the proof of the lemma.

THEOREM 1.1. Let M be a directed set which is countable, and (hence) con-
tains a cofinal sequence. Let { -,} be an inverse system of real DG-algebras
over M, such that each r, is surjective. Then

F H -- inv lim H,
is an algebra isomorphism which is natural, as explained in Lemma 1.2.

Proof. We define two subsets of M as follows" Let fl be in the cofinal
sequence; set M+ l’l’ > fl} and M-= M- M+. Notice thatM
M+u M-. We must define x for each a e M, satisfying conditions as in the
above lemma. But by that lemma, we may do this for each element of M+

If , e M-, choose/ e M+ so that 7 < . (Recall that M is a directed set.)
Define x v x To verify that the definition is good, suppose ’ e M+,, < /’. Choose M+ so that < ti, t< 3. Then we have rx=
x; ,x- x,; rx= x, by definition. But then x x

’ ’x, Hence, the definition is good. There are, X ,/, X
four consistency relations to be verified, but these are similar to those of the
above lemma, and are left to the reader.

Remark. This completes the algebraic preliminaries. Theorem 1.1 may
be generalized to noncountable sets and other coefficient groups, but such
considerations are not necessary for this paper.

2. An anticommutative cochain algebra
Let K be a countable simplicial complex, M the directed set of all finite

subcomplexes, partially ordered by inclusion. We verify immediately that
M has a cofinal sequence, for we make such a sequence by adding on the
simplices one at a time. The first stage in the construction is the construc-
tion of an anticommutative cochain algebra on a finite subcomplex of K.

LEMMA 2.1. In the language of [3, I, Section 3] a finite complex has a fine
anticommutative R-cover, i.e., an anticommutative cochain algebra whose derived
algebra is the correct cohomology algebra.
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Proof. Imbed the complex in Euclidean space. Consider the cover of
differential forms on the Euclidean spce. The section of this cover over the
complex is the desired cover. (Recall that the elements whose supports do
not meet the complex re fctored out.)
Our goal is to extend this procedure to countable simplicil complexes.

As we shll see, we cn then compute the rel cohomology rings of certain
fibre spces.

THEOREM 2.1. Let K be a countable simplicial complex, whose vertices have
been ordered. Let M be the directed set offinite subcomplexes, ordered by inclu-
sion. Fix, once and for all, an increasing sequence of Euclidean spaces

EE E ....
Then we may choose a family of imbeddings of the subcomplexes , a -- E"for each eM such that if < , then

E. E

is a commutative diagram.

Proofi We imbed the increasing family of Euclidean spaces in Hilbert
space, H

E E H

so that the n basis vectors in E go into the first n basis vectors in H, say

(n-

(1,0,0,...), (0,1,0,0,...), ..., (0,...,0,1,0,...)

in the representation .
Let a e M. Let the vertices of a, in the ordering of K, be v, v.

We map the vertices of a into the basis vectors of H which correspond to
them in the natural order. If two vertices of a are ioined by a 1-simplex,
map the l:simplex linearly into the line joining the two corresponding basis
vectors of H. Proceeding inductively in this way, we define a map

a-+ ETM.

Notice that , preserves order, i.e., if i < j, rhea ,(v) precedes ,(v.)
in the natural order of the basis vectors in H. We define n, as the
smallest n such that ,(a) is contained in ETM. n is then a nondecreasing
function of a, in the sense that if a </, then n, =< n.

I now describe an anticommutative cochain algebra for the complex K.
By the above lemma, we associate with each a e M an anticommutative
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cochain algebra, , with respect to the imbedding a -- En. Suppose
a < . I shall define a map . We have a commutative diagram

E- c E.
Let c be a cochain on f, i.e., e ’. comes from a form on_
5. The inclusion ETM c E induces a map on forms i* )(E") )(En")
The imbedding ," a-- E"" then gives an element of 9, corresponding to
(5). This defines a map ,
It is clear that -- , is well-defined, and that if a < < , then,, for the inclusions E" c En E are transitive.
We must show that r, is onto. However, this is immediate, since if

ETM E", a form on ETM may clearly be extended to E.
DEFINITION 2.1. If K is a countable simplicial complex whose vertices

have been ordered, and if M is the directed set of finite subcomplexes, then
the limit algebra

9 inv lim,M 9,

is the anticommutative cochain algebra for K, written (K).

Remark. The above procedure depended on ordering the vertices of K.
The reader can easily verify that 9(K) does not depend on the ordering, up
to an isomorphism. Hence, we shall not always specify the order in the fol-
lowing.

Recall that by Theorem 1.1, H
_ , inv lira, H, This isomorphism

will be used in the next section, where we shall study H (9).

3. Cohomology of simplicial complexes
We mke the following additional conventions"
A. K is a countable complex, with the weak topology.
B. H,(K) is the n simplicial cohomology group of K with real coeffi-

cients.
C. H’(K) is the nt singular cohomology group of K with real coefficients.
D. H*(K) , Hn(K), as an algebra with the cup-product.
The following lemma is an exercise in [7].

IEMMA 3.1. Let {K,}, a e M, be the set of finite subcomplexes of K. Let
(,)*’H(K)---+ H(K,) be induced by the inclusion K, Ka, when
a < ft. Then, for each q, {Hq (K,); (r,) *} forms an inverse system of groups,

We use cohomology based on infinite cochains, dual to homology based on finite
chains.
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and
inv lim, H(K,)

_
H(K).

Proof. For any K (or K), denote by Z (K) (or Z (K)) and B (K)
(or B(K)) the simplicial cocycles and coboundaries of K (or K), coeffi-
cients in the reals. We have an inverse family of exact sequences

0 -- B (K,) -- Z (K) -- Hq(K) -- 0.

By [7, p. 228] it follows that

0 -- inv lim Bq(K) -- inv lim, Z(K) -- inv lim Hq(K) --+ 0

is exact.
Since inv lim Z (K,) Z(K) and inv lim B (K) B (K), we have

the assertion.
Remark. This equivalence is easily seen to be natural in the category of

simplicial complexes and simplicial maps.

LEMMA 3.2. For any q, we have the following isomorphisms:

q., Hq(g,) H(K,); q, 3q(,) Hq(K,).

Proof. For the map /.q,, see [7, p. 200]. For the right-hand map, see
We shall use 3C to mean qh derived group, i.e., the derived[2, expos III].

group in dim q.

LEMMA 3.3 There is an isomorphism

H H*(K).
(The map will be defined in the proof.)

Proof. is to be the composition of three lsomorphlsms.

H F G
inv lim. H, H* H*inv lim, (K,) - K).

F is as in Section 1. is defined by the collection ,, with , as in the
previous lemma. G is obtained as follows"

inv lim. H*(K,) inv lira. H*(K,)

by the collection (,,). By Lemma 3.1, inv lim. H*(K.) -- H*(K).
These two maps, followed by/1, give the map G. Everything here is an
isomorphism.
We must now study multiplicative properties. F is a multiplicative map.

LEMMA 3.4. G. inv lim. H, -- H*(K) is a multiplicative map.

H* means En H; Ha* means E H.
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Proof. Consider the family of commutative diagrams"

inv lira. H. _G.% H*(K)

projl i*
H. 4,. H*(K,).

We know that 11 the maps, except possibly G., re multiplicative.
ing o the limit, we get the following commutative diagram"

P&ss-

H*(K)

inv lim. H. (i*)

inv lira, H* (K,).

G., and (4,) are addigive isomorphisms, so (i*) is also. Bug i* and
are mulgiplieagive. Therefore, G.4 is a mulgiplieagive isomorphism.
We eollee ghese faegs in ghe following heorem.

nonn 3.1. If K is a countable simplicial complex, and (K) is the
cochain algebra constructed above, then there is an algebra isomorphism

H(K) H*(K),
where

H(K) ((K)).

For completeness, we briefly discuss the question of induced maps. First
consider the case of two finite complexes, and a simplicial map f" S T.
Suppose that S and T are given fine anticommutative R-covers, say $ and
3. Then, using the Leray theory of intersections of complexes (see [2]) we
may define an induced map

]: os.

However, in the case where $ and 5 are defined in terms of imbeddings
Cs S E"’ and T Et, respectively, we may proceed in the fol-
lowing direct manner: Extend f to ] E’ E in a linear way. ] de-
fines a map ]* on forms. One easily checks that ]* gives a well-defined
map

f*: 5.

Now, letK and L be countable simplicial complexes, and let f K: onto L.
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Denote, as usual, the anticommutative cochain algebras by (K) and
(L). If a is a finite subcomplex of K, f(a) is a finite subcomplex of L.
As f is onto, {f(a)} consists of all finite subcomplexes of L. We have defined
maps

f* f(,)(L) -- ,(K).These are clearly natural with respect to inclusions, and define a map

]* inv lim ()(L) inv lim (K).

But, as f(a) ranges through M1 finite subcomplexes of L, this is lust mp

f inv lim (L) inv lim (K).

DEFINITION 3.1. f (L) (K) is cMled the mp induced by fi
The induced mps re clearly transitive, i.e., if

K onto onto K
f

,Ke fe
then (f.fi) f.f.
THEOREM 3.2. The map on cohomology which is induced by coincides,

under identification via the map , with the map induced by f on singular coho-
mology.

Proof. It is question of proving the commuttivity of the outer rec-
tangle of the following diagram:

Ho(K) F
inv lim H(K) inv lim H*(K) G H*(K)

(f)* l l (f") * l (f* lf*
H(L) F o H* G

inv lim, H,(L) inv lim, (L,) H*(L).

But the left and right squares are clearly commutative. As the assertion is
true for finite subcomplexes, the middle square is commutative, also.
Now, let K, be a finite subcomplex of K, and let (K,) be the anticom-

mutative cochain algebra on K,, i.e., ,. Consider the inclusion

i K,---> K.

Then, we define an induced map

i. (K) (K)

by projection to the ,h coordinate.

THEOREM 3.3. The map i* Hoo(K) ---> H.(K) corresponds, under identi-

fication via , to the map induced on singular cohomology, i* H*(K) -- H*(K.).
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Proof. Consider the diagram

H(K) F
inv lim H.(K), 4) inv lima H*(Ks) G H*+ (K)

H*(K,)
where /c, j are projections to the /h coordinate. It is easily verified that
each of the subdiagrams is commutative. As G..F and are iso-
morphisms, the theorem follows.

Remark, 1. This construction of a cochain algebra is canonical for ordered
complexes. We have defined induced maps only for onto maps and inclu-
sions of finite subcomplexes. The definition of induced maps in general,
which will turn the construction into a functor, is left to the reader.

Remarlc 2. The construction of Section 1 did not depend on the coefficient
domain being the real numbers. However, Section 2 depended on the real
numbers in a strong way. It is very likely that there are analogous results
for fields such as the complex numbers, etc. However, A. Borel has shown
[2] that when the coefficients are a field of characteristic p 0, there does
not exist a construction of anticommutative cochain algebras, on the cate-
gory of countable simplicial complexes, which gives the correct cohomology.
This fact, which may be inferred, of course, from the existence and nontrivial-
ity of the Steenrod operations, does not seem to be mentioned explicitly any-
where else in the literature.
Remark 3. Allendoerfer and Eells [1] have given a generalization of de

Rham’s theorem to integral cohomology. They deal with classes of forms
with singularities. Multiplication is not defined for the forms.
Remark 4. Eells [6] has given a description of forms on D-dimensional

manifolds, modeled on a Banach space. It seems to me that there is a reason-
able chance of constructing anticommutative cochains on countable simplicial
complexes, by imbedding them in such manifolds.

IX. SOME THEOREMS ON FIBRE SPACES

In this chapter, I show how the previous construction may be used to extend
a theorem of Borel [3, Th6orme 24.1]. The generalization is not strong, but
it is plausible that these techniques may be developed into a general theory.
The first section (Section 4) contains a summary of the techniques and a
statement of Borel’s theorem. Section 5 contains our main theorem, while
Section 6 is devoted to specific applications.

Real cohomology is to be understood. We denote Alexander-Spanier
theory by/*(), singular theory by H*(). If X is a countable, connected
simplicial complex, we write the anticommutative cochain algebra of the
previous chapter as (X), its derived algebra as 3C((X)). The spaces which
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we consider will be nice enough so that * and H* agree. The general
reference for these questions is [5].

4. Borel’s result
Consider a locally trivial fibre space (E, F, B; p). Assume, temporarily,

that E is a compact, finite-dimensional, separable metric space, which is con-
nected and locally connected. Assume that F is connected, and that *(F)
is an exterior algebra on a vector space spanned by odd-dimensional trans-
gressive elements. Assume that in the Leray spectral sequence of this fibra-
tion,

E *(B) (R) /*(F).
Under these assumptions, E and B both have fine, anticommutative R-

covers (= couvertures), say 8 and (. This permits the construction of a
fine, anticommutative R-cover 6 p-l(()o 8, and a map 5"(-- 6.
Let x, x be the transgressive generators of/*(F). Choose cochains
of transgression c,..., c e 6, and representatives of the transgression
bl, bn e (, so that if i" F-- E denotes the inclusion, we have

{i*(c)} x; b- dc; alli, 1 =< i =< n.

DEFINITION 4.1. Set 2 ( (R) /*(F). It is an anticommutative,
graded, cochain algebra, for the total degree. Define a differential d, on 2,
by setting

d(b (R) 1) db (R) 1, d(1 (R)x) -b(R) 1

and extending to in the obvious manner.

DEFINITION 4.2.

by setting

Define a linear map

(b (R) 1) iSb, (1 (R) x) c.

is a multiplicative homomorphism on 6t (R) 1. Since/*(F) is free, and
C is anticommutative, extends uniquely to a multiplicative homomorphism

It is immediate that hd d. Borel’s result is then

THEOREM 4.1.
phism

* c()

where (2) is the derived algebra of 2.

properties with respect to i and p.

I shall sketch those parts of the proof which are needed below.

Under the above assumptions, induces an algebra isomor-

-/*(E),

Furthermore, * has certain naturality

A filtra-
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tion is defined on oe by setting

Borel shows that in the resulting spectral sequence, say {r, 3r}, one has
1 63 (R) /*(F) c1 is partial differentiation with respect to .

(B) e
E is the graded algebra of (), with respect to the obvious filtration. He
then shows that induces a homomorphism of {} into {E}, the latter being
the Leray sequence of the fibre map. Then he shows

k*’= E=.
Hence, it follows that

5. Main theorems
We now make the following general assumptions"

(1) (E, F, B; p) is a locally trivial fibre space. E is 1-connected. We
take F to be a finite complex. (Actually, the results will hold if F is a com-
pact, connected, finite-dimensional, separable metric space which is HLC.)

(2) H*(F) is an exterior algebra on a vector space spanned by odd-
dimensional transgressive elements.

(3) B is a 1-connected, countable simplicial complex. We suppose that
there is a family of finite subcomplexes, B, beginning with a base point,
such that

(a) b0B1 B2 UBi= B,
(b) the inclusion map in Bn -- B induces isomorphisms

"* - for i < n.

Examples will be given in Section 6.
Denote the anticommutative cochain algebra on B by (B), that on Bn

(which occurs directly in the construction of Chapter I) by (B.). Then,
we have a map

(see Theorem 3.3). It follows from (3) above, and Whitehead’s theorem
[12] that there is an isomorphism

in. Hi(Bn R) -- Hi(B; R), i < n, n >= 2.

As the coefficients are the real numbers, we conclude that

()* e((B)) C((B.))
is an isomorphism in dimensions < n.
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Now, by (2) we may write

H*(F) A[ul] (R) (R) h[Un]

where dim u is odd, and each u is transgressive. If dim u-- 2p- 1,
then dim r(ui) 2p. We write

r(u,) v,e H*(B).
DEFINITION 5.1. Let E p-l(B); p p IE. Write the resulting

fibre space as (E., F, B, p). Denote the transgression in this fibre space
by r.

LEMMA 5.1. In (E, F, B p), we have, for each i, 1 <- i <= n,
(a) ui is transgressive,
(b) r.(u) i*
Proof. Consider the commutative diagram

where the vertical arrows are inclusions. Taking the fibre to be the fibre
over b0, the inclusion map is a map of pairs (E, F) --+ (E, F). We then
get a commutative diagram, p => 2,

H(E F) p

S

H-(F) !. J

H(E, F) H (B)

where 1 and . are the respective differentials of the pairs (E, F) and (E, F),
and where we identify H(B) and H(B, bo), etc. for p > 0.

If r(ui) v e H(B), then there is z e H(E, F) so that p*v zi,
.$

u z From the diagram, p* i*n V j* p*v j* Z Ui , U

3- Z". Hence if we set j* z 24 v i, we have the relations : u
p v , as desired.
We shall need to specify the transgression on the cochain level. By the
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results of Chapter I, identify H*(B) and ((B)). Let vi denote r(ui)
or the corresponding element in 3C((B)). For each i, choose b ,(B) so
that bi e vi 3C((B)). We put

b i(b) e(B,).

It follows from the above lemma that b represents rm(u).

DEFINITION 5.2. We put

2 (B) (R) H*(F), 2, (Bn) (R) H*(F).
These algebras are graded by the total degree, and are clearly anicommuta-
rive. Differentials are defined by specifying

d(b (R) 1) db (R) 1, b e(B), dn(b (R) 1) db (R) 1, be(Bn),

d(1 (R) u) bi (R) 1, d(1 (R) u:) b (R) 1,

and extending to and in the obvious way.

LEMMA 5.2. The map f 2 --+ 2, defined by

f, (i (R) Id) "(B) (R) H*(F) ---+ (B,) (R) H*(F)
commutes with the differentials, and induces a (multiplicative) homomorphism

Proof. Since f is clearly multiplicative, in view of the definitions of the
differentials, we need only check dn f, f, d on b (R) ui. However,

d,f,(b (R) u) d,(i b (R) ui) i db (R) u. - (-1)aeg(b’b) (R) 1,

f, d(b (R) u) f,(db (R) u " (-1)a"gb(b’b) (R) 1)

idb (R)u+ (-1) agi(b.b$) (R) 1.

In order to study ,the maps f* we introduce two spectral sequences. Fol-
lowing Borel [3] we define the following two filtrations"

Denote the resulting spectral sequences respectively by {,/} and
Then, as in [3, p. 184] we have the following.

LEMMA 5.3.

./
__
(B) (R) H*(F), ff, --- (B) (R) H*(F),

n/
__

5C((B.)) (R) H*(F), / --- ((B)) (R) H*(F).
In both cases, d is partial differentiation with respect to the first factor.
and are the obvious graded rings associated with 3C((B,) (R) H*(F) and
3C((B) (R) H*(F) ).



LEMMA 5.4. Let s be the smallest integer so that H(F) O, i > s. Let
n > s. Then f*’3e()-+ 3C(2,) is a (multiplicative) isomorphism in
dimensions < n- s.

Proof. Clearly, f preserves filtrations, and induces a homomorphism

For p < n, this map is an isomorphism on /,0 Then by [3, p. 130],
f* is an isomorphism in dimensions < n- s.

THEOnEM 5.1. Let (E, F, B; p) be a fibre space satisfying the three conditions
given above. Suppose H*(E) is finitely generated as an algebra (i.e., is a quo-
tient algebra of a tensor product of a polynomial algebra on finitely-many even-
dimensional generators and an exterior algebra on finitely-many odd-dimensional
generators). Then

H*(E)
_

3C((B) (R) H*(F)
as algebras.

Proof. In light of the first assumption, E is compact and HLC. Then the
singular cochains form a fine R-cover on En (see [2, II-13]). By [3, p. 136]
the transgression r does not depend on the theory /* or H*. Now
(B) is clearly a fine, anticommutative R-cover for B. Hence (see Borel
[3, Thormes 24.1, 25.1]), we have

*(E,)
__

3C((Bn) (R) H*(F) ).

Hence, there are algebra isomorphisms

g," H*(E,) 3C((B,) (R) H*(F)).
Consider the commutative diagram-- r(B,) -. r-l(F) -+ r-l(E,) -+ r-l(B,) --* r,-2(F) --

Id j* Id

..-- r,(B) -+ r-(F) -. r-(E)-* r,-(B) -* r,-.(F)---

in which the rows are exact, i,* is an isomorphism in dimensions < n. Hence,
it follows that j* r(E,) --+ r(E) is an isomorphism in dimensions < n 1.

Ef n > 2, Whitehead’s theorem [12] tells us that j*, H(E) ---+ H (,) is an
isomorphism for i < n 1. (Recall that H*(E) and H,(E) are dual vec-
tor spaces.)
As j* is multiplicative, it follows from Lemma 5.4 that

,$

x, H*(E)... 3n _+ H*(E,)
g*" 3C((B,) (R) H*(F)) f*" 3C((B) (R) U*(F))

is a multiplicative isomorphism in dimensions < n s.
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The proof will be completed by showing that given two graded algebras,
A and B, and a family of isomorphisms

Xm’<mA Y’<B, any m > 0,

if A is finitely-generated as an algebra, then there is an isomorphism

x’A ,B.

Write A F/I nd where F is free graded lgebm, nd I n ideal. F is a
tensor product of finitely-generated polynomiM nd exterior lgebms. An
ideal of F identifies with tensor product of n ideal in e&ch of these lgebras.
It is clear that n ideM in a finitely-generated exterior Mgebm is finitely-
generated, and Hilbert’s theorem assures us that n ideal in finitely-gener-
ated polynomial Mgebra is finitely-generated. Hence, I is finitely-generated.

Choose N greter thn the dimension of ny generator of F or I. Let
pa" F--, A be the projection. Define pB" F-- B by letting pB be XN o p
on the generators, and extending by freeness. Notice that p. and xN p

agree in dimensions < N.
Now, it is easy to see that A and B have the same number of generators in

each dimension. Hence, the image of p, contains the generators of B, so
that p. is onto. Set J Ker p,. It is immediate that J D_ I. Hence,
there is a multiplicative epimorphism

x A F/I--F/J B.

But clearly A and B are vector spaces, which have the same rank in each
dimension. Thus the epimorphism x must be 1-1.

Remarks. If H*(E) is not finitely-generated, the theorem asserts that the
two algebras are isomorphic in dimensions < n, for any n.
The assumption that F is compact is needed twice. (1) E must be com-

pact, so that we can find a fine, anticommuttive R-cover. (2) F must be
compact, so that in the Leray spectral sequence, E2 /*(B) (R)/*(F).

I conjecture that this theorem is valid for a larger class of fibre spaces;
this can be verified additively, in several cases.

Next, we consider cases when we can use Theorem 5.1 to compute effec-
tively. The following notion originated with Borel and Koszul [8]: Let

CpA be an integral domain, C* >=0 graded, additively free A-algebra,
with differential d of degree q- 1. Let H* _>_0 H be the derived algebra.

DEFINITION 5.3. A subalgebra R c C* is called a representative subalgebra
for H*, if

Over the real numbers.
Added in proof. A. I)old has shown that the algebras need not be multiplicatively

isomorphic, if A is not finitely-generated.
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()
(b)

R is a graded subalgebra of C, R C,
R Ker d,
in each class of H*, there is exactly one element of R.

Example. Take A to be the reals, and consider the complex projective space
P(C). Let C* )(P(C)) be the algebra of differential forms.

H* P[u.]/(u+1),
i.e., a truncated polynomial algebra of height n, on a two-dimensional gener-
ator, u2. Choose a representative u e u.. Let R be the subalgebra of C*
generated by u and 1. It is immediate that R is a representative subalgebra.
From now on A will be the reals.

THEOREM 5.2. Let X be a countable, simplicial complex. Suppose H*(X)
is a finite tensor product of monogenic polynomial algebras on even-dimensional
generators, and monogenic exterior algebras on odd-dimensional generators.
Take as C* the anticommutative cochain algebra (X). Then there is a repre-
sentative subalgebra R c C*, for H* X)

Proof. Write

H*(X) P[Xl] (R) (R) P[x,d (R) A[yl] (R) (R) A[ym],

where dim xi is even, dim yi is odd.
u, v (X). Define

For each i, select cocycles u e x v e y

R P[u] (R) (R) P[u,] (R) A[v] (R) (R) A[v,] c C*.
Clearly, R is a graded subalgebra, R C. Since any (formal) polynomial
in the ui and vs represents that same polynomial in xi and yj, we see that there
is exactly one element of R in each class of H*(X).
Examples of spaces satisfying the hypotheses of the preceding theorem are

Lie groups and finite products of K(r, n) spaces.
The following theorem, adapted directly from Borel [3], shows how repre-

sentative subalgebras are useful.

THEOREM 5.3. We take the same hypotheses as in Theorem 5.1. Furthermore,
suppose H*(B) has a representative subalgebra R (B). Define a differential
on H*(B) (R) H*(F) by specifying

d(b (R) 1) -0; d(1 (R) u) r(ui) (R) 1.

Then, H*(E) and (H*(B) (R) H*(F) are isomorphic.

Proof. By Theorem 5.1, it is sufficient to show that 5C((B) (R) H*(F))
and 5C(H*(B) (R) H*(F)) are isomorphic algebras. Consider the algebra
R (R) H*(F) endowed with the differential d(b (R) 1) 0, d(1 (R) u) 0 (R) 1,
where 0 is the unique element of R representing r(u). There is an obvious
map,

R (R) H*(F) -- H*(B) (R) H*(F)
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which clearly commutes with the differentials, and induces an isomorphism

]c" 3C(R (R) H*(F)) --> 5C(H*(B) (R) H*(F)).
On the other hand, if we denote the inclusion R c (B) by i, we have a map

(i (R) Id) R (R) H*(F) -- (B) (R) H*(F).
Recall that the differential in (B) (R) H*(F) was specified by choosing
b e v r(u). If we choose b , then this map commutes with the
differentials and induces

h" C(R (R) H*(F) ---> ((B) (R) H*(F)).
To show that h is an isomorphism, recall the spectral sequence above, /Er}.
Filtering R (R) H*(F) in the same way, we get a sequence /REr}, in which
,fi-,2 -- H*(B) (R) H*(F). (See [3, Thorme 25.1].) The map (i (R) Id) in-
duces an isomorphism

(i (R) Id) * R/2 --so that it follows, as before, that h is an isomorphism. Hence H*(E) is iso-
morphic to 5C(H*(B) (R) H*(F)).

6. Applications
I now give some examples and applications of the theorems of Section 5.

First, we consider spaces X which satisfy condition (3) of the previous section,
which means that there exists a family of finite subcomplexes, X, such that
() b0cXcX2c cUX= X,
(b) in X - X induce isomorphisms in homotopy in dimensions < n.
A simple example is obtained as follows" Consider a sequence of integers,

2 =< nl < n2 < -... LetX S X X S. We may chooseXas
a simplicial complex, for each/c, with simplicial inclusions X c X+I. De-
fine X U X. Clearly, i X -- X induces an isomorphism in integral
homology, in dimensions < It. The desired property then follows by White-
head’s theorem [12]. It is easy to construct bundles over X which satisfy
the other conditions of Section 5.
A second example of spaces satisfying condition (3) is given by

PROI’OSITION 6.1. Let r be a finitely-generated Abelian group, n an integer,
say 1. Then there is a countable simplicial complex K, which is a space of
type K(r, n), with a sequence of finite subcomplexes satisfying condition (3).

Proof. R. Thorn [10, p. 36] has shown that K(r, n) may be realized by a
countable complex, all of whose skeletons are finite. Hence, we may choose
K to be the it skeleton, i > 0.

Remarlc. With slight modifications, one can prove an analogous proposition
for K(r, n) X X K(r, n), with each i finitely-generated.
We have already noticed that if the base space, B, has a free cohomology

algebra (i.e., product of exterior algebras, odd-dimensional generators, and
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polynomial algebras, even-dimensional generators), then H*(E) may be com-
puted from H*(B), H*(F), and r (Theorem 5.3). It was remarked above,
examples of such base spaces are Lie groups and Eilenberg-Mac Lane spaces.
In fact, using the techniques of Serre [12], one may easily prove the following.

]ROIOSITION 6.2. Let - be a finitely-generated Abelian group, decomposed as

r-- Z(R) (R) Z@ Zpl (R) @ (p copies of Z)

THEOREM 6.1. Let (E, S, B; p) be a sphere bundle, n odd. (Regard n and
B as fixed.) Then H*(E) is determined up to isomorphism, by r(i), i a gener-
ator of H* S).

THEOREM 6.2.
and B as fixed.)

Let (E, U(n), B; p) be a principal U(n)-bundle. (Regard n
Then H*(E) is determined by the Chern classes, cl c

Proof. Theorem 6.1 is immediate from Theorem 5.1. For Theorem 6.2,
notice that in the universal bundle, (Ev(n), U(n), Bv(n); p), one can find
universally transgressive x such that

(x) c

H*(U(n); Z) Az[xl, x].

(See [4, p. 412].) It is clear that in the bundle (E, U(n), B; p), cl, c
determine r(xl), r(x) in real cohomology.

Remark. If B admits a representative subalgebra, this information permits
effective computation (Theorem 5.3).
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