the modular representation algebra of a finite group

BY
 J. A. Green ${ }^{1}$
 1. Representation algebras

1.1. Notation and terminology.

G is a finite group, with unit element e.
k is a field of characteristic p.
By a G-module M is meant a (k, G)-module. Elements of G act as right operators on M, and $m e=m(m \in M)$. The k-dimension $\operatorname{dim} M$ of M is assumed finite. For example,
$\Gamma=\Gamma(k, G)$ is the regular G-module, i.e., the group algebra of G over k, regarded as G-module, and
k_{G} is the unit G-module, i.e., the field k, made into a "trivial" G-module, i.e., $\kappa x=\kappa(\kappa \epsilon k, x \in G)$. For any G-module M,
$\{M\}$ is the class of all G-modules isomorphic to M.
V_{i} (i runs over a suitable index set I) is a set of representatives of the classes $\left\{V_{i}\right\}$ of indecomposable G-modules. The number of these indecomposable classes is finite if and only if either $p=0$, or p is a finite prime such that the Sylow p-subgroups of G are cyclic (D. G. Higman [5]).
$F_{j}(j=1, \cdots, n)$ is a set of representatives of the classes $\left\{F_{j}\right\}$ of irreducible G-modules. The number n of these is always finite. If k is algebraically closed, n is equal to the number of p-regular classes of G (R . Brauer, see [1], [2]).

If $M^{\prime}, M^{\prime \prime}$ are G-modules, $M^{\prime}+M^{\prime \prime}$ denotes their direct sum. If M is a G-module, and s a nonnegative integer, $s M$ denotes the direct sum of s isomorphic copies of M.
1.2. Let \mathfrak{c} be an arbitrary commutative ring with identity element. Then the representation algebra $A_{c}(k, G)$ of the pair (k, G), with coefficients in c , is defined as follows. It is the c-module generated by the set of all isomorphism classes $\{M\}$ of G-modules, subject to relations $\{M\}=\left\{M^{\prime}\right\}+\left\{M^{\prime \prime}\right\}$ for all $M, M^{\prime}, M^{\prime \prime}$ such that $M \cong M^{\prime}+M^{\prime \prime}$, and equipped with the bilinear multiplication given by $\{M\}\left\{M^{\prime}\right\}=\left\{M \otimes M^{\prime}\right\}$. Here $M \otimes M^{\prime}=M \otimes_{k} M^{\prime}$ is made G-module by $\left(m \otimes m^{\prime}\right) x=m x \otimes m^{\prime} x\left(m \in M, m^{\prime} \in M^{\prime}, x \in G\right)$. By the Krull-Schmidt theorem for G-modules, $A_{\mathfrak{c}}(k, G)$ is free as c-module, and the $\left\{V_{i}\right\} \quad(i \in I)$ form a c-basis. $A_{\mathfrak{c}}(k, G)$ is a commutative, associative algebra over c , and has identity element $1=\left\{k_{G}\right\}$.

The Grothendieck algebra $A_{\mathfrak{c}}^{*}(k, G)$ is the quotient of $A_{\mathfrak{c}}(k, G)$ by the ideal J

[^0]generated by all elements $\left\{M^{\prime}\right\}-\{M\}+\left\{M^{\prime \prime}\right\}$ such that there exists an exact sequence (of G-modules and G-module homomorphisms)
\[

$$
\begin{equation*}
0 \rightarrow M^{\prime} \rightarrow M \rightarrow M^{\prime \prime} \rightarrow 0 \tag{1.2a}
\end{equation*}
$$

\]

By the Jordan-Hölder theorem for G-modules, the elements $\left\{F_{j}\right\} \not \subset J$ ($j=1, \cdots, n$) form a c-basis of $A_{c}^{*}(k, G)$, which is therefore always finitedimensional.

If $p=0$, or if p is a finite prime not dividing the order of G, then every exact sequence (1.2a) splits, i.e., $J=0$ and $A_{\mathfrak{c}}(k, G) \cong A_{\mathrm{c}}^{*}(k, G)$.
1.3. Returning to the general case, let now k^{\prime} be an extension field of k. Each (k, G)-module M gives rise to a (k^{\prime}, G)-module $M_{k^{\prime}}=k^{\prime} \otimes_{k} M$ ("extension of coefficient field"). The mapping $\{M\} \rightarrow\left\{M_{k^{\prime}}\right\}$ gives a natural homomorphism

$$
\begin{equation*}
A_{\mathfrak{c}}(k, G) \rightarrow A_{\mathfrak{c}}\left(k^{\prime}, G\right) \tag{1.3a}
\end{equation*}
$$

and by a theorem of E. Noether (see e.g. Deuring [3]), which says that two (k, G)-modules M, M^{\prime} are isomorphic if $M_{k^{\prime}} \cong M_{k^{\prime}}^{\prime}$, it follows that (1.3a) is a monomorphism. Clearly (1.3a) also induces a map

$$
\begin{equation*}
A_{\mathrm{c}}^{*}(k, G) \rightarrow A_{\mathrm{c}}^{*}\left(k^{\prime}, G\right), \tag{1.3b}
\end{equation*}
$$

and it is readily shown that this, again, is a monomorphism. ${ }^{2}$
1.4. From now on we shall take \mathfrak{c} to be the field of complex numbers, and write $A(k, G), A^{*}(k, G)$ for $A_{c}(k, G), A_{c}^{*}(k, G)$, respectively. We prove in $\S 1.5$, as an immediate consequence of R . Brauer's representation theory,

Theorem 1. For any field k, and any finite group G, the algebra $A^{*}(k, G)$ is semisimple.

If $p=0$ or if p is a finite prime not dividing the order of G, then $A(k, G)$ coincides with $A^{*}(k, G)$, and so is semisimple by Theorem 1. If p is a finite prime dividing the order of G, very little is known about $A(k, G)$, even in the case where this is a finite-dimensional algebra, i.e., when the Sylow p-subgroups of G are cyclic. The greater part of this paper (§2) is devoted to the proof of

Theorem 2. If k has finite prime characteristic p, and if G is a cyclic group of order a power of p, then $A(k, G)$ is semisimple.

Corollary. $\quad A(k, G)$ is semisimple, for any finite cyclic group G.
For the proof of this corollary, see $\S 2.11$.

[^1]1.5. If A is any commutative complex algebra with identity element 1 , define a character of A to be a nonzero algebra homomorphism $\phi: A \rightarrow c$. By definition, A is semisimple if and only if, given any nonzero element $a \in A$, there exists some character ϕ of A such that $\phi(a) \neq 0$. If A has finite dimension s, say, then this condition is equivalent to the condition that A should have s distinct characters.

Proof of Theorem 1. Let k^{\prime} be the algebraic closure of k. If $A^{*}\left(k^{\prime}, G\right)$ is semisimple, then so is $A^{*}(k, G)$, because, by (1.3b) $A^{*}(k, G)$ is isomorphic to a subalgebra of $A^{*}\left(k^{\prime}, G\right)$. So we may assume k is algebraically closed. By Brauer's theorem (see §1.1), $A^{*}(k, G)$ has dimension $n=$ number of p regular classes of G. For each p-regular class $K_{\nu}, \nu=1, \cdots, n$, we may define a function β_{ν} on $A^{*}(k, G)$, as follows: Each class $\{M\}$ of G-modules determines a class of equivalent matrix representations of G over k; let M be one of these matrix representations. Define $\beta_{\nu}(\{M\}+J)$ to be the value, at an element of the conjugacy class K_{ν}, of the Brauer character of M (see [1]). For example, taking $K_{1}=\{e\}$, we have $\beta_{1}(\{M\}+J)=\operatorname{dim} M$. Well-known properties of the Brauer character ensure that β_{ν} is well-defined and is a character of $A^{*}(k, G)$. Moreover $\beta_{1}, \cdots, \beta_{n}$ are distinct, ${ }^{3}$ so $A^{*}(k, G)$ has as many characters as its dimension, which proves the theorem.
1.6. We collect here some general facts which will be used in §2. Let G, H be two groups, and $\theta: H \rightarrow G$ a homomorphism. If M is a G-module, let $M \theta^{*}$ denote the restricted H-module, i.e., $M \theta^{*}$ has the same underlying k-space as M, and $y \epsilon H$ operates by $m y=m(y \theta)(m \epsilon M)$. If L is an H-module, let $L \theta_{*}$ denote the induced G-module, i.e., $L \theta_{*}$ is generated, as k-space, by symbols $l \otimes \gamma(l \in L, \gamma \in \Gamma=\Gamma(k, G))$ subject to the relations which make \otimes bilinear over k, and also

$$
l y \otimes \gamma=l \otimes(y \theta) \gamma \quad(l \in L, \gamma \in \Gamma, y \in H)
$$

An element $x \in G$ acts on $L \theta_{*}$ by the rule $(l \otimes \gamma) x=l \otimes \gamma x$. If θ is monomorphic, we have

$$
\begin{equation*}
\operatorname{dim} L \theta_{*}=(G: H \theta) \operatorname{dim} L \tag{1.6a}
\end{equation*}
$$

The maps $\{M\} \rightarrow\left\{M \theta^{*}\right\}$ and $\{L\} \rightarrow\left\{L \theta_{*}\right\}$ induce linear mappings

$$
\theta^{*}: A(k, G) \rightarrow A(k, H) \quad \text { and } \quad \theta_{*}: A(k, H) \rightarrow A(k, G),
$$

respectively. θ^{*} is clearly an algebra homomorphism; for θ_{*} we have the identity

$$
\begin{equation*}
L \theta_{*} \otimes M \cong\left(L \otimes M \theta^{*}\right) \theta_{*} \tag{1.6b}
\end{equation*}
$$

(see e.g. Swan [7]).

[^2]In particular, if θ is the inclusion map of the subgroup $H=\{e\}$ in G, and if $L=k_{\{e\}}$, we find $L \theta_{*} \cong \Gamma$; hence (1.6b) gives

$$
\begin{equation*}
\Gamma \otimes M \cong(\operatorname{dim} M) \Gamma, \quad \text { for any } G \text {-module } M \tag{1.6c}
\end{equation*}
$$

Let ϕ be any character of $A(k, G)$. We write $\phi(M)$ in place of $\phi(\{M\})$ for convenience. Then (1.6c) shows that $\phi(\Gamma) \phi(M)=(\operatorname{dim} M) \phi(\Gamma)$; hence if $\phi(\Gamma) \neq 0$, we have $\phi(M)=\operatorname{dim} M$ for all M.
(1.6d) The only character ϕ of $A(k, G)$, for which $\phi(\Gamma) \neq 0$, is the "dimension character" $\phi(M)=\operatorname{dim} M$.

Finally we note the following theorem of Schanuel (see e.g. Swan [8]).

$$
\begin{equation*}
\text { If } 0 \rightarrow A \rightarrow P \rightarrow B \rightarrow 0 \text { and } 0 \rightarrow A^{\prime} \rightarrow P^{\prime} \rightarrow B^{\prime} \rightarrow 0 \text { are two exact } \tag{1.6e}
\end{equation*}
$$ sequences of G-modules, with P, P^{\prime} both projective, and if $B \cong B^{\prime}$, then

$$
A+P^{\prime} \cong A^{\prime}+P
$$

We shall use (1.6e) only in the case where P, P^{\prime} are both free G-modules, $P=s \Gamma, P^{\prime}=s^{\prime} \Gamma$, say. If $s \geqq s^{\prime}$, the theorem gives

$$
A \cong A^{\prime}+\left(s-s^{\prime}\right) \Gamma
$$

2. The representation algebra of a finite cyclic group

2.1. Throughout $\S 2$ we make the following conventions.

k is a field of finite prime characteristic p.
α is a nonnegative integer, $q=p^{\alpha}$.
G_{α} is a cyclic group of order $q=p^{\alpha}$, and $\Gamma_{\alpha}=\Gamma\left(k, G_{\alpha}\right)$.
$A_{\alpha}=A\left(k, G_{\alpha}\right)$.
Any G_{α}-module can be regarded as a Γ_{α}-module, and conversely. If x_{α} is a generator of G_{α}, and if $\omega_{\alpha}=x_{\alpha}-e$, then $\omega_{\alpha}^{q}=0$, and

$$
V_{r \alpha}=\Gamma_{\alpha} / \omega_{\alpha}^{r} \Gamma_{\alpha} \quad\left(r=1, \cdots, p^{\alpha}\right)
$$

form a set of representatives of the classes of indecomposable G-modules. We write also $V_{0 \alpha}=\{0\}$, the zero G_{α}-module.

If a is a module generator of $V_{r \alpha}$, then the elements $a \omega_{\alpha}^{i}(i=0,1, \cdots, r-1)$ form a k-basis of $V_{r \alpha}$. With respect to this basis, x_{α} is represented by the $r \times r$ matrix

$$
X_{r}=\left(\begin{array}{cccccc}
1 & 1 & 0 & \cdots & 0 & 0 \\
0 & 1 & 1 & \cdots & 0 & 0 \\
. & . & . & \cdots & . & . \\
0 & 0 & 0 & \cdots & 1 & 1 \\
0 & 0 & 0 & \cdots & 0 & 1
\end{array}\right)
$$

The only submodules of $V_{r \alpha}$ are $V_{r \alpha} \omega^{i}(i=0,1, \cdots, r)$. If r, s are in-
tegers such that $0 \leqq r \leqq s \leqq q=p^{\alpha}$, then there is an obvious exact sequence

$$
\begin{equation*}
0 \rightarrow V_{r \alpha} \rightarrow V_{s \alpha} \rightarrow V_{s-r, \alpha} \rightarrow 0 \tag{2.1a}
\end{equation*}
$$

2.2. If α, β are integers such that $\beta \geqq \alpha \geqq 0$, there is a homomorphism $\theta: G_{\beta} \rightarrow G_{\alpha}$ which takes x_{β} onto x_{α}. It is clear that $V_{r \alpha} \theta^{*} \cong V_{r \beta}\left(1 \leqq r \leqq p^{\alpha}\right)$, and in most contexts we write simply V_{r} for $V_{r \alpha}$. The mapping $\theta^{*}: A_{\alpha} \rightarrow A_{\beta}$ is a monomorphism, and we shall identify A_{α} with the appropriate part of A_{β} according to θ^{*}, and write $v_{r}=\left\{V_{r \alpha}\right\}=\left\{V_{r \beta}\right\}$. Thus $A_{0}, A_{1}, A_{2}, \cdots$ are subalgebras of a commutative algebra $A=\bigcup_{\alpha=0}^{\infty} A_{\alpha} . \quad A$ has basis v_{1}, v_{2}, \cdots, and identity element $v_{1}=1 . A_{\alpha}$ has basis $v_{1}, \cdots, v_{p^{\alpha}}$. We shall write ${ }^{4}$ $v_{0}=0$.
2.3. Take a fixed $\alpha \geqq 0, q=p^{\alpha}$. The next theorem gives relations which describe $A_{\alpha+1}$ as an extension of A_{α}.

Theorem 3. Let $w=v_{q+1}-v_{q-1}$. Then

$$
\begin{array}{lr}
v_{r} w=v_{r+q}-v_{q-r} & (1 \leqq r \leqq q), \\
v_{r} w=v_{r+q}+v_{r-q} & (q<r<(p-1) q), \\
v_{r} w=v_{r-q}+2 v_{p q}-v_{2 p q-(r+q)} & ((p-1) q \leqq r \leqq p q) \tag{2.3c}
\end{array}
$$

These formulae show that $A_{\alpha+1}=A_{\alpha}[w]$. However we prefer to regard $A_{\alpha+1}$ as the ring generated over A_{α} by the $p^{\alpha+1}-p^{\alpha}$ elements v_{r} ($q+1 \leqq r \leqq p q$), and then
(2.3d) Relations (2.3a), (2.3b), (2.3c) are defining relations for this extension.

For let $B=A_{\alpha}\left[v_{q+1}, \cdots, v_{p q}\right]$ be the commutative ring obtained by adjoining to A_{α} symbols $v_{q+1}, \cdots, v_{p q}$ which satisfy these relations, and let $\pi: B \rightarrow A_{\alpha+1}$ be the natural epimorphism of B onto $A_{\alpha+1}$. The given relations obviously imply that B is spanned linearly by $v_{1}, \cdots, v_{p q}$; hence by comparison of dimensions of B and $A_{\alpha+1}, \pi$ must be an isomorphism.
2.4. In this paragraph, α is again fixed, all modules are G_{α}-modules, and we write $V_{r}=V_{r \alpha}, \Gamma=\Gamma_{\alpha}, \omega=\omega_{\alpha}=x_{\alpha}-e$. By a partition λ we understand a sequence ($\lambda_{1}, \lambda_{2}, \cdots$) whose terms are nonnegative integers, almost all zero, and such that $\lambda_{1} \geqq \lambda_{2} \geqq \cdots$. Those terms which are positive are called parts of λ. For each integer $i \geqq 1$, write $n_{i}(\lambda)$ for the number of parts equal to i, and $b_{i}(\lambda)$ for the number of parts $\geqq i$. Either of the sequences

[^3]$\left(n_{1}, n_{2}, \cdots\right)$ or $\left(b_{1}, b_{2}, \cdots\right)$ determines λ uniquely, and
$$
n_{i}(\lambda)=b_{i}(\lambda)-b_{i+1}(\lambda)
$$
$b_{1}(\lambda)$ is the number of parts of λ.
Let V be any G_{α}-module. There is a unique expansion
\[

$$
\begin{equation*}
V \cong V_{\lambda_{1}}+\cdots+V_{\lambda_{b}} \quad\left(\lambda_{1} \geqq \cdots \geqq \lambda_{b}>0\right) \tag{2.4a}
\end{equation*}
$$

\]

and we write $\lambda(V)$ for the partition ($\lambda_{1}, \cdots, \lambda_{b}, 0,0, \cdots$). All the parts of $\lambda(V)$ lie between 1 and $q=p^{\alpha}$, and $\sum \lambda_{i}=\operatorname{dim} V$. Moreover $\lambda(V)$ can be invariantly described by the well-known formulae

$$
\begin{equation*}
b_{i}(\lambda(V))=\operatorname{dim}\left(V \omega^{i-1} / V \omega^{i}\right) \quad(i=1,2, \cdots) \tag{2.4b}
\end{equation*}
$$

It will be useful to have the particular notations
$l(V)=\lambda_{1}=$ least integer l such that $V \omega^{l}=0$, and
$b(V)=b_{1}(\lambda(V))=\operatorname{dim}(V / V \omega)=$ number of summands in (2.4a).
We observe that if V^{\prime} is a homomorphic image of V, then $b(V) \geqq b\left(V^{\prime}\right)$.
2.5.
(2.5a) If $1 \leqq r, s \leqq q$, and if

$$
V_{r} \otimes V_{s} \cong V_{\lambda_{1}}+\cdots+V_{\lambda_{b}} \quad\left(\lambda_{1} \geqq \cdots \geqq \lambda_{b}>0\right)
$$

then $s \geqq b$, and

$$
V_{q-r} \otimes V_{s} \cong V_{q-\lambda_{1}}+\cdots+V_{q-\lambda_{b}}+(s-b) V_{q}
$$

Proof. Since $\Gamma=V_{q}$, there is an exact sequence

$$
0 \rightarrow V_{q-r} \rightarrow \Gamma \rightarrow V_{r} \rightarrow 0
$$

from which, taking tensor products with V_{s} and using (1.6c), we get an exact sequence

$$
0 \rightarrow V_{q-r} \otimes V_{s} \rightarrow s \Gamma \rightarrow V_{r} \otimes V_{s} \rightarrow 0
$$

It is clear that $b(s \Gamma)=s$; hence by the remark at the end of $\S 2.4$, $s \geqq b\left(V_{r} \otimes V_{s}\right)=b$. But we can also present $\sum V_{\lambda_{i}}$ by an exact sequence

$$
0 \rightarrow \sum V_{q-\lambda_{i}} \rightarrow b \Gamma \rightarrow \sum V_{\lambda_{i}} \rightarrow 0
$$

Then Schanuel's theorem (1.6e) gives the result.
Take the special case $r=1$. We have $V_{1} \otimes V_{s} \cong V_{s}$; hence

$$
\begin{equation*}
V_{q-1} \otimes V_{s} \cong V_{q-s}+(s-1) V_{q} \quad(1 \leqq s \leqq q) \tag{2.5b}
\end{equation*}
$$

From this we deduce
(2.5c) If $\phi: A_{\alpha} \rightarrow \mathrm{c}$ is any character of A_{α}, there exists an integer $T(\phi)= \pm 1$ such that $\phi\left(v_{q-s}\right)+T(\phi) \phi\left(v_{s}\right)=\phi\left(v_{q}\right)(0 \leqq s \leqq q)$.

Proof. If ϕ is the dimension character (see (1.6d)), $\phi\left(v_{s}\right)=s$, so we may take $T(\phi)=1$. If ϕ is not the dimension, then by (1.6d), $\phi\left(V_{q}\right)=0$. By (2.5b) $\phi\left(v_{q-s}\right)+T(\phi) \phi\left(v_{s}\right)=0$, where $T(\phi)=-\phi\left(V_{q-1}\right)$. Again, if we put $s=q-1$ in $(2.5 \mathrm{~b})$, we find $\left(\phi\left(V_{q-1}\right)\right)^{2}=\phi\left(V_{1}\right)=1$; hence $T(\phi)= \pm 1$, and this completes the proof.
2.6. Any partition λ can be associated with a graph (see e.g. Littlewood [$6, \mathrm{Ch} . \mathrm{V}]$) consisting of rows of symbols called nodes, λ_{1} in the first row, λ_{2} in the second, and so on.

A partition μ is said to be obtained from λ by regular adjunction of r nodes if there is a sequence of partitions

$$
\begin{equation*}
\lambda=\lambda^{0}, \quad \lambda^{1}, \quad \cdots, \quad \lambda^{r}=\mu \tag{2.6a}
\end{equation*}
$$

such that for each $h=1, \cdots, r$, the graph of λ^{h} is obtained from that of λ^{h-1} by adding one new node a_{h}, in such a way that no two of the r added nodes a_{1}, \cdots, a_{r} appear in the same column. For example, the diagram

$$
\begin{array}{cccc}
\cdot & \cdot & \cdot & a_{4} \\
\cdot & \cdot & \cdot & \\
\cdot & \cdot & a_{3} & \\
a_{1} & a_{2} & &
\end{array}
$$

shows how $(4,3,3,2,0, \cdots)$ can be obtained from ($3,3,2,0, \cdots$) by regular adjunction of 4 nodes.
(2.6b) Let λ, μ be two partitions. Then μ can be obtained from λ by regular adjunction of r nodes, if and only if there exist r distinct positive integers i_{1}, \cdots, i_{r} such that

$$
\begin{align*}
b_{i}(\mu)-b_{i}(\lambda) & =1 \text { if } i \epsilon\left\{i_{1}, \cdots, i_{r}\right\}, \quad \text { and } \\
& =0 \text { if } i_{\epsilon}\left\{i_{1}, \cdots, i_{r}\right\} . \tag{2.6c}
\end{align*}
$$

Proof. ${ }^{5}$ We observe that, for any partition $\lambda, b_{i}(\lambda)$ is the number of nodes in the $i^{\text {th }}$ column of the diagram of λ. Thus (2.6b) follows at once from the definition of regular adjunction, because (2.6c) is simply the condition that μ be obtainable from λ by adding new nodes to the distinct columns i_{1}, \cdots, i_{r}.

We are now in a position to prove the following lemma, which is a very special case of a theorem (proof unpublished) of P. Hall (see [4, Theorem 2]).
(2.6d) Let $V_{r}=V_{r \alpha}(0 \leqq r \leqq q)$, and let V, W be any G_{α}-modules. If there exists an exact sequence

$$
0 \rightarrow V_{r} \xrightarrow{\iota} V \xrightarrow{\varepsilon} W \rightarrow 0
$$

then $\lambda(V)$ can be obtained from $\lambda(W)$ by regular adjunction of r nodes.

[^4]Proof. Since $\operatorname{dim} V=\operatorname{dim} W+r$, the graph of $\lambda(V)$ has r more nodes than that of $\mu(W)$. We have to prove that we can obtain $\lambda(V)$ from $\lambda(W)$ by regular adjunction.

We may assume that V_{r} is a submodule of V, and that ι is the inclusion map. For each $i=1,2, \cdots, \varepsilon$ induces an epimorphism

$$
V \omega^{i-1} / V \omega^{i} \rightarrow W \omega^{i-1} / W \omega^{i}
$$

whose kernel is annihilated by ω, and is also a cyclic module, being an image of $V_{r} \cap V \omega^{i-1}$. Therefore this kernel is either V_{0} or V_{1}, so that

$$
b_{i}(\lambda(V))-b_{i}(\lambda(W))=0 \text { or } 1
$$

by (2.4b). The conclusion now follows from (2.6b).
2.7. Let $\iota: G_{1} \rightarrow G_{\alpha+1}$ be the monomorphism which takes x_{1} to $x_{\alpha+1}^{q}\left(q=p^{\alpha}\right.$ as before). If $V_{r}\left(1 \leqq r \leqq p q=p^{\alpha+1}\right)$ is the $G_{\alpha+1}$-module $V_{r, \alpha+1}$, we obtain the G_{1}-module $V_{r} \iota^{*}$ by defining $v x_{1}=v x_{\alpha+1}^{q}\left(v \in V_{r}\right)$, from which it follows (using $\left.\omega_{\alpha+1}^{q}=x_{\alpha+1}^{q}-e\right)$

$$
\left(V_{r} \iota^{*}\right) \omega_{1}^{i}=V_{r} \omega_{\alpha+1}^{i q} \quad(i=0,1, \cdots)
$$

Hence if $\lambda=\lambda\left(V_{r} \iota^{*}\right)$, we have by (2.4b)

$$
b_{i}(\lambda)=\operatorname{dim} V_{r} \omega_{\alpha+1}^{(i-1) q}-\operatorname{dim} V_{r} \omega_{\alpha+1}^{i q} \quad(i=1,2, \cdots)
$$

Now $\operatorname{dim} V_{r} \omega_{\alpha+1}^{j}=r-j(0 \leqq j \leqq r)$ or $0(j>r)$. Writing

$$
\begin{equation*}
r=r_{0} q+r_{1} \quad\left(0 \leqq r_{1}<q\right) \tag{2.7a}
\end{equation*}
$$

we have then
$b_{i}(\lambda)=q \quad\left(1 \leqq i \leqq r_{0}\right), \quad b_{r_{0}+1}(\lambda)=r_{1}, \quad b_{i}(\lambda)=0 \quad\left(i>r_{0}+1\right)$.
Thus $n_{i}(\lambda)=0$ if $1 \leqq i \leqq r_{0}$ or if $i>r_{0}+1$, while $n_{r_{0}}(\lambda)=q-r_{1}$ and $n_{r_{0}+1}(\lambda)=r_{1}$. Therefore
(2.7b) If $1 \leqq r \leqq p q$, and r is given by (2.7a), we have

$$
V_{r, \alpha+1} \iota^{*} \cong\left(q-r_{1}\right) V_{r_{0}, 1}+r_{1} V_{r_{0}+1,1}
$$

It is easy to compute the induced map ι_{*}. If $1 \leqq s \leqq p$, we find that $V_{s, 1} \iota_{*}$ is indecomposable; and since its dimension is $q s$, we have

$$
\begin{equation*}
V_{s, 1} \iota * \leqq V_{q s, \alpha+1} \quad(1 \leqq s \leqq p) \tag{2.7c}
\end{equation*}
$$

In particular, $V_{1,1} \iota * \cong V_{q, \alpha+1}$. Then from (1.6b), with $\theta=\iota, L=V_{1,1}$, and $M=V_{r, \alpha+1},(2.7 \mathrm{~b})$ and (2.7c) give
(2.7d) If r is given by (2.7a), $1 \leqq r \leqq p q$, and all modules are $G_{\alpha+1}-$ modules, then

$$
V_{r} \otimes V_{q} \cong\left(q-r_{1}\right) V_{q r_{0}}+r_{1} V_{q\left(r_{0}+1\right)}
$$

In particular, the graph of $\lambda\left(V_{r} \otimes V_{q}\right)$ consists of r_{1} rows of length $q\left(r_{0}+1\right)$, and ($q-r_{1}$) rows of length $q r_{0}$.
2.8. In this and the next paragraph, all modules are $G_{\alpha+1}$-modules, $q=p^{\alpha}$, $x=x_{\alpha+1}, \omega=\omega_{\alpha+1}$, and r is an integer such that $1 \leqq r \leqq p q=p^{\alpha+1}$, $r=r_{0} q+r_{1}\left(0 \leqq r_{1}<q\right)$.

By taking the tensor product of the exact sequence

$$
0 \rightarrow V_{1} \rightarrow V_{q+1} \rightarrow V_{q} \rightarrow 0
$$

with V_{r}, we obtain the exact sequence

$$
0 \rightarrow V_{r} \rightarrow V_{r} \otimes V_{q+1} \rightarrow V_{r} \otimes V_{q} \rightarrow 0
$$

Hence by (2.6d)
(2.8a) $\lambda\left(V_{r} \otimes V_{q+1}\right)$ is obtained from $\lambda\left(V_{r} \otimes V_{q}\right)$ by regular adjunction of r nodes.

Next we prove

$$
\begin{equation*}
\text { If } 1 \leqq r<(p-1) q, \text { then } l\left(V_{r} \otimes V_{q+1}\right)=q+r \tag{2.8b}
\end{equation*}
$$

Proof. Let a, b be any elements of V_{r}, V_{q+1} respectively. Then $(a \otimes b) \omega=(a \otimes b)(x-e)=a x \otimes b x-a \otimes b=a \omega \otimes b x+a \otimes b \omega$

$$
=(a \otimes b)(\omega \otimes x+e \otimes \omega)
$$

where $\omega \otimes x+e \otimes \omega$ is an element of the product algebra $\Gamma_{\alpha+1} \otimes \Gamma_{\alpha+1}$, which operates naturally on $V_{r} \otimes V_{q+1}$. Since $\omega \otimes x$ and $e \otimes \omega$ commute, and since $a \omega^{r}=b \omega^{q+1}=0$, we find by the binomial theorem that for any integer $\xi \geqq 0$,

$$
(a \otimes b) \omega^{q\left(r_{0}+1\right)+\xi}=\left(r_{0}+1\right)(a \otimes b)\left(\omega^{q r_{0}+\xi} \otimes x^{q r_{0}+\xi} \omega^{q}\right)
$$

Now $r_{0}+1 \neq 0$, because $r_{0} \leqq p-2$. Hence $\left(V_{r} \otimes V_{q+1}\right) \omega^{q\left(r_{0}+1\right)+\xi}$ is zero for $\xi=r_{1}$, but not zero for $\xi=r_{1}-1$. So $l\left(V_{r} \otimes V_{q+1}\right)=q\left(r_{0}+1\right)+r_{1}=$ $q+r$.
(2.8c) If $1 \leqq r \leqq q$, then $V_{r} \otimes V_{q+1} \cong V_{r+q}+(r-1) V_{q}$.

Proof. $\lambda\left(V_{r} \otimes V_{q}\right)$ consists of r rows of q nodes. The only way to make a graph by regular adjunction of r nodes, in such a way that the first part should be $q+r$, is to adjoin all nodes to the first row. Thus the graph of $\lambda\left(V_{r} \otimes V_{q+1}\right)$ has one part $q+r$, and $r-1$ parts q.

$$
\begin{align*}
& \text { If } q<r<(p-1) q, \text { then } \tag{2.8~d}\\
& \begin{aligned}
V_{r} \otimes V_{q+1} \cong V_{r-q}+\left(q-r_{1}-1\right) V_{r_{0} q} & +V_{\left(r_{0}+1\right) q-r_{1}} \\
& +\left(r_{1}-1\right) V_{\left(r_{0}+1\right) q}+V_{r+q}
\end{aligned}
\end{align*}
$$

Proof. Since $l\left(V_{r} \otimes V_{q+1}\right)=q+r$, the module $V_{r} \otimes V_{q+1}$ must have a component V_{q+r}. Applying (2.8b) to $V_{p q-r}$, we see that $V_{p q-r} \otimes V_{q+1}$ has a component $V_{p q-r+q}=V_{p q-(r-q)}$. Then (2.5a) shows that $V_{r} \otimes V_{q+1}$ has a component V_{r-q}. Hence $\lambda\left(V_{r} \otimes V_{q+1}\right)$ has a part $r+q$, and a part $r-q$. It is easy to verify, that the only partition which has a part $r+q$, a part $r-q$, and can be obtained from $\lambda\left(V_{r} \otimes V_{q}\right)$ by regular adjunction of r nodes, is the partition of the module on the right of (2.8d).

By another application of (2.5a) we deduce from (2.8c)

$$
\begin{align*}
& \text { If }(p-1) q \leqq r<p q, \text { then } \tag{2.8e}\\
& V_{r} \otimes V_{q+1} \cong V_{r-q}+\left(q-r_{1}-1\right) V_{(p-1) q}+\left(r_{1}+1\right) V_{p q}
\end{align*}
$$

2.9. We consider next the module $V_{r} \otimes V_{q-1}$. From the exact sequence

$$
0 \rightarrow V_{1} \rightarrow V_{q} \rightarrow V_{q-1} \rightarrow 0
$$

we get the exact sequence

$$
0 \rightarrow V_{r} \rightarrow V_{r} \otimes V_{q} \rightarrow V_{r} \otimes V_{q-1} \rightarrow 0
$$

therefore
(2.9a) $\lambda\left(V_{r} \otimes V_{q}\right)$ can be obtained from $\lambda\left(V_{r} \otimes V_{q-1}\right)$ by regular adjunction of r nodes.

$$
\begin{align*}
& b\left(V_{r} \otimes V_{q-1}\right)=r \quad \text { if } \quad r \leqq q-1, \tag{2.9b}\\
& =q-1 \quad \text { if } \quad r \geqq q-1 .
\end{align*}
$$

Proof. Put $V=V_{r} \otimes V_{q-1}$; then $b(V)=\operatorname{dim}(V / V \omega)$ (see §2.4). Let a, b be module generators for V_{r}, V_{q-1} respectively. The elements

$$
u_{i j}=a \omega^{i} x^{j} \otimes b \omega^{j} \quad(0 \leqq i \leqq r-1,0 \leqq j \leqq q-2)
$$

form a basis of V. We write $u_{i j}=0$ if $i \geqq r$ or if $j \geqq q-1$. Then

$$
u_{i j} \omega=u_{i+1, j}+u_{i, j+1} \quad \text { for all } \quad i, j \geqq 0
$$

hence if $\bar{u}_{i j}=u_{i j}+V \omega$, then $\bar{u}_{i+1, j}=-\bar{u}_{i, j+1}$. It follows that $V / V \omega$ has a k-basis either

$$
\begin{array}{llll}
\bar{u}_{i, 0} & (0 \leqq i \leqq r-1) & \text { if } & r \leqq q-1, \quad \text { or } \\
\bar{u}_{0, j} & (0 \leqq j \leqq q-2) & \text { if } & r \leqq q-1 .
\end{array}
$$

(2.9c) If $q \leqq r \leqq p q$, then

$$
V_{r} \otimes V_{q-1} \cong\left(r_{1}-1\right) V_{q\left(r_{0}+1\right)}+V_{q\left(r_{0}+1\right)-r_{1}}+\left(q-r_{1}-1\right) V_{q r_{0}}
$$

Proof. $\quad b\left(V_{r} \otimes V_{q}\right)=q$, by (2.7d), and $b\left(V_{r} \otimes V_{q-1}\right)=q-1$ by (2.9b). Therefore the whole of the last row of the graph of $\lambda\left(V_{r} \otimes V_{q}\right)$ (considered to be obtained from $\lambda\left(V_{r} \otimes V_{q-1}\right)$ by regular adjunction of r nodes) must
consist of added nodes. This means that $\lambda\left(V_{r} \otimes V_{q-1}\right)$ must be the partition of the module on the right of (2.9c).

By applying a similar argument, or else by using (2.5a) on this last formula, we find also
(2.9d) If $1 \leqq r \leqq q$, then $V_{r} \otimes V_{q-1} \cong V_{q-r}+(r-1) V_{q}$.

The formulae in $\S \S 2.8$ and 2.9 yield immediately the proof of Theorem 3.
2.10. Proof of Theorem 2. We wish to show that, for any $\alpha \geqq 0$, the algebra A_{α} has p^{α} characters. For $\alpha=0$ this is clear; now suppose $\alpha \geqq 0$ is such that A_{α} does have $p^{\alpha}=q$ characters; we complete the induction by showing that $A_{\alpha+1}$ has $p^{\alpha+1}$ characters. This will be achieved when we prove
(2.10a) If $\phi: A_{\alpha} \rightarrow \mathrm{c}$ is any character of A_{α}, then there are p distinct characters of $A_{\alpha+1}$ which extend ϕ.

Put $z_{i}=\phi\left(v_{i}\right)(0 \leqq i \leqq q)$. Finding an extension ϕ^{*} of ϕ to $A_{\alpha+1}$ is equivalent to finding $p q-q$ complex numbers $z_{r}(q+1 \leqq r \leqq p q)$ such that

$$
\begin{array}{lr}
z_{r} y=z_{r+q}-z_{q-r} & (1 \leqq r \leqq q), \\
z_{r} y=z_{r+q}+z_{r-q} & (q<r<(p-1) q), \\
z_{r} y=z_{r-q}+2 z_{p q}-z_{2 p q-(r+q)} & ((p-1) q \leqq r \leqq p q),
\end{array}
$$

where $y=z_{q+1}-z_{q-1}$. For if ϕ^{*} is such an extension, then by Theorem 3, $z_{r}=\phi^{*}\left(v_{r}\right)$ will satisfy these relations; conversely given such z_{r} we define ϕ^{*} by $\phi^{*}\left(v_{r}\right)=z_{r}$, and then by (2.3d), ϕ^{*} is a character of $A_{\alpha+1}$.

Let t be an indeterminate over \mathfrak{c}, and define for each $s \geqq-1$ the function (polynomial in t, t^{-1})

$$
L_{s}(t)=\sum_{i=0}^{s-1} t^{-s+2 i+1}=\left(t^{s}-t^{-s}\right) /\left(t-t^{-1}\right)
$$

so that $L_{-1}(t)=-1, L_{0}(t)=0, L_{1}(t)=1, L_{2}(t)=t^{-1}+t$, etc. Notice $L_{s}(t)=L_{s}\left(t^{-1}\right)$. We find also

$$
\begin{equation*}
L_{s}(t) L_{2}(t)=L_{s+1}(t)+L_{s-1}(t) \tag{2.10e}
\end{equation*}
$$

$$
(s \geqq 0)
$$

Now let $z_{r}=\phi\left(v_{r}\right)(0 \leqq r \leqq q)$ as before, and let ε be a nonzero complex number. Define $z_{r}=\phi\left(v_{r}\right)(0 \leqq r \leqq p q)$ by putting $r=r_{0} q+r_{1}\left(0 \leqq r_{1}<q\right)$ and

$$
\begin{equation*}
z_{r}=z_{r_{1}} L_{r_{0}+1}(\varepsilon)+z_{q-r_{1}} L_{r_{0}}(\varepsilon) . \tag{2.10f}
\end{equation*}
$$

Then $y=z_{q+1}-z_{q-1}=L_{2}(\varepsilon)$. We find, using (2.10e), that (2.10b) and (2.10c) are satisfied by these z_{r}, for any $\varepsilon \neq 0$. Also for $r=(p-1) q+r_{1}$ $\left(0 \leqq r_{1} \leqq q\right)$ we have

$$
\begin{align*}
& z_{r} y-\left\{z_{r-q}+2 z_{p q}-z_{2 p q-(r+q)}\right\} \tag{2.10~g}\\
& \quad=z_{r_{1}}\left(L_{p+1}+L_{p-1}\right)+2 z_{q-r_{1}} L_{p}-2 z_{q} L_{p}
\end{align*}
$$

where we have written L_{s} in place of $L_{s}(\varepsilon)$, for short. The right-hand side of $(2.10 \mathrm{~g})$ is zero, and hence (2.10 d) is satisfied in the following cases:
(i) If ε^{2} is a primitive $p^{\text {th }}$ root of unity (i.e., $\varepsilon=\exp (\pi i w / p)$, $1 \leqq w \leqq(p-1))$. For then $L_{p}(\varepsilon)=0$; hence $L_{p+1}(\varepsilon)+L_{p-1}(\varepsilon)=0$ by $(2.10 \mathrm{e})$. We have in this way $(p-1)$ distinct extensions of ϕ, with $z_{q+1}-z_{q-1}=L_{2}(\varepsilon)=2 \cos (\pi w / p), w=1, \cdots, p-1$.
(ii) If $\varepsilon=T(\phi)($ see $(2.5 \mathrm{c}))$. For then $\varepsilon= \pm 1$, so that $L_{s}(\varepsilon)=s \varepsilon^{s-1}$, and the right-hand side of $(2.10 \mathrm{~g})$ becomes

$$
2 p \varepsilon^{p-1}\left(\varepsilon z_{r_{1}}+z_{q-r_{1}}-z_{q}\right),
$$

and this is zero by (2.5c). Thus there are p distinct extensions of ϕ. This proves (2.10a) and hence Theorem 2.

Remarks. If we take $\alpha=0$, our argument shows that A_{1} has p characters

$$
\begin{aligned}
\phi_{0}: v_{r} \rightarrow r, \quad \text { and } \\
\phi_{w}: v_{r} \rightarrow L_{r}(\varepsilon)=\frac{\sin (\pi r w / p)}{\sin (\pi w / p)} \quad(r=1, \cdots, p),
\end{aligned}
$$

$w=1, \cdots, p-1$. The field generated by the values $\phi\left(v_{r}\right)$, for all characters ϕ of A_{α}, and $r=1, \cdots, p^{\alpha}$, is independent of α (provided $\alpha \geqq 1$), and is the maximal real subfield of the field of $(2 p)^{\text {th }}$ roots of unity.
2.11. We conclude with a proof of the Corollary to Theorem 2, that $A(k, G)$ is semisimple for any finite cyclic group $G . \quad G$ can be written $G=H_{1} \times H_{2}$, where H_{1}, H_{2} are cyclic groups, respectively of order prime to p, and of order a power of p. As in the proof of Theorem 1, we may assume k is algebraically closed. Then it is easy to see that any indecomposable G-module V has the form $V_{1} \otimes V_{2}$, where V_{1} is an irreducible H_{1}-module (hence $\operatorname{dim} V_{1}=1$), and V_{2} is an indecomposable H_{2}-module, and $V_{1} \otimes V_{2}$ is an $H_{1} \times H_{2}$-module by the rule

$$
\left(v_{1} \otimes v_{2}\right)\left(h_{1}, h_{2}\right)=v_{1} h_{1} \otimes v_{2} h_{2} \quad\left(v_{i} \in V_{i}, h_{i} \varepsilon H_{i}, i=1,2\right) .
$$

The map

$$
\{V\} \rightarrow\left\{V_{1}\right\} \otimes\left\{V_{2}\right\}
$$

defines an isomorphism from $A(k, G)$ onto $A\left(k, H_{1}\right) \otimes A\left(k, H_{2}\right)$. Both factors are semisimple; therefore so is $A(k, G)$.

References

1. R. Brauer and C. Nesbitt, On the modular representations of groups of finite order. I, University of Toronto Studies, Mathematical Series, no. 4, 1937.
2. - On the modular characters of groups, Ann. of Math. (2), vol. 42 (1941), pp. 556590.
3. M. Deuring, Galoissche Theorie und Darstellungstheorie, Math. Ann., vol. 107 (1932), pp. 140-144.
4. J. A. Green, Les polynômes de Hall et les caractères des groupes $G L(n, q)$, Colloque
d'Algèbre Supérieure, Bruxelles, 1956, Centre Belge de Recherches Mathématiques, 1957, pp. 207-215.
5. D. G. Higman, Modules with a group of operators, Duke Math. J., vol. 21 (1954), pp. 369-376.
6. D. E. Littlewood, The theory of group characters and matrix representations of groups, Oxford, 1940.
7. R. G. Swan, Induced representations and projective modules, Ann. of Math. (2), vol. 71 (1960), pp. 552-578.
8. -_, Periodic resolutions for finite groups, Ann. of Math. (2), vol. 72 (1960), pp. 267291.

The Institute for Advanced Study
Princeton, New Jersey
Cornell University
Ithaca, New York

[^0]: Received August 3, 1961.
 ${ }^{1}$ This work was done while the author was supported by a grant from the National Science Foundation at the Institute for Advanced Study, and under an Army contract at Cornell University.

[^1]: ${ }^{2}$ Let $k^{\prime} \otimes F_{j}=F_{j 1}+F_{j 2}+\cdots$, where $F_{j 1}, F_{j 2}, \cdots$ are irreducible $\left(k^{\prime}, G\right)$-modules. If $\left\{F_{h}\right\},\left\{F_{j}\right\}$ are distinct classes of irreducible (k, G)-modules, then no one of $F_{h_{1}}$, $F_{h 2}, \cdots$ can be isomorphic to any one of $F_{j 1}, F_{j 2}, \cdots$, by Schur's lemma. Therefore the basis elements $\left\{F_{j}\right\}+J(j=1, \cdots, n)$ of $A^{*}(k, G)$, are mapped into linearly independent elements of $A^{*}\left(k^{\prime}, G\right)$.

[^2]: ${ }^{3}$ Any character β of $A^{*}(k, G)$ is determined by the values $\beta^{j}=\beta\left(\left\{F_{j}\right\}+J\right)$ $(j=1, \cdots, n)$. The $n \times n$ matrix $\left(\beta_{\nu}^{j}\right)$ (ν row, j column affix) is just the transpose of Brauer's matrix of modular characters (called Φ in [2]), and hence is nonsingular.

[^3]: ${ }^{4}$ The multiplication in A is that determined by the Kronecker product of the matrices X_{r}, i.e., if $X_{r} \times X_{s}$ has Jordan form $\sum a_{r s t} X_{t}$, then $v_{r} v_{s}=\sum a_{r s t} v_{t}$. For matrices over a field of characteristic zero, Littlewood [6, p. 195] has calculated these coefficients $a_{\text {rst }}$ explicitly. We have not been able to find such an explicit description of this product in the modular case.

[^4]: ${ }^{5}$ The author is much indebted to the referee for simplifying the original proofs of (2.6b) and (2.6d).

