THE MODULAR REPRESENTATION ALGEBRA OF A FINITE GROUP

BY

J. A. GREEN¹

1. Representation algebras

1.1. Notation and terminology.

G is a finite group, with unit element e.

k is a field of characteristic p.

By a *G*-module M is meant a (k, G)-module. Elements of G act as right operators on M, and $me = m (m \epsilon M)$. The k-dimension dim M of M is assumed finite. For example,

 $\Gamma = \Gamma(k, G)$ is the regular G-module, i.e., the group algebra of G over k, regarded as G-module, and

 k_{G} is the unit G-module, i.e., the field k, made into a "trivial" G-module, i.e., $\kappa x = \kappa (\kappa \epsilon k, x \epsilon G)$. For any G-module M,

 $\{M\}$ is the class of all G-modules isomorphic to M.

 V_i (*i* runs over a suitable index set *I*) is a set of representatives of the classes $\{V_i\}$ of indecomposable *G*-modules. The number of these indecomposable classes is finite if and only if either p = 0, or *p* is a finite prime such that the Sylow *p*-subgroups of *G* are cyclic (D. G. Higman [5]).

 F_j $(j = 1, \dots, n)$ is a set of representatives of the classes $\{F_j\}$ of irreducible *G*-modules. The number *n* of these is always finite. If *k* is algebraically closed, *n* is equal to the number of *p*-regular classes of *G* (R. Brauer, see [1], [2]).

If M', M'' are G-modules, M' + M'' denotes their *direct* sum. If M is a G-module, and s a nonnegative integer, sM denotes the direct sum of s isomorphic copies of M.

1.2. Let c be an arbitrary commutative ring with identity element. Then the representation algebra $A_{\mathfrak{c}}(k, G)$ of the pair (k, G), with coefficients in c, is defined as follows. It is the c-module generated by the set of all isomorphism classes $\{M\}$ of G-modules, subject to relations $\{M\} = \{M'\} + \{M''\}$ for all M, M', M'' such that $M \cong M' + M''$, and equipped with the bilinear multiplication given by $\{M\}\{M'\} = \{M \otimes M'\}$. Here $M \otimes M' = M \otimes_k M'$ is made G-module by $(m \otimes m')x = mx \otimes m'x \ (m \in M, m' \in M', x \in G)$. By the Krull-Schmidt theorem for G-modules, $A_{\mathfrak{c}}(k, G)$ is free as c-module, and the $\{V_i\}$ $(i \in I)$ form a c-basis. $A_{\mathfrak{c}}(k, G)$ is a commutative, associative algebra over c, and has identity element $1 = \{k_G\}$.

The Grothendieck algebra $A^*_{\mathfrak{c}}(k, G)$ is the quotient of $A_{\mathfrak{c}}(k, G)$ by the ideal J

Received August 3, 1961.

¹ This work was done while the author was supported by a grant from the National Science Foundation at the Institute for Advanced Study, and under an Army contract at Cornell University.

generated by all elements $\{M'\} - \{M\} + \{M''\}$ such that there exists an exact sequence (of G-modules and G-module homomorphisms)

(1.2a)
$$0 \to M' \to M \to M'' \to 0.$$

By the Jordan-Hölder theorem for G-modules, the elements $\{F_j\} + J$ $(j = 1, \dots, n)$ form a c-basis of $A^*_{\mathfrak{c}}(k, G)$, which is therefore always finite-dimensional.

If p = 0, or if p is a finite prime not dividing the order of G, then every exact sequence (1.2a) splits, i.e., J = 0 and $A_{\mathfrak{c}}(k, G) \cong A_{\mathfrak{c}}^*(k, G)$.

1.3. Returning to the general case, let now k' be an extension field of k. Each (k, G)-module M gives rise to a (k', G)-module $M_{k'} = k' \otimes_k M$ ("extension of coefficient field"). The mapping $\{M\} \to \{M_{k'}\}$ gives a natural homomorphism

(1.3a)
$$A_{\mathfrak{c}}(k, G) \to A_{\mathfrak{c}}(k', G),$$

and by a theorem of E. Noether (see e.g. Deuring [3]), which says that two (k, G)-modules M, M' are isomorphic if $M_{k'} \cong M'_{k'}$, it follows that (1.3a) is a monomorphism. Clearly (1.3a) also induces a map

(1.3b)
$$A^*_{\mathfrak{c}}(k,G) \to A^*_{\mathfrak{c}}(k',G),$$

and it is readily shown that this, again, is a monomorphism.²

1.4. From now on we shall take c to be the field of complex numbers, and write A(k, G), $A^*(k, G)$ for $A_{\mathfrak{c}}(k, G)$, $A^*_{\mathfrak{c}}(k, G)$, respectively. We prove in §1.5, as an immediate consequence of R. Brauer's representation theory,

THEOREM 1. For any field k, and any finite group G, the algebra $A^*(k, G)$ is semisimple.

If p = 0 or if p is a finite prime not dividing the order of G, then A(k, G) coincides with $A^*(k, G)$, and so is semisimple by Theorem 1. If p is a finite prime dividing the order of G, very little is known about A(k, G), even in the case where this is a finite-dimensional algebra, i.e., when the Sylow p-subgroups of G are cyclic. The greater part of this paper (§2) is devoted to the proof of

THEOREM 2. If k has finite prime characteristic p, and if G is a cyclic group of order a power of p, then A(k, G) is semisimple.

Corollary. A(k, G) is semisimple, for any finite cyclic group G.

For the proof of this corollary, see §2.11.

² Let $k' \otimes F_j = F_{j1} + F_{j2} + \cdots$, where F_{j1} , F_{j2} , \cdots are irreducible (k', G)-modules. If $\{F_h\}$, $\{F_j\}$ are distinct classes of irreducible (k, G)-modules, then no one of F_{h1} , F_{h2} , \cdots can be isomorphic to any one of F_{j1} , F_{j2} , \cdots , by Schur's lemma. Therefore the basis elements $\{F_j\} + J$ $(j = 1, \cdots, n)$ of $A^*(k, G)$, are mapped into linearly independent elements of $A^*(k', G)$.

1.5. If A is any commutative complex algebra with identity element 1, define a *character* of A to be a nonzero algebra homomorphism $\phi : A \to c$. By definition, A is semisimple if and only if, given any nonzero element $a \in A$, there exists some character ϕ of A such that $\phi(a) \neq 0$. If A has finite dimension s, say, then this condition is equivalent to the condition that A should have s distinct characters.

Proof of Theorem 1. Let k' be the algebraic closure of k. If $A^*(k', G)$ is semisimple, then so is $A^*(k, G)$, because, by (1.3b), $A^*(k, G)$ is isomorphic to a subalgebra of $A^*(k', G)$. So we may assume k is algebraically closed. By Brauer's theorem (see §1.1), $A^*(k, G)$ has dimension n = number of pregular classes of G. For each p-regular class K_{ν} , $\nu = 1, \dots, n$, we may define a function β_{ν} on $A^*(k, G)$, as follows: Each class $\{M\}$ of G-modules determines a class of equivalent matrix representations of G over k; let M be one of these matrix representations. Define $\beta_{\nu}(\{M\} + J)$ to be the value, at an element of the conjugacy class K_{ν} , of the Brauer character of M (see [1]). For example, taking $K_1 = \{e\}$, we have $\beta_1(\{M\} + J) = \dim M$. Well-known properties of the Brauer character ensure that β_{ν} is well-defined and is a character of $A^*(k, G)$. Moreover β_1, \dots, β_n are distinct,³ so $A^*(k, G)$ has as many characters as its dimension, which proves the theorem.

1.6. We collect here some general facts which will be used in §2. Let G, H be two groups, and $\theta: H \to G$ a homomorphism. If M is a G-module, let $M\theta^*$ denote the *restricted* H-module, i.e., $M\theta^*$ has the same underlying k-space as M, and $y \in H$ operates by $my = m(y\theta)$ $(m \in M)$. If L is an H-module, let $L\theta_*$ denote the *induced* G-module, i.e., $L\theta_*$ is generated, as k-space, by symbols $l \otimes \gamma$ $(l \in L, \gamma \in \Gamma = \Gamma(k, G))$ subject to the relations which make \otimes bilinear over k, and also

$$ly \otimes \gamma = l \otimes (y\theta)\gamma \qquad (l \in L, \gamma \in \Gamma, y \in H).$$

An element $x \in G$ acts on $L\theta_*$ by the rule $(l \otimes \gamma)x = l \otimes \gamma x$. If θ is monomorphic, we have

(1.6a)
$$\dim L\theta_* = (G:H\theta) \dim L.$$

The maps $\{M\} \to \{M\theta^*\}$ and $\{L\} \to \{L\theta_*\}$ induce linear mappings

 $\theta^* : A(k, G) \to A(k, H) \text{ and } \theta_* : A(k, H) \to A(k, G),$

respectively. θ^* is clearly an algebra homomorphism; for θ_* we have the identity

(1.6b)
$$L\theta_* \otimes M \cong (L \otimes M\theta^*)\theta_*$$

(see e.g. Swan [7]).

³ Any character β of $A^*(k, G)$ is determined by the values $\beta^j = \beta(\{F_i\} + J)$ $(j = 1, \dots, n)$. The $n \times n$ matrix (β_i^j) (ν row, j column affix) is just the transpose of Brauer's matrix of modular characters (called Φ in [2]), and hence is nonsingular.

In particular, if θ is the inclusion map of the subgroup $H = \{e\}$ in G, and if $L = k_{\{e\}}$, we find $L\theta_* \cong \Gamma$; hence (1.6b) gives

(1.6c)
$$\Gamma \otimes M \cong (\dim M) \Gamma$$
, for any *G*-module *M*.

Let ϕ be any character of A(k, G). We write $\phi(M)$ in place of $\phi(\{M\})$ for convenience. Then (1.6c) shows that $\phi(\Gamma)\phi(M) = (\dim M)\phi(\Gamma)$; hence if $\phi(\Gamma) \neq 0$, we have $\phi(M) = \dim M$ for all M.

(1.6d) The only character ϕ of A(k, G), for which $\phi(\Gamma) \neq 0$, is the "dimension character" $\phi(M) = \dim M$.

Finally we note the following theorem of Schanuel (see e.g. Swan [8]).

(1.6e) If $0 \to A \to P \to B \to 0$ and $0 \to A' \to P' \to B' \to 0$ are two exact sequences of G-modules, with P, P' both projective, and if $B \cong B'$, then

$$A + P' \cong A' + P.$$

We shall use (1.6e) only in the case where P, P' are both *free G*-modules, $P = s\Gamma, P' = s'\Gamma$, say. If $s \ge s'$, the theorem gives

$$A \cong A' + (s - s') \Gamma.$$

2. The representation algebra of a finite cyclic group

2.1. Throughout §2 we make the following conventions.

k is a field of finite prime characteristic p. α is a nonnegative integer, $q = p^{\alpha}$. G_{α} is a cyclic group of order $q = p^{\alpha}$, and $\Gamma_{\alpha} = \Gamma(k, G_{\alpha})$. $A_{\alpha} = A(k, G_{\alpha})$.

Any G_{α} -module can be regarded as a Γ_{α} -module, and conversely. If x_{α} is a generator of G_{α} , and if $\omega_{\alpha} = x_{\alpha} - e$, then $\omega_{\alpha}^{q} = 0$, and

$$V_{r\alpha} = \Gamma_{\alpha} / \omega_{\alpha}^{r} \Gamma_{\alpha} \qquad (r = 1, \cdots, p^{\alpha})$$

form a set of representatives of the classes of indecomposable G-modules. We write also $V_{0\alpha} = \{0\}$, the zero G_{α} -module.

If a is a module generator of $V_{r\alpha}$, then the elements $a\omega_{\alpha}^{i}$ $(i = 0, 1, \dots, r-1)$ form a k-basis of $V_{r\alpha}$. With respect to this basis, x_{α} is represented by the $r \times r$ matrix

$$X_r = \begin{pmatrix} 1 & 1 & 0 & \cdots & 0 & 0 \\ 0 & 1 & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 & 1 \\ 0 & 0 & 0 & \cdots & 0 & 1 \end{pmatrix}.$$

The only submodules of $V_{r\alpha}$ are $V_{r\alpha} \omega^i$ $(i = 0, 1, \dots, r)$. If r, s are in-

tegers such that $0 \leq r \leq s \leq q = p^{\alpha}$, then there is an obvious exact sequence

(2.1a)
$$0 \to V_{r\alpha} \to V_{s\alpha} \to V_{s-r,\alpha} \to 0.$$

2.2. If α , β are integers such that $\beta \geq \alpha \geq 0$, there is a homomorphism $\theta: G_{\beta} \to G_{\alpha}$ which takes x_{β} onto x_{α} . It is clear that $V_{r\alpha}\theta^* \cong V_{r\beta}(1 \leq r \leq p^{\alpha})$, and in most contexts we write simply V_r for $V_{r\alpha}$. The mapping $\theta^*: A_{\alpha} \to A_{\beta}$ is a monomorphism, and we shall identify A_{α} with the appropriate part of A_{β} according to θ^* , and write $v_r = \{V_{r\alpha}\} = \{V_{r\beta}\}$. Thus A_0, A_1, A_2, \cdots are subalgebras of a commutative algebra $A = \bigcup_{\alpha=0}^{\infty} A_{\alpha}$. A has basis v_1, v_2, \cdots , and identity element $v_1 = 1$. A_{α} has basis $v_1, \cdots, v_{p^{\alpha}}$. We shall write $v_0 = 0$.

2.3. Take a fixed $\alpha \ge 0$, $q = p^{\alpha}$. The next theorem gives relations which describe $A_{\alpha+1}$ as an extension of A_{α} .

THEOREM 3. Let
$$w = v_{q+1} - v_{q-1}$$
. Then

(2.3a) $v_r w = v_{r+q} - v_{q-r}$ $(1 \le r \le q),$

(2.3b)
$$v_r w = v_{r+q} + v_{r-q}$$
 $(q < r < (p-1)q),$

(2.3c)
$$v_r w = v_{r-q} + 2v_{pq} - v_{2pq-(r+q)}$$
 $((p-1)q \le r \le pq).$

These formulae show that $A_{\alpha+1} = A_{\alpha}[w]$. However we prefer to regard $A_{\alpha+1}$ as the ring generated over A_{α} by the $p^{\alpha+1} - p^{\alpha}$ elements v_r $(q+1 \leq r \leq pq)$, and then

(2.3d) Relations (2.3a), (2.3b), (2.3c) are defining relations for this extension.

For let $B = A_{\alpha}[v_{q+1}, \dots, v_{pq}]$ be the commutative ring obtained by adjoining to A_{α} symbols v_{q+1}, \dots, v_{pq} which satisfy these relations, and let $\pi: B \to A_{\alpha+1}$ be the natural epimorphism of B onto $A_{\alpha+1}$. The given relations obviously imply that B is spanned linearly by v_1, \dots, v_{pq} ; hence by comparison of dimensions of B and $A_{\alpha+1}$, π must be an isomorphism.

2.4. In this paragraph, α is again fixed, all modules are G_{α} -modules, and we write $V_r = V_{r\alpha}$, $\Gamma = \Gamma_{\alpha}$, $\omega = \omega_{\alpha} = x_{\alpha} - e$. By a *partition* λ we understand a sequence $(\lambda_1, \lambda_2, \cdots)$ whose terms are nonnegative integers, almost all zero, and such that $\lambda_1 \geq \lambda_2 \geq \cdots$. Those terms which are positive are called *parts* of λ . For each integer $i \geq 1$, write $n_i(\lambda)$ for the number of parts equal to i, and $b_i(\lambda)$ for the number of parts $\geq i$. Either of the sequences

⁴ The multiplication in A is that determined by the Kronecker product of the matrices X_r , i.e., if $X_r \times X_s$ has Jordan form $\sum a_{rst} X_t$, then $v_r v_s = \sum a_{rst} v_t$. For matrices over a field of characteristic zero, Littlewood [6, p. 195] has calculated these coefficients a_{rst} explicitly. We have not been able to find such an explicit description of this product in the modular case.

 (n_1, n_2, \cdots) or (b_1, b_2, \cdots) determines λ uniquely, and

 $n_i(\lambda) = b_i(\lambda) - b_{i+1}(\lambda).$

 $b_1(\lambda)$ is the number of parts of λ .

Let V be any G_{α} -module. There is a unique expansion

(2.4a)
$$V \cong V_{\lambda_1} + \cdots + V_{\lambda_b}$$
 $(\lambda_1 \geqq \cdots \geqq \lambda_b > 0),$

and we write $\lambda(V)$ for the partition $(\lambda_1, \dots, \lambda_b, 0, 0, \dots)$. All the parts of $\lambda(V)$ lie between 1 and $q = p^{\alpha}$, and $\sum \lambda_i = \dim V$. Moreover $\lambda(V)$ can be invariantly described by the well-known formulae

(2.4b)
$$b_i(\lambda(V)) = \dim (V\omega^{i-1}/V\omega^i)$$
 $(i = 1, 2, \cdots).$

It will be useful to have the particular notations

- $l(V) = \lambda_1 = \text{least integer } l \text{ such that } V\omega^l = 0, \text{ and }$
- $b(V) = b_1(\lambda(V)) = \dim (V/V\omega) =$ number of summands in (2.4a).

We observe that if V' is a homomorphic image of V, then $b(V) \ge b(V')$.

2.5.

(2.5a) If
$$1 \leq r, s \leq q$$
, and if

 $V_r \otimes V_s \cong V_{\lambda_1} + \cdots + V_{\lambda_b} \quad (\lambda_1 \geqq \cdots \geqq \lambda_b > 0),$

then $s \geq b$, and

$$V_{q-r} \otimes V_s \cong V_{q-\lambda_1} + \cdots + V_{q-\lambda_b} + (s-b) V_q.$$

Proof. Since $\Gamma = V_q$, there is an exact sequence

 $0 \to V_{q-r} \to \Gamma \to V_r \to 0,$

from which, taking tensor products with V_s and using (1.6c), we get an exact sequence

$$0 \to V_{q-r} \otimes V_s \to s\Gamma \to V_r \otimes V_s \to 0.$$

It is clear that $b(s\Gamma) = s$; hence by the remark at the end of §2.4, $s \ge b(V_r \otimes V_s) = b$. But we can also present $\sum V_{\lambda_i}$ by an exact sequence

$$0 \to \sum V_{q \to i_i} \to b\Gamma \to \sum V_{\lambda_i} \to 0$$

Then Schanuel's theorem (1.6e) gives the result.

Take the special case r = 1. We have $V_1 \otimes V_s \cong V_s$; hence

(2.5b)
$$V_{q-1} \otimes V_s \cong V_{q-s} + (s-1)V_q$$
 $(1 \le s \le q)$

From this we deduce

(2.5c) If
$$\phi : A_{\alpha} \to c$$
 is any character of A_{α} , there exists an integer $T(\phi) = \pm 1$
such that $\phi(v_{q-s}) + T(\phi)\phi(v_s) = \phi(v_q)$ $(0 \le s \le q)$.

612

Proof. If ϕ is the dimension character (see (1.6d)), $\phi(v_s) = s$, so we may take $T(\phi) = 1$. If ϕ is not the dimension, then by (1.6d), $\phi(V_q) = 0$. By (2.5b), $\phi(v_{q-s}) + T(\phi)\phi(v_s) = 0$, where $T(\phi) = -\phi(V_{q-1})$. Again, if we put s = q - 1 in (2.5b), we find $(\phi(V_{q-1}))^2 = \phi(V_1) = 1$; hence $T(\phi) = \pm 1$, and this completes the proof.

2.6. Any partition λ can be associated with a graph (see e.g. Littlewood [6, Ch. V]) consisting of rows of symbols called *nodes*, λ_1 in the first row, λ_2 in the second, and so on.

A partition μ is said to be obtained from λ by regular adjunction of r nodes if there is a sequence of partitions

(2.6a)
$$\lambda = \lambda^0, \ \lambda^1, \ \cdots, \ \lambda^r = \mu$$

such that for each $h = 1, \dots, r$, the graph of λ^h is obtained from that of λ^{h-1} by adding one new node a_h , in such a way that no two of the r added nodes a_1, \dots, a_r appear in the same column. For example, the diagram

shows how $(4, 3, 3, 2, 0, \dots)$ can be obtained from $(3, 3, 2, 0, \dots)$ by regular adjunction of 4 nodes.

(2.6b) Let λ , μ be two partitions. Then μ can be obtained from λ by regular adjunction of r nodes, if and only if there exist r distinct positive integers i_1, \dots, i_r such that

(2.6c)
$$b_i(\mu) - b_i(\lambda) = 1 \quad if \quad i \in \{i_1, \cdots, i_r\}, \quad and$$
$$= 0 \quad if \quad i \notin \{i_1, \cdots, i_r\}.$$

*Proof.*⁵ We observe that, for any partition λ , $b_i(\lambda)$ is the number of nodes in the *i*th column of the diagram of λ . Thus (2.6b) follows at once from the definition of regular adjunction, because (2.6c) is simply the condition that μ be obtainable from λ by adding new nodes to the distinct columns i_1, \dots, i_r .

We are now in a position to prove the following lemma, which is a very special case of a theorem (proof unpublished) of P. Hall (see [4, Theorem 2]).

(2.6d) Let $V_r = V_{r\alpha}$ $(0 \le r \le q)$, and let V, W be any G_{α} -modules. If there exists an exact sequence

 $0 \to V_r \xrightarrow{\iota} V \xrightarrow{\varepsilon} W \to 0,$

then $\lambda(V)$ can be obtained from $\lambda(W)$ by regular adjunction of r nodes.

⁵ The author is much indebted to the referee for simplifying the original proofs of (2.6b) and (2.6d).

Proof. Since dim $V = \dim W + r$, the graph of $\lambda(V)$ has r more nodes than that of $\mu(W)$. We have to prove that we can obtain $\lambda(V)$ from $\lambda(W)$ by regular adjunction.

We may assume that V_r is a submodule of V, and that ι is the inclusion map. For each $i = 1, 2, \dots, \epsilon$ induces an epimorphism

$$V\omega^{i-1}/V\omega^i \to W\omega^{i-1}/W\omega^i$$

whose kernel is annihilated by ω , and is also a cyclic module, being an image of $V_r \cap V \omega^{i-1}$. Therefore this kernel is either V_0 or V_1 , so that

$$b_i(\lambda(V)) - b_i(\lambda(W)) = 0 \text{ or } 1,$$

by (2.4b). The conclusion now follows from (2.6b).

2.7. Let $\iota: G_1 \to G_{\alpha+1}$ be the monomorphism which takes x_1 to $x_{\alpha+1}^q (q = p^{\alpha})$ as before). If V_r $(1 \leq r \leq pq = p^{\alpha+1})$ is the $G_{\alpha+1}$ -module $V_{r,\alpha+1}$, we obtain the G_1 -module $V_r \iota^*$ by defining $vx_1 = vx_{\alpha+1}^q (v \in V_r)$, from which it follows (using $\omega_{\alpha+1}^q = x_{\alpha+1}^q - e$)

$$(V_r \iota^*)\omega_1^i = V_r \omega_{\alpha+1}^{iq} \qquad (i = 0, 1, \cdots).$$

Hence if $\lambda = \lambda(V_r \iota^*)$, we have by (2.4b)

$$b_i(\lambda) = \dim V_r \, \omega_{\alpha+1}^{(i-1)q} - \dim V_r \, \omega_{\alpha+1}^{iq} \qquad (i = 1, 2, \cdots).$$

Now dim $V_r \omega_{\alpha+1}^j = r - j \ (0 \le j \le r)$ or $0 \ (j > r)$. Writing

(2.7a)
$$r = r_0 q + r_1$$
 $(0 \le r_1 < q),$

we have then

$$b_i(\lambda) = q$$
 $(1 \le i \le r_0),$ $b_{r_0+1}(\lambda) = r_1,$ $b_i(\lambda) = 0$ $(i > r_0 + 1).$
Thus $n_i(\lambda) = 0$ if $1 \le i \le r_0$ or if $i > r_0 + 1$, while $n_{r_0}(\lambda) = q - r_1$ and $n_{r_0+1}(\lambda) = r_1$. Therefore

(2.7b) If $1 \leq r \leq pq$, and r is given by (2.7a), we have

$$V_{r,\alpha+1} \iota^* \cong (q - r_1) V_{r_0,1} + r_1 V_{r_0+1,1}$$

It is easy to compute the induced map ι_* . If $1 \leq s \leq p$, we find that $V_{s,1} \iota_*$ is indecomposable; and since its dimension is qs, we have

(2.7c)
$$V_{s,1} \iota_* \cong V_{qs,\alpha+1} \qquad (1 \le s \le p).$$

In particular, $V_{1,1} \iota_* \cong V_{q,\alpha+1}$. Then from (1.6b), with $\theta = \iota$, $L = V_{1,1}$, and $M = V_{r,\alpha+1}$, (2.7b) and (2.7c) give

(2.7d) If r is given by (2.7a), $1 \leq r \leq pq$, and all modules are $G_{\alpha+1}$ -modules, then

$$V_r \otimes V_q \cong (q - r_1) V_{qr_0} + r_1 V_{q(r_0+1)}$$

614

In particular, the graph of $\lambda(V_r \otimes V_q)$ consists of r_1 rows of length $q(r_0 + 1)$, and $(q - r_1)$ rows of length qr_0 .

2.8. In this and the next paragraph, all modules are $G_{\alpha+1}$ -modules, $q = p^{\alpha}$, $x = x_{\alpha+1}$, $\omega = \omega_{\alpha+1}$, and r is an integer such that $1 \leq r \leq pq = p^{\alpha+1}$, $r = r_0 q + r_1 (0 \leq r_1 < q)$.

By taking the tensor product of the exact sequence

$$0 \to V_1 \to V_{q+1} \to V_q \to 0$$

with V_r , we obtain the exact sequence

$$0 \to V_r \to V_r \otimes V_{q+1} \to V_r \otimes V_q \to 0.$$

Hence by (2.6d)

(2.8a) $\lambda(V_r \otimes V_{q+1})$ is obtained from $\lambda(V_r \otimes V_q)$ by regular adjunction of r nodes.

Next we prove

(2.8b) If
$$1 \leq r < (p-1)q$$
, then $l(V_r \otimes V_{q+1}) = q + r$.

Proof. Let a, b be any elements of V_r , V_{q+1} respectively. Then

 $(a \otimes b)\omega = (a \otimes b)(x - e) = ax \otimes bx - a \otimes b = a\omega \otimes bx + a \otimes b\omega$ $= (a \otimes b)(\omega \otimes x + e \otimes \omega),$

where $\omega \otimes x + e \otimes \omega$ is an element of the product algebra $\Gamma_{\alpha+1} \otimes \Gamma_{\alpha+1}$, which operates naturally on $V_r \otimes V_{q+1}$. Since $\omega \otimes x$ and $e \otimes \omega$ commute, and since $a\omega^r = b\omega^{q+1} = 0$, we find by the binomial theorem that for any integer $\xi \ge 0$,

$$(a \otimes b)\omega^{q(r_0+1)+\xi} = (r_0+1)(a \otimes b)(\omega^{qr_0+\xi} \otimes x^{qr_0+\xi}\omega^q).$$

Now $r_0 + 1 \neq 0$, because $r_0 \leq p - 2$. Hence $(V_r \otimes V_{q+1}) \omega^{q(r_0+1)+\xi}$ is zero for $\xi = r_1$, but not zero for $\xi = r_1 - 1$. So $l(V_r \otimes V_{q+1}) = q(r_0 + 1) + r_1 = q + r$.

(2.8c) If
$$1 \leq r \leq q$$
, then $V_r \otimes V_{q+1} \simeq V_{r+q} + (r-1)V_q$.

Proof. $\lambda(V_r \otimes V_q)$ consists of r rows of q nodes. The only way to make a graph by regular adjunction of r nodes, in such a way that the first part should be q + r, is to adjoin all nodes to the first row. Thus the graph of $\lambda(V_r \otimes V_{q+1})$ has one part q + r, and r - 1 parts q.

(2.8d) If
$$q < r < (p-1)q$$
, then
 $V_r \otimes V_{q+1} \cong V_{r-q} + (q-r_1-1)V_{r_0q} + V_{(r_0+1)q-r_1} + (r_1-1)V_{(r_0+1)q} + V_{r+q}$.

Proof. Since $l(V_r \otimes V_{q+1}) = q + r$, the module $V_r \otimes V_{q+1}$ must have a component V_{q+r} . Applying (2.8b) to V_{pq-r} , we see that $V_{pq-r} \otimes V_{q+1}$ has a component $V_{pq-r+q} = V_{pq-(r-q)}$. Then (2.5a) shows that $V_r \otimes V_{q+1}$ has a component V_{r-q} . Hence $\lambda(V_r \otimes V_{q+1})$ has a part r + q, and a part r - q. It is easy to verify, that the only partition which has a part r + q, a part r - q, and can be obtained from $\lambda(V_r \otimes V_q)$ by regular adjunction of r nodes, is the partition of the module on the right of (2.8d).

By another application of (2.5a) we deduce from (2.8c)

(2.8e) If
$$(p-1)q \leq r < pq$$
, then
 $V_r \otimes V_{q+1} \simeq V_{r-q} + (q-r_1-1)V_{(p-1)q} + (r_1+1)V_{pq}$.

2.9. We consider next the module $V_r \otimes V_{q-1}$. From the exact sequence

$$0 \to V_1 \to V_q \to V_{q-1} \to 0,$$

we get the exact sequence

$$0 \to V_r \to V_r \otimes V_q \to V_r \otimes V_{q-1} \to 0;$$

therefore

(2.9a) $\lambda(V_r \otimes V_q)$ can be obtained from $\lambda(V_r \otimes V_{q-1})$ by regular adjunction of r nodes.

(2.9b)
$$b(V_r \otimes V_{q-1}) = r$$
 if $r \leq q - 1$,
= $q - 1$ if $r \geq q - 1$.

Proof. Put $V = V_r \otimes V_{q-1}$; then $b(V) = \dim(V/V\omega)$ (see §2.4). Let a, b be module generators for V_r , V_{q-1} respectively. The elements

$$u_{ij} = a\omega^i x^j \otimes b\omega^j \qquad (0 \le i \le r-1, 0 \le j \le q-2)$$

form a basis of V. We write $u_{ij} = 0$ if $i \ge r$ or if $j \ge q - 1$. Then

$$u_{ij} \omega = u_{i+1,j} + u_{i,j+1} \qquad \text{for all} \quad i, j \ge 0;$$

hence if $\bar{u}_{ij} = u_{ij} + V\omega$, then $\bar{u}_{i+1,j} = -\bar{u}_{i,j+1}$. It follows that $V/V\omega$ has a k-basis either

$$\begin{split} \bar{u}_{i,0} & (0 \leq i \leq r-1) \quad \text{if} \quad r \leq q-1, \quad \text{or} \\ \bar{u}_{0,j} & (0 \leq j \leq q-2) \quad \text{if} \quad r \geq q-1. \end{split}$$

(2.9c) If $q \leq r \leq pq$, then

$$V_r \otimes V_{q-1} \cong (r_1 - 1) V_{q(r_0 + 1)} + V_{q(r_0 + 1) - r_1} + (q - r_1 - 1) V_{qr_0}$$

Proof. $b(V_r \otimes V_q) = q$, by (2.7d), and $b(V_r \otimes V_{q-1}) = q - 1$ by (2.9b). Therefore the whole of the last row of the graph of $\lambda(V_r \otimes V_q)$ (considered to be obtained from $\lambda(V_r \otimes V_{q-1})$ by regular adjunction of r nodes) must consist of added nodes. This means that $\lambda(V_r \otimes V_{q-1})$ must be the partition of the module on the right of (2.9c).

By applying a similar argument, or else by using (2.5a) on this last formula, we find also

(2.9d) If
$$1 \leq r \leq q$$
, then $V_r \otimes V_{q-1} \simeq V_{q-r} + (r-1)V_q$.

The formulae in §§2.8 and 2.9 yield immediately the proof of Theorem 3.

2.10. Proof of Theorem 2. We wish to show that, for any $\alpha \ge 0$, the algebra A_{α} has p^{α} characters. For $\alpha = 0$ this is clear; now suppose $\alpha \ge 0$ is such that A_{α} does have $p^{\alpha} = q$ characters; we complete the induction by showing that $A_{\alpha+1}$ has $p^{\alpha+1}$ characters. This will be achieved when we prove

(2.10a) If $\phi : A_{\alpha} \to c$ is any character of A_{α} , then there are p distinct characters of $A_{\alpha+1}$ which extend ϕ .

Put $z_i = \phi(v_i)$ $(0 \le i \le q)$. Finding an extension ϕ^* of ϕ to $A_{\alpha+1}$ is equivalent to finding pq - q complex numbers $z_r (q + 1 \le r \le pq)$ such that

(2.10b) $z_r y = z_{r+q} - z_{q-r}$ $(1 \le r \le q),$

(2.10c)
$$z_r y = z_{r+q} + z_{r-q}$$
 $(q < r < (p-1)q),$

(2.10d)
$$z_r y = z_{r-q} + 2z_{pq} - z_{2pq-(r+q)} \quad ((p-1)q \leq r \leq pq),$$

where $y = z_{q+1} - z_{q-1}$. For if ϕ^* is such an extension, then by Theorem 3, $z_r = \phi^*(v_r)$ will satisfy these relations; conversely given such z_r we define ϕ^* by $\phi^*(v_r) = z_r$, and then by (2.3d), ϕ^* is a character of $A_{\alpha+1}$.

Let t be an indeterminate over c, and define for each $s \ge -1$ the function (polynomial in t, t^{-1})

$$L_s(t) = \sum_{i=0}^{s-1} t^{-s+2i+1} = (t^s - t^{-s})/(t - t^{-1}),$$

so that $L_{-1}(t) = -1$, $L_0(t) = 0$, $L_1(t) = 1$, $L_2(t) = t^{-1} + t$, etc. Notice $L_s(t) = L_s(t^{-1})$. We find also

(2.10e)
$$L_s(t)L_2(t) = L_{s+1}(t) + L_{s-1}(t)$$
 $(s \ge 0).$

Now let $z_r = \phi(v_r)$ $(0 \le r \le q)$ as before, and let ε be a nonzero complex number. Define $z_r = \phi(v_r)$ $(0 \le r \le pq)$ by putting $r = r_0 q + r_1$ $(0 \le r_1 < q)$ and

(2.10f)
$$z_r = z_{r_1} L_{r_0+1}(\varepsilon) + z_{q-r_1} L_{r_0}(\varepsilon).$$

Then $y = z_{q+1} - z_{q-1} = L_2(\varepsilon)$. We find, using (2.10e), that (2.10b) and (2.10c) are satisfied by these z_r , for any $\varepsilon \neq 0$. Also for $r = (p-1)q + r_1$ $(0 \leq r_1 \leq q)$ we have

(2.10g)
$$z_r y - \{z_{r-q} + 2z_{pq} - z_{2pq-(r+q)}\} = z_{r_1}(L_{p+1} + L_{p-1}) + 2z_{q-r_1}L_p - 2z_q L_p,$$

where we have written L_s in place of $L_s(\varepsilon)$, for short. The right-hand side of (2.10g) is zero, and hence (2.10d) is satisfied in the following cases:

(i) If ε^2 is a primitive p^{th} root of unity (i.e., $\varepsilon = \exp(\pi i w/p)$, $1 \leq w \leq (p-1)$). For then $L_p(\varepsilon) = 0$; hence $L_{p+1}(\varepsilon) + L_{p-1}(\varepsilon) = 0$ by (2.10e). We have in this way (p-1) distinct extensions of ϕ , with $z_{q+1} - z_{q-1} = L_2(\varepsilon) = 2 \cos(\pi w/p), w = 1, \dots, p-1$.

(ii) If $\varepsilon = T(\phi)$ (see (2.5c)). For then $\varepsilon = \pm 1$, so that $L_s(\varepsilon) = s\varepsilon^{s-1}$, and the right-hand side of (2.10g) becomes

$$2p\varepsilon^{p-1}(\varepsilon z_{r_1}+z_{q-r_1}-z_q),$$

and this is zero by (2.5c). Thus there are p distinct extensions of ϕ . This proves (2.10a) and hence Theorem 2.

Remarks. If we take $\alpha = 0$, our argument shows that A_1 has p characters

$$\phi_0: v_r \to r, \text{ and}$$
 $\phi_w: v_r \to L_r(\varepsilon) = rac{\sin (\pi r w/p)}{\sin (\pi w/p)} \qquad (r = 1, \dots, p),$

 $w = 1, \dots, p-1$. The field generated by the values $\phi(v_r)$, for all characters ϕ of A_{α} , and $r = 1, \dots, p^{\alpha}$, is independent of α (provided $\alpha \ge 1$), and is the maximal real subfield of the field of $(2p)^{\text{th}}$ roots of unity.

2.11. We conclude with a proof of the Corollary to Theorem 2, that A(k, G) is semisimple for any finite cyclic group G. G can be written $G = H_1 \times H_2$, where H_1 , H_2 are cyclic groups, respectively of order prime to p, and of order a power of p. As in the proof of Theorem 1, we may assume k is algebraically closed. Then it is easy to see that any indecomposable G-module V has the form $V_1 \otimes V_2$, where V_1 is an irreducible H_1 -module (hence dim $V_1 = 1$), and V_2 is an indecomposable H_2 -module, and $V_1 \otimes V_2$ is an $H_1 \times H_2$ -module by the rule

$$(v_1 \otimes v_2)(h_1, h_2) = v_1 h_1 \otimes v_2 h_2$$
 $(v_i \in V_i, h_i \in H_i, i = 1, 2).$

The map

$$\{V\} \to \{V_1\} \otimes \{V_2\}$$

defines an isomorphism from A(k, G) onto $A(k, H_1) \otimes A(k, H_2)$. Both factors are semisimple; therefore so is A(k, G).

References

- 1. R. BRAUER AND C. NESBITT, On the modular representations of groups of finite order. I, University of Toronto Studies, Mathematical Series, no. 4, 1937.
- 2. ———, On the modular characters of groups, Ann. of Math. (2), vol. 42 (1941), pp. 556– 590.
- M. DEURING, Galoissche Theorie und Darstellungstheorie, Math. Ann., vol. 107 (1932), pp. 140–144.
- 4. J. A. GREEN, Les polynômes de Hall et les caractères des groupes GL(n, q), Colloque

d'Algèbre Supérieure, Bruxelles, 1956, Centre Belge de Recherches Mathématiques, 1957, pp. 207-215.

- 5. D. G. HIGMAN, Modules with a group of operators, Duke Math. J., vol. 21 (1954), pp. 369-376.
- 6. D. E. LITTLEWOOD, The theory of group characters and matrix representations of groups, Oxford, 1940.
- 7. R. G. SWAN, Induced representations and projective modules, Ann. of Math. (2), vol. 71 (1960), pp. 552–578.
- 8. ——, Periodic resolutions for finite groups, Ann. of Math. (2), vol. 72 (1960), pp. 267–291.

THE INSTITUTE FOR ADVANCED STUDY PRINCETON, NEW JERSEY CORNELL UNIVERSITY ITHACA, NEW YORK