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1. Introduction
Let X be a countable set, which will also be considered as a topological space

with the discrete topology. For each x e X, let P(x, .) be a measure on X,
of total mass _-< 1. P is thus a Markoff transition function with state space X,
but with a possibility of "annihilation" at each step. We also use the nota-
tion P for the operator on 2(X) given by

Pf(x) f P(x, dy)f(y).

P(’)(x,. ) is then defined in the usual way by

s) f P(’)(x, dy)P(y, S),P(+(x,

and has as its corresponding operator the n-fold iterate of the operator P.
p(0) (x, is defined as a unit mass at x.

There have been defined for such operators two sorts of "exit boundaries""
the Martin boundary, described in [2] or [4], and the Feller boundary, con-
structed in [3]. These serve to describe the long-term behavior of the sto-
chastic processes constructed from P, and to classify the functions left fixed
by P. In these papers, there is raised the natural question" Precisely what
is the relationship between these two boundaries? Here we shall try to give
some sort of answer to this question. It should be remarked that the Martin
boundary was originally constructed in connection with classical potential
theory, but has been made part of a far-reaching extension of the ideas of
classical potential theory to kernels arising from Markoff processes. The con-
struction has been carried through by G. A. Hunt for wide class of Markoff
processes.

It will be assumed that all points are transient, i.e., that for all finite sets S
the sum _=o p(n)(x, S) converges to a finite limit, which we call G(x, S).
This is no real loss, as the additional boundary points which are introduced by
the existence of recurrent states play a rather transparent role, for either type
of boundary.

Briefly, the Martin boundary B (for a given starting measure) is a separable
compact metric space with a certain measure on its Borel sets, and attached
to X in a certain way.
We shall see that the Feller boundary l’ can be described as the Stone space

of the measure algebra of u. Furthermore, if C is the support of t (in the
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topological sense, i.e., the minimal closed set whose complement has measure
0), then C can be realized in a natural way as a quotient space of r. This
simply amounts to doing for C what Kendall does in [5] for the unit interval.
Furthermore, the construction of C from r can be carried out without explicit
reference to C, so that the Martin boundary can to some extent be recaptured
from the Feller boundary.
The projection from I onto C extends in a natural way to one from X u 1

onto X u C, which suggests an alternative way of extending the topology of
CtoXuC.
We will have occasion to use stochastic processes constructed in the usual

way from P. Let 2 be a set, r a function from 2 to the nonnegative integers
and oo, and 0, 1, a sequence of functions from 2 to X, () being de-
fined for all nonnegative integers n

_
r(). For each x e X, let Pr be a

measure on the a-algebra generated by the . and r, for which 0, 1,
is a Markoff process starting at x and with transition probabilities

Pr{,+leSi Y} P(Y,S).

Such 2, r, $, Pr exist, as is well known. Terms such as "almost everywhere
in 2" will mean almost everywhere with respect to all the measu’res Pr.
Also, for any measure a on X, a measure Pra can be defined by

Pra{. f Pr{. (dx).

This notation will be used throughout.
I would like to express my gratitude to W. Feller, E. A. Michael, and D.

Ray for useful discussions.

2. The Feller boundary
Let B be the real Banach space of bounded solutions to the equation

Pf f, with supremum norm. Solutions to the equation Pf f will also
be called harmonic functions, after Feller’s and Doob’s usage. Hunt calls
these "concordant" functions. Let $ be the set of nonnegative extreme
elements of the unit sphere in . Feller shows in [3] that these are precisely
the functions of the form

ss(x) Pr/ e S for all n -> some no},
where S is any subset of X. In particular, let e(x) sx(x) Pr r }.
It is further shown that $ is a lattice; indeed,

ss ^ s ssn, and

s --* e s provides a complementation operation. Let I be the set of maximal
lattice-ideals, topologized by using sets of the form

as a subbasis for the open sets.
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Some of the results of Feller, and improvements on them by Kendall [4],
can be summarized as follows.

(1) $ is a complete Boolean algebra, with e as unit element.
(2) 1 is the Stone space of $ (see [6]), and hence an extremely discon-

nected compact Hausdorff space. The sets A(s), s e $, are precisely the both
closed and open sets of 1.

(3) The map s -* 1) extends to an isometry from B onto (1), which
we shall call j (the notation 1 means the indicator function of the set A).

(4) The space 1 is "hyperstonian" (see [1]). This just comes down to the
fact that the map x --. s(x), for each x e X, is countably additive as a func-
tion on $.

Feller furthermore topologizes X u 1 in a manner which can be described
as follows: X is open in X u 1; X and 1 have their original topologies in-
duced on them from X u F; and finally, a net x of points in X is said to con-
verge to a point , e r if, for any S c X such that j(ss)(v) 1, x lies in S
for all sufficiently great n. This makes X u r into a Hausdorff space, with X
as a dense subset.
Remark 2.1. X t 1 is not necessarily compact, even though I’ is. Indeed,

let X be the integers (both positive and negative), and let P(x, be a point
mass at x -{- 1. The only functions in ( are then the constants, 1 is a single
point v, and a set S c X has , as a limit point if and only if S is unbounded
above. Thus, the set of negative integers has no limit point, and X u 1 is
not compact.
Remart 2.2. X u r is normal.
Proof. Let Y and Z be disjoint closed subsets of X 1. There are dis-

joint open neighborhoods V, W of Y r r and Z n 1 inX u 1, since Y 1 and
Z r are compact and X u 1 is Hausdorff. Then (V Z) u (X n Y) and
(W n Y) u (X n Z) are open, disjoint, and contain Y and Z respectively.

Feller shows further that if x --* ,, then for anyf e (B we havef(x) "--jf(’v).
In fact, this property can be considered the main goal of the construction.

3. The Martin boundary
Recall that G(x, S) was defined as :0 P()(x, S). Then for each finite

measure a on X there is defined a measure aG, finite on finite sets, by the for-
mula

aG(S) f Gls da.

We fix once and for all a finite measure c for which c(S) > 0 for all non-
empty S, and define a function K of two variables in X by

g(x, y) G(x, dy) G(x, {y})
cG(dy) f G(z, {y})c(dz)
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The use of the Rdon-Nikodym derivative notation, lthough somewhat high-
brow for discrete space, is ntural in view of wht hppens for more general
X.
We complete X with respect to the uniformity induced by clling y, y.,
Cuchy sequence if either
(1) y is constant for some n onward, or
(2) for ny finite set S, y e S if n is sufficiently lrge, nd furthermore

K(x, y,) is Cuchy sequence of numbers for each x e X.
The completion we cll X t B, B being the new points. X t B is complete
separable metric spce, nd X hs the discrete topology. X B need not be
compact, s is shown by the same example s that which worked for X F.
(This fct ws pointed out to me by the referee.)

It is shown in [4] that .e. for o e t, either r(0) < or else () con-
verges to point of B. If r() , define () to be this limit. Then

is defined on almost ll of t. A mesure is defined on the Borel sets of
X t B, by ssigning to subset A the mss Pr/ e A}. By t will be meant
the restriction of this mesure to subsets of B. So t hs total mass
Pr {r }.
The functions K(x, extend continuously to X B. The extended func-

tion will still be denoted by K(x, ). So, for x e X and y e B, the meaning of
K(x, y) is lim_.x K(x, z). Then K(., y), y e X t B, is nonnegtive
function, nd

f P(x, dz)K(z, y) <= K(x, y)

for each y e X B, the inequality being strict if y e X. Further,

f K(z, y)(dz) <= 1

for each y e X u B, the inequality being an equality if y e X.
Let C be the normed linear space of harmonic functions f in (), i.e.,

f P(x, dy)f(y) f(x) x e X,for 11

and let C+ be the positive functions in C. Let be the extreme points of the
unit sphere of 3+. Let E {y e B K(., y) e 3}. This is a Borel subset of
B. Then it is shown in [4] that

(1) g(B E) 0,
(2) there is a 1-1 correspondence between functions f e 3C+ and finite

Borel measures v on B with v(B E) 0, given by the correspondence

,-- f g(., y)v(dy) K,.

In this correspondence, K d (B) (E). In particular, all the
functions of E are given in the form K(., y), y e E.
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4. Relations between the boundaries

LEMM& 4.1. If f >- O, Pf <- f, g e 6t, and lim, (f(,) g(,)) _>_ 0, a.e.
on r then f >- g.

Proof. Let S {x If(x) < g(x) 1/m}. Then

>= f gy)#(y) + f p"(x, dy)#(y)

> f P’(x, dy)g(y) 1

f P’(x, dy)g(y) f P(x, dy)g(y) 1
m

1
m

< g(t/) t 1
m

If we let n --> , f(x) >= g(x) l/m, for all m, and so f(x) >- g(x).
The key point in seeing the relation between the two boundaries is the

following simple fact.

THEOREM 4.1. K e.

Proof. First, lim, K(,) 1 a.e. on {r }, by Theorem 4.2 of [4].
Next, lim, e(,) 1 a.e. on r }. To prove this, let lim, e(,).,
on {r }. This limit exists, by the martingale convergence theorem. So

e(x) Pr {r-- } >__ f dPr lim f e() dPr lim P’e(x) e(x).

Then equality holds throughout. Since e =< 1, -< I on }.
equallonlr- }.
Combining these two facts, and applying Lemma 4.1, Kt, _>- e.

So must

But

f Kt de ff K(x, dy)t(dy)e(dx) <= f t(dy) Pr {r } =f
Thus Kt e.
Now define k: 2.(t) --* by kO K,, where d d.
THEOREM 4.2. /C is an order-preserving linear isometry from 2() onto 6.

Proof. Let f K, for a finite Borel measure on E. Then f e (B, and,
for any nonnegative b, we have

f ]l <- b : -be <=f <- be ,:, -bt, <- , <- bt,

, f= k with-b-<-< b.
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COaOLLaV. j o k is an isomorphism from the ordered normed algebra
onto the ordered normed algebra

Now let C be the set of all points y e B for which every neighborhood of y
in B has positive tt-measure. C is easily seen to be closed. It can also be
described as the minimal closed set whose complement in B has zero t-meas-
ure. For each Borel set A c B, define a closed and open set I’(A) in I’ by
the formula

1 r() j o ]c(1).

Finally, for each y e C, set F [’l F(A), where A ranges over all open neighbor-
hoods of y in B.

THEOnEM 4.3. The sets F, y C, are closed, nonempty, and disjoint, and
their union is F.

Proof. If y e C and A, A. are open neighborhoods of y in B, then
A A n n A is again an open neighborhood of y in B, and t(A) > 0.
Thus r(A) n n F(A) I(A) is a nonempty set. Then by compact-
ness, I’ is.a closed nonempty set. Notice that the fact that each neighbor-
hood of y has positive measure was needed for nonemptiness.

If y y, then we can choose disjoint open neighborhoods A of y. in B.
Then r(A) n F(A) F(A A) is empty. Therefore r n 1 is empty.

It is in proving that (Jc F 1 that the facts that C is closed and that
t(B C) 0 are used. Suppose , e U,c F. Then for each y e C there is
an open setAofBsuchthatyeAand e r(A). LetAu...uA
cover C (since C is compact). Then

r(A,) u.-. u r(A.) r(A, u.-. u A.) r(C) r,
since (B if) 0. Thus "r some r(A), contradiction.
Now we define a projection r’I’ --THEOREM 4.4. The topology of C is precisely the topology induced on C from

F by the projection r.

Proof. Since F is compact and C is Hausdorff, it suffices to show that is
continuous. That is, given an open subset A of B, we wish to show that
-(A C) is open in F.
For any open subset 0 of B, clearly -(0 C) I’(0). On the other

hand, for a closed subset F of B we have -(F C)= r-(F C), and
r(F) r(F), so that r-(E n C) r(E).
Let , e (A), where A is an open subset of B, and let F be a closed neigh-

borhood of r(,) with F A. Then

-(A) r-(f) r(F) r(F) -(F),
which contains the point % But r(F) is open. Thus r-(A) is open.
The question arises, would it have been possible to construct the sets ru in
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I’ without having the map k on hand, but just from knowledge of X u I’ and
the map j? The answer is yes. This can be thought of as reconstructing C
from X u r and j, as mentioned in paragraph 5 of the introduction. To per-
form this, we proceed as follows.

Let J be any function whose domain X is a finite subset of X, and whose
values are nonempty open intervals J(x). We define

S {y B K(x, y) J(x) for all x X},

and A the closure in r of the union of all closed and open sets A in I’ with
the following property:

Property (J). If A, being closed and open, and if s is the
function ff(lo), then for each x eX we have

s d s(x) e J(x).

A is itself the closure of an open set in an extremely disconnected space,
and so is also open.

:LEMMA 4.2. A itself has property J).

Proof. Let {A,} be a maximal family of disjoint nonempty closed and open
subsets of A, each having property (J). There are only countably many
h,, since

If A is closed and open in A and has property (J), then A U A, is closed
and open, and has property (J), so, by maximality of {A}, we have
A U, =, and thus h U= h. Now let be a nonempty closed and
open subset of . Let A n , and let s j-(lo.). Then

s de s(x) e J(x) for all x e X,

(provided j" s de 0). Set

if f s de 0,

o f s de O.

Then

(f)-’s de s(x) X, s, d s(x) J(x),

since >= 0 and h 1.
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LEMMA 4.3. The sets Sj generate the topology of B.

Proof. By construction, the topology on B is precisely that of pointwise
convergence of the functions K(., y).

LEMM/k 4.4. F(Sj) .
Proof. The nonemty closed and open subsets A of F(Sj) are all of the

form F(T), where T is some n-nonnull Borel subset of Sj. But if
s j-l( F(T) ), then s klr, and

(f s)- _1 f K(x, y)t,(dy),s d s(x)
(T)

and since each K(x, y) e J(x) for x e Xj and y e T, the same holds for the
integral. So F(S) has property (J), and I(S) c A.
To prove the opposite inclusion, suppose the closed and open set
A n I(Sj) is nonempty. Then it has the form F(T), where (T) > 0 and
(T n Sj) 0. Thus there is some x0 e X such that, denoting by (a, b)
the interval J(Xo), either

V- {yeT[K(xo,y) <= a} or W-- {yeTIK(xo,y >- b}

has positive -measure. Thus, either F(V) or I(W) is a closed and open
nonempty subset of A which does not have property (J), contradiction.

THEOREM 4.5.
the sets A.

The sets F y e C, are precisely the nonempty intersections of

Proof. This follows immediately from Lemmas 4.3 and 4.4.

5. Topologies in X u C

The projection r from 1 onto C can be extended to a projection p from
X u 1 onto X t C, by defining

Thus we have two topologies on X u C"

if x eX,

if ,el.
the original topology induced from

X u B, which will be called the Martin topology; and the topology induced
from X u 1 by the projection p, which will be called the projective topology.
Both induce the same topology on X and C.

THEOREM 5.1. For any continuous function on C, we have

Proof. Given y0 e C and e > 0, let A be an open neighborhood of y0 in
B such that varies from y0 in A C by less than e, i.e.,
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Since j k is an isometric isomorphism from 2(t) to (I’), we get

j o/c(((.) (y0)) 1 i] (J k(.) (y0)) lr() [I < .
So j o k() (y0) for any /in Fy

COROLLARY. For any continuous function on C, the function on X t C
defined as k on X and on C is continuous in the projective topology.

THEOREM 5.2. X t C is a normal space in the projective topology.

Proof. The proof is the same as that of Remark 2.2, once we have estab-
lished that X u C is Hausdorff. This will now be proved.

Let yl, y2 be different points in C, and let N. be an open neighborhood of
y. such that fl n 22 is empty. Such N. exist, since C is a compact ttausdorff
space. The compact sets -(.) in X u F are disjoint. Thus they can be
separated byopen sets S. in X t F, sinceX t 1 is Hausdorff; i.e.,
and $1 n S 0. Also, r-l(N.) is open in 1, so there is some subset Y-of X
such that r-(N) t Y. is open. Now let T- (r-(N.) u Y.) S.. This
is open in X u F, contains r-(N), and T T 0. Furthermore, it is pre-
cisely p-l(N t (Y r Sj)), since r-(N.) S. F. Thus, the images
N t Y. n S.) are disjoint open sets in X C separating y, y.
Remarl 5.1. The Martin topology and the projective topology on X u C

are, of course, not identical. To see this, a counterexample will be constructed
where xn can converge to y0 e C in the Martin topology without k(x.) con-
verging to (y0) for all continuous on C. Thus, in the Martin topology,
a harmonic function need not assume its boundary values continuously, in
contrast to the projective topology, which inherits the good behavior of
X u F with respect to boundary values of bounded harmonic functions.
Example. Let X be the set of pairs (j, k) of nonnegative integers. Let

P((j, k), {(j, k -t- 1)})= 1 if/c >- 1, P((j, 0), {(j, 1)}) 1/2, P(x, {y}) 0
in all other cases. Let be a finite measure positive on nonempty sets, and
leta(m,n) s({(m,n)}). Set

b(m, n) 1/2a(m, O) + <_, a(m, It), and

Then
b(m) lim, b(m, n).

K( (j, t), (j, n) 1/b(j, n) if 1 =< / __< n,

K( (j, 0), (j, n) 1/2b(j, n) if 1 =< n,

g( (j, 0), (j, 0)) 1/a(j, 0),

K(x, y) 0 in all other cases.

There are two types of sequences x (m, n) which converge to a point of B"
(a) m --. , n arbitrary. In this case, K(x, x) -- 0 for all x e X. Thus
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there is associated with such sequences a single limit point !7 in B,
and K(x, ) 0 for all x e X.

(b) m is equal to some fixed m from some point on, while n -- . In
this case,

g( (m, 0), x) -- 1/2b(m)

K( (m, ) x) ---. lib(m) if/ >= 1,

K(x, x) --. 0 otherwise.

This gives a point ym e B.
The topology on B is the one-point compactification of the points ym, with
playing the role of . The measure assigns mass b(m) to y. Thus,
C=B.

Finally, consider the function e K /1, and the sequence x (i, 0).
Then e(x) is 1/2 for all i, while the sequence x converges in the Martin topology
to . This is precisely the phenomenon which it was required to exhibit.
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