ON A CLASS OF DOUBLY TRANSITIVE PERMUTATION GROUPS¹

BY
Nobord Ito

Let Ω be the set of symbols $1, \cdots, m+1$. Let $\$ 5$ be a doubly transitive permutation group on Ω in which no nontrivial permutation leaves three symbols fixed. Such a group (5) will be called a Zassenhaus group.

On the structure of Zassenhaus groups Feit [4] proved recently the following elegant theorem: Let (5) be a Zassenhaus group of degree $m+1$, which contains no normal subgroup of order $m+1$. Then m must be a power of a prime number: $m=p^{e}$. Let \mathfrak{M} be a Sylow p-subgroup of \mathfrak{H}, and let \mathfrak{M}^{\prime} be the commutator subgroup of \mathfrak{M}. Then the index of \mathfrak{M}^{\prime} in \mathfrak{M} must be smaller than $4 q^{2}$, where q is the order of the subgroup \mathfrak{Q}, which consists of all the permutations leaving each of the symbols 1 and 2 fixed. Moreover if \mathfrak{M} is abelian, then $q \geqq(m-1) / 2$.

Now the purpose of this paper is to prove the following.
Theorem. If m is odd, then \mathfrak{M} must be abelian.

1. In the following (5) denotes always a Zassenhaus group of even degree $m+1$, which contains no normal subgroup of order $m+1$. Let $\Gamma_{i}(i=0,1,2)$ be the set of all the permutations in (5), each of which fixes just i symbols of Ω. Then according to our assumptions on (5) we obtain the following decomposition of (G) into its mutually disjoint subsets: $\quad(5)=\Gamma_{0}+\Gamma_{1}+\Gamma_{2}+\{1\}$, where 1 is the identity element of (5).

Since (G) is doubly transitive, (5) possesses an irreducible character B, whose values can be written as follows:

$$
\mathbf{B}(X)=\left\{\begin{align*}
m & \text { for } X=1, \tag{1}\\
1 & \text { for } X \in \Gamma_{2}, \\
0 & \text { for } X \in \Gamma_{1}, \\
-1 & \text { for } X \in \Gamma_{0}
\end{align*}\right.
$$

2. Let \mathfrak{B}_{1} be the subgroup of \mathfrak{F}, which consists of all the permutations leaving the symbol 1 fixed. Then we can choose an \mathfrak{M} in the theorem of Feit in the following way: \mathfrak{M} is a normal subgroup of \mathscr{S}_{1} and satisfies the conditions that $\mathfrak{H}_{1}=\mathfrak{M Q}$ and $\mathfrak{M} \cap \mathfrak{Q}=1$. Now we assume that
(2.1) \mathfrak{M} is not abelian.

Therefore the purpose of our proof is to derive a contradiction from this

[^0]assumption, which is achieved at the end of this paper. The following facts about \mathfrak{Q} are known [4, Lemma 3.3]:
(2.2) \mathfrak{Q} is cyclic, q is odd $>1, m \equiv 1(\bmod q)$, the normalizer of $\mathfrak{\Omega}$ in (5) is a dihedral group of order $2 q$, and the centralizer of every nonidentity element of $\mathfrak{\Omega}$ coincides with $\mathfrak{\Omega}$.

In particular \mathfrak{M} is the commutator subgroup of \mathfrak{G}_{1}. Let $\eta_{0}, \eta_{1}, \cdots, \eta_{q-1}$ be the linear characters of \mathbb{G}_{1}, where η_{0} is the principal character of \mathfrak{G}_{1}, and $\eta_{i+(q-1) / 2}=\bar{\eta}_{i}$ for $i=1, \cdots, \frac{1}{2}(q-1)$. Let X be an element of Γ_{2}. Then by the double transitivity of (5) there exists an element X^{*} in $\mathfrak{\Omega}$, which is conjugate to X.

Now let \mathbf{A}_{i} denote the character of \mathbb{E} induced by $\eta_{i}\left(i=1, \cdots, \frac{1}{2}(q-1)\right)$. Then $\mathbf{A}_{1}, \cdots, \mathbf{A}_{(q-1) / 2}$ are distinct irreducible characters of \mathfrak{G}, and the values of \mathbf{A}_{i} can be written as follows [4, pp. 182-183]:

$$
\mathbf{A}_{i}(X)= \begin{cases}m+1 & \text { for } X=1 \tag{2}\\ \eta_{i}\left(X^{*}\right)+\bar{\eta}_{i}\left(X^{*}\right) & \text { for } X \in \Gamma_{2} \\ 1 & \text { for } X \in \Gamma_{1} \\ 0 & \text { for } X \in \Gamma_{0} \\ & \left(i=1, \cdots, \frac{1}{2}(q-1)\right)\end{cases}
$$

Let $X \neq 1$ be an element of $\mathfrak{\mathfrak { O }}$. Then by (2) we have

$$
\begin{aligned}
\sum_{i=1}^{(q-1) / 2} \mathbf{A}_{i}(X) \overline{\mathbf{A}}_{i}(X) & =\sum_{i=1}^{(q-1) / 2}\left(\eta_{i}(X)+\bar{\eta}_{i}(X)\right) \overline{\left(\eta_{i}(X)+\bar{\eta}_{i}(X)\right)} \\
& =\sum_{i=1}^{q-1} \eta_{i}(X) \bar{\eta}_{i}(X)+\sum_{i=1}^{q-1} \eta_{i}^{2}(X)
\end{aligned}
$$

Since the order of \mathfrak{Q} is odd, $\eta_{1}^{2}, \cdots, \eta_{q-1}^{2}$ are all distinct and are the same as $\eta_{1}, \cdots, \eta_{q-1}$ in some order. Therefore we have

$$
\sum_{i=1}^{q-1} \eta_{i}(X) \bar{\eta}_{i}(X)=\sum_{i=0}^{q-1} \eta_{i}(X) \bar{\eta}_{i}(X)-1=q-1
$$

and

$$
\sum_{i=1}^{q-1} \eta_{i}^{2}(X)=\sum_{i=0}^{q-1} \eta_{i}(X)-1=-1
$$

Thus we have obtained the following equation:

$$
\begin{equation*}
\sum_{i=1}^{(q-1) / 2} \mathbf{A}_{i}(X) \overline{\mathbf{A}}_{i}(X)=q-2 \tag{3}
\end{equation*}
$$

3. Lemma A. Any irreducible character \mathbf{X} of © different from \mathbf{E}, \mathbf{B}, and $\mathbf{A}_{i}\left(i=1, \cdots, \frac{1}{2}(q-1)\right)$ has degree divisible by q, where \mathbf{E} is the principal character of $\mathbb{F})$.

Proof. Let $X \neq 1$ be any element of $\mathfrak{\Omega}$. By (2.2) the centralizer of X in (3) is $\mathfrak{\Omega}$. By the orthogonality relations for the group characters we have

$$
\begin{align*}
q= & \mathbf{E}(X) \overline{\mathbf{E}}(X)+\mathbf{B}(X) \overline{\mathbf{B}}(X)+\sum_{i=1}^{(q-1) / 2} \mathbf{A}_{i}(X) \overline{\mathbf{A}}_{i}(X) \\
& +\mathbf{X}(X) \overline{\mathbf{X}}(X)+\cdots \\
= & q+\mathbf{X}(X) \overline{\mathbf{X}}(X)+\cdots \tag{3}
\end{align*}
$$

Thus we have $\mathbf{X}(X)=0$. Again by the orthogonality relations for the group characters we have

$$
\mathbf{X}(1)=\sum_{x \in \mathbb{O}} \mathbf{X}(X) \equiv 0 \quad(\bmod q)
$$

4. Let X and Y be two distinct elements of \mathfrak{Q}. Assume that there exists an element Z of \mathbb{E} such that $Y=Z^{-1} X Z$. Then Y belongs to $\mathfrak{Q} \cap Z^{-1} \mathfrak{Q} Z$, which implies by (2.2) that $\mathfrak{Q}=Z^{-1} \mathfrak{Q Z}$ and $Y=X^{-1}$. Thus the elements of Γ_{2} fall into $\frac{1}{2}(q-1)$ classes of conjugate elements in \mathfrak{G}. Let $\mathfrak{R}_{1}, \cdots, \mathfrak{R}_{(q-1) / 2}$ be the classes of conjugate elements in ©f from Γ_{2}.

The following fact is known [4, Lemma 3.4]:
(4.1) (5) contains only one class of involutions, and there are $m q$ involutions in (5). No element $\neq 1$ of \mathfrak{M} is the product of two involutions.

Let $\Omega_{1}, \cdots, \Omega_{n}$ be the classes of conjugate elements in $\mathfrak{l f}$ from Γ_{0}, where Ω_{1} is the class of involutions. Then using (2.2), (4.1), and [2, Lemmas (2.A) and (2.B)] we have

$$
\begin{equation*}
\Omega_{1}^{2}=\sum_{i=1}^{n} c_{i} \Omega_{i}+q \sum_{i=1}^{(q-1) / 2} \mathfrak{\Re}_{i}+m q \cdot 1, \tag{4}
\end{equation*}
$$

where c_{i} is explained as follows: Let G_{i} be an element in Ω_{i}. Then for $i>1, c_{i}$ equals the number of involutions in $\mathfrak{G J}$, which transform G_{i} into G_{i}^{-1}, and $c_{1}+1$ equals the number of involutions in the centralizer of an involution.

If either $i=1$ or $i>1$ and $c_{i}>0$, then the class Ω_{i} and the elements in Ω_{i} are called real. (Though the usual definitions of real class and real element are more general [2, p. 565], they coincide in this particular case, by Lemma B below, with ours.)
Put $G_{1}=J$. Applying the orthogonality relations of group characters and using (1) and (2), we obtain from (4) the following equation of BrauerFowler [2, (23)] ${ }^{2}$

$$
\begin{equation*}
c_{i}=\frac{m q}{m+1}\left(1-\frac{1}{m}+\sum_{\mathbf{Z}} \frac{\mathbf{Z}(J)^{2} \mathbf{Z}\left(G_{i}\right)}{\mathbf{Z}(1)}\right), \tag{5}
\end{equation*}
$$

where \mathbf{Z} ranges over all the irreducible characters of $\mathfrak{F b}$ distinct from \mathbf{E}, \mathbf{B}, and $\mathbf{A}_{i}\left(i=1, \cdots, \frac{1}{2}(q-1)\right)$.
5. Lemma B. Every class Ω_{i} is real.

Proof. For some $i>1$ let us assume that $c_{i}=0$. Then we have from (5) the equation

$$
1-\frac{1}{m}+\sum_{\mathbf{Z}} \frac{\mathbf{Z}(J)^{2} \mathbf{Z}\left(G_{i}\right)}{\mathbf{Z}(1)}=0 .
$$

[^1]Since $m=p^{e}$, it can be seen at once from this equation that there must be an irreducible character \mathbf{X} of \mathfrak{G} distinct from \mathbf{E}, \mathbf{B}, and $\mathbf{A}_{i}\left(i=1, \cdots, \frac{1}{2}(q-1)\right)$ whose degree is divisible by m. By Lemma \mathbf{A} the degree of \mathbf{X} is divisible by q, too. Since m and q are relatively prime, we have $\mathbf{X}(1)=x m q$. Since the order of (5) equals the sum of the squares of the degrees of all the irreducible characters of (\$), we have the inequality $(m+1) m q>x^{2} m^{2} q^{2}$, which implies that $m+1>x^{2} m q$. This is a contradiction, because q is greater than 1 by (2.2).

As an important consequence of Lemma B we have
Lemma C. (5) possesses only one 2-block of the highest defect, namely the principal 2-block $B_{1}(2)$.

Proof. By a theorem of Brauer-Nesbitt [3, Theorem 2] it is enough to show that the centralizer of a Sylow 2 -subgroup \mathfrak{I} of \mathfrak{S} is contained in \mathfrak{T}. Assume that an element $X \neq 1$ of odd order is commutative with every element of \mathfrak{I}. By (4.1) and (2.2), X must belong to Γ_{0}. Hence X is real by Lemma B. Then the centralizer $\mathfrak{C}(X)$ of X has index 2 in the generalized centralizer of X, which consists of all the elements Y such that $Y^{-1} X Y=X^{ \pm 1}$. Since $\mathfrak{C}(X)$ contains the Sylow 2 -subgroup \mathfrak{T} of \mathfrak{G}, this is a contradiction.
6. Lemma D. $m+1 \equiv 0(\bmod 4)$.

Proof. If not, the order of $\$ 5$ is not divisible by 4 , and (55 contains a normal subgroup of index 2, which contains \mathfrak{M}. Therefore by Sylow's theorem the normalizer of \mathfrak{M} contains an involution, which implies the commutativity of \mathfrak{M}, contradicting our assumption (2.1).

Lemma E. The number of irreducible characters in $B_{1}(2)$ is less than $\frac{1}{2} p^{2}$.
Proof. By Lemma D we have $p \equiv-1(\bmod 4)$ and $e \equiv 1(\bmod 2)$. Hence

$$
\frac{m+1}{p+1}=\frac{1-(-p)^{e}}{1-(-p)}=1+(-p)+\cdots+(-p)^{e-1} \equiv 1 \quad(\bmod 2)
$$

Put $p+1=2^{a} b$, where b is an odd number. Then the order of a Sylow 2 -subgroup of (5) equals 2^{a}. By a theorem of Brauer-Feit [1, Theorem 1] the number of irreducible characters in $B_{1}(2)$ is at most $2^{2 a-2}$. We see that

$$
2^{2 a-2} \leqq \frac{1}{4}(p+1)^{2}<\frac{1}{2} p^{2}
$$

7. Let $\mathfrak{M}=\mathfrak{M}_{1} \supset \mathfrak{M}_{2} \supset \cdots \supset \mathfrak{M}_{r} \supset 1$ be a series of normal subgroups of \mathfrak{M}. It is called a principal $\mathfrak{Q}_{\text {-series, if every }} \mathfrak{M}_{i}$ is \mathfrak{Q}-invariant and there is no \mathfrak{Q}-invariant normal subgroup of \mathfrak{M} between \mathfrak{M}_{i} and \mathfrak{M}_{i+1}, which is distinct from \mathfrak{M}_{i} and $\mathfrak{M}_{i+1}\left(i=1, \cdots, r ; \mathfrak{M}_{r+1}=1\right)$. Put $\mathfrak{M}: \mathfrak{M}^{\prime}=p^{d}$.

Lemma F . Let $\mathfrak{M}=\mathfrak{M}_{1} \supset \mathfrak{M}_{2} \supset \cdots \supset \mathfrak{M}_{r} \supset 1$ be a principal \mathfrak{N}-series of \mathfrak{M}. Then we have $\mathfrak{M}_{2}=\mathfrak{M}^{\prime}$ and $\mathfrak{M}_{i}: \mathfrak{M}_{i+1}=p^{d}(i=1, \cdots, r)$. In particular we have $e=r d$ with odd $r, d>1$.

Proof. Since it is well known that the degrees of all the irreducible representations of a finite cyclic group over a prime field are equal, it is enough to prove $\mathfrak{M}_{2}=\mathfrak{M}^{\prime}$. It is clear that $\mathfrak{M}_{2} \supseteq \mathfrak{M}^{\prime}$. If $\mathfrak{M}_{2} \neq \mathfrak{M}^{\prime}$, then we have $\mathfrak{M}: \mathfrak{M}_{2} \equiv 1(\bmod q)$ and $\mathfrak{M}_{2}: \mathfrak{M}^{\prime} \equiv 1(\bmod q)$. Therefore we have
$\mathfrak{M}: \mathfrak{M}_{2} \geqq 2 q+1, \quad \mathfrak{M}_{2}: \mathfrak{M}^{\prime} \geqq 2 q+1, \quad$ and $\mathfrak{M}: \mathfrak{M}^{\prime} \geqq 4 q^{2}+4 q+1$, which contradicts the theorem of Feit. Therefore we must have $\mathfrak{M}_{2}=\mathfrak{M}^{\prime}$.

Let $1=p^{f_{1}}<p^{f_{2}}<p^{f_{3}}<\cdots<p^{f_{s}}$ be the degrees of all the irreducible characters of \mathfrak{M}. Let e_{i}^{*} be the number of irreducible characters of \mathfrak{M} of degree $p^{f_{i}}(i=2, \cdots, s)$. Put $e_{1}^{*}+1=p^{d}$. Then by Lemma $F, e_{1}^{*}+1$ is the number of linear characters of \mathfrak{M}. By the orthogonality relations for the group characters we have

$$
\begin{equation*}
m=p^{d}+e_{2}^{*} p^{2 f_{2}}+\cdots+e_{s}^{*} p^{2 f_{s}} \tag{6}
\end{equation*}
$$

The following fact is known [4, Lemma 2.2]:
(7.1) $\quad e_{i}^{*}$ is divisible by $q(i=1, \cdots, s) . \quad \mathfrak{F}_{1}$ possesses $e_{i}=e_{i}^{*} / q$ irreducible characters $\phi_{i 1}, \cdots, \phi_{i_{i}}$ of degree $p^{f_{i}} q$, which are induced by the characters of \mathfrak{M}.

Since p is odd, \mathfrak{M} has no real irreducible character except the principal character. Therefore e_{i}^{*} is even $(i=1, \cdots, s)$. Since q is odd, e_{i} is also even ($i=1, \cdots, s$).
8. ${ }^{3}$ The centralizer of any element of $\mathfrak{M}-\{1\}$ is contained in \mathfrak{F}_{1}. By (7.1) every character $\phi_{i j}$ vanishes outside \mathfrak{M}, and e_{i} is even $(i=1, \cdots, s$; $\left.j=1, \cdots, e_{i}\right)$. Let $\phi_{i j}^{*}$ be the character of $\mathbb{5}$ induced by $\phi_{i j}$. Then by theorems of Suzuki [5, Lemmas 4 and 5] we have $\phi_{i j}^{*}(X)=\phi_{i j}(X)$ for any element of $\mathfrak{M}-\{1\}$, and there exist e_{i} different irreducible characters $\mathbf{C}_{i j}$ ($j=1, \cdots, e_{i}$) of (G) for each $i(i=1, \cdots, s)$, and the decomposition of $\phi_{i j}^{*}$ into its irreducible components can be written as follows (by using (1) and (2)) :

$$
\begin{align*}
\phi_{i 1}^{*} & =\varepsilon_{i} \mathbf{C}_{i 1}+a_{i i} \sum_{j=1}^{e_{i}} \mathbf{C}_{i j}+p^{f_{i}} \sum_{i=1}^{(q-1) / 2} \mathbf{A}_{i}+p^{f_{i}} \mathbf{B}+\Delta_{i}^{*} \\
& \vdots \tag{i}\\
\phi_{i e_{i}}^{*}= & \varepsilon_{i} \mathbf{C}_{i e_{i}}+a_{i i} \sum_{j=1}^{e_{i}} \mathbf{C}_{i j}+p^{f_{i}} \sum_{i=1}^{(q-1) / 2} \mathbf{A}_{i}+p^{f_{i}} \mathbf{B}+\Delta_{i}^{*} \\
& (i=1, \cdots, s)
\end{align*}
$$

where $\varepsilon_{i}= \pm 1, a_{i i}$ and $a_{i i}+\varepsilon_{i}$ are nonnegative integers, and Δ_{i}^{*} is a linear combination of irreducible characters of \mathbb{G}, which are distinct from $\mathbf{E}, \mathbf{B}, \mathbf{C}_{i j}$ $\left(j=1, \cdots, e_{i}\right)$, and $\mathbf{A}_{k}\left(k=1, \cdots, \frac{1}{2}(q-1)\right)$, with nonnegative integral coefficients.

Lemma G. All the characters $\mathbf{C}_{i j}\left(j=1, \cdots, e_{i} ; i=1, \cdots, s\right)$ are different.

[^2]Proof. First assume that some $\mathbf{C}_{i j}$ is real. Then since the order of \mathscr{G}_{1} is odd, the principal character is the only real character of \mathfrak{G}_{1}. Let $\phi_{i j^{\prime}}$ be the complex-conjugate character of $\phi_{i j}$. Then j and j^{\prime} are different. From (7_{i}) we have the equation $\phi_{i j}^{*}-\phi_{i j^{\prime}}^{*}=\varepsilon_{i}\left(\mathbf{C}_{i j}-\mathbf{C}_{i j^{\prime}}\right)$. Transferring to complex-conjugate characters we have $\phi_{i j^{\prime}}^{*}-\phi_{i j}^{*}=\varepsilon_{i}\left(\mathbf{C}_{i j}-\mathbf{C}_{i j^{\prime}}\right)$. Adding these two equations we have

$$
0=\varepsilon_{i}\left(2 \mathbf{C}_{i j}-\mathbf{C}_{i j^{\prime}}-\overline{\mathbf{C}}_{i j^{\prime}}\right)
$$

which implies that $\mathbf{C}_{i j}=\mathbf{C}_{i j^{\prime}}$. This contradicts a theorem of Suzuki [5, Lemma 5]. Hence no $\mathbf{C}_{i j}$ is real.

Now we assume that there exist two different numbers i and k such that $\mathbf{C}_{i j}=\mathbf{C}_{k l}$ for some j and $l\left(j=1, \cdots, e_{i} ; l=1, \cdots, e_{k}\right)$. Let $\phi_{i j}$, and $\phi_{k l}$ be the complex-conjugate characters of $\phi_{i j}$ and $\phi_{k l}$. Then from (7_{i}) and $\left(7_{k}\right)$ we have the equation

$$
\phi_{i j}^{*}-\phi_{i j^{\prime}}^{*}=\varepsilon_{i}\left(\mathbf{C}_{i j}-\overline{\mathbf{C}}_{i j}\right)= \pm \varepsilon_{k}\left(\mathbf{C}_{k l}-\overline{\mathbf{C}}_{k l}\right)= \pm\left(\phi_{k l}^{*}-\phi_{k l^{\prime}}^{*}\right)
$$

In particular for any element X from $\mathfrak{M}-\{1\}$ we have by a theorem of Suzuki [5, Lemma 4]

$$
\phi_{i j}(X)-\phi_{i j^{\prime}}(X)= \pm\left(\phi_{k l}(X)-\phi_{k l}(X)\right)
$$

which contradicts the linear independence of $\phi_{11}, \cdots, \phi_{s e_{s}}$.
Now the systems of equations $\left(7_{1}\right), \cdots,\left(7_{s}\right)$ can be rewritten as follows:

$$
\begin{align*}
& \phi_{11}^{*}=\varepsilon_{1} \mathbf{C}_{11}+a_{11} \sum_{i=1}^{e_{1}} \mathbf{C}_{1 i}+a_{12} \sum_{i=1}^{e_{2}} \mathbf{C}_{2 i}+\cdots \\
& +a_{1 s} \sum_{i=1}^{e_{i}} \mathbf{C}_{s i}+\sum_{i=1}^{(q-1) / 2} \mathbf{A}_{i}+\mathbf{B}+\Delta_{1} . \\
& \text { : } \\
& \phi_{1 e_{1}}^{*}=\varepsilon_{1} \mathbf{C}_{\boldsymbol{e}_{1}}+a_{11} \sum_{i=1}^{e_{1}} \mathbf{C}_{1 i}+a_{12} \sum_{i=1}^{\epsilon_{2}} \mathbf{C}_{2 i}+\cdots \\
& +a_{1 s} \sum_{i=1}^{e_{s}} \mathbf{C}_{s i}+\sum_{i=1}^{(q-1) / 2} \mathbf{A}_{i}+\mathbf{B}+\Delta_{1}, \\
& \vdots \tag{7}\\
& \phi_{s 1}^{*}=a_{s 1} \sum_{i=1}^{e_{1}} \mathbf{C}_{1 i}+\cdots+a_{s, s-1} \sum_{i=1}^{e_{s}-1} \mathbf{C}_{s-1, i}+\varepsilon_{s} \mathbf{C}_{s 1} \\
& +a_{s s} \sum_{i=1}^{e_{s}} \mathbf{C}_{s i}+p^{f_{s}} \sum_{i=1}^{(q-1) / 2} \mathbf{A}_{i}+p^{f_{s}} \mathbf{B}+\Delta_{s}, \\
& \vdots \\
& \phi_{s e_{s}}^{*}=a_{s 1} \sum_{i=1}^{e_{1}} \mathbf{C}_{1 i}+\cdots+a_{s, s-1} \sum_{i=1}^{e_{s-1}} \mathbf{C}_{s-1, i}+\varepsilon_{s} \mathbf{C}_{s e_{s}} \\
& +a_{s s} \sum_{i=1}^{e_{s}} \mathbf{C}_{s i}+p^{f_{s}} \sum_{i=1}^{(q-1) / 2} \mathbf{A}_{i}+p^{f_{s}} \mathbf{B}+\Delta_{s},
\end{align*}
$$

where the $a_{i j}$ are nonnegative integers and Δ_{i} is a linear combination of irreducible characters of (5), which are distinct from $\mathbf{E}, \mathbf{B}, \mathbf{A}_{\boldsymbol{k}}$ $\left(k=1, \cdots, \frac{1}{2}(q-1)\right)$, and $\mathbf{C}_{i j}\left(i=1, \cdots, s ; j=1, \cdots, e_{i}\right)$, with nonnegative integral coefficients. Let X be a linear combination of irreducible characters of (\$) with integral coefficients: $\sum_{\mathbf{Z}} a_{Z} \mathbf{Z}$, where \mathbf{Z} ranges over all
irreducible characters of (5). Then the number $\sum_{z} a_{Z}^{2}$ is called the norm of X. Now the following two facts about the system of equations (7) are known [5, Lemma 4]:
(8.1) The norm of $\phi_{1 i}^{*}$ equals $q+1\left(i=1, \cdots, e_{1}\right)$.
(8.2) The norm of $p^{f_{i}-f_{i}} \phi_{i k}^{*}-\phi_{j l}^{*}(i<j)$ equals $p^{2\left(f_{j}-f_{i}\right)}+1(i, j=1, \cdots$, $\left.s ; k=1, \cdots, e_{i} ; l=1, \cdots, e_{j}\right)$.
9. Lemma H.

$$
\begin{equation*}
2+e_{1}+e_{2}+\cdots+e_{s}<\frac{1}{2} p^{2} \tag{8}
\end{equation*}
$$

Proof. The number of distinct $\mathbf{C}_{i j}$'s equals $e_{1}+e_{2}+\cdots+e_{s}$. Hence by Lemmas \mathbf{C} and E it is enough to show that the degrees of the $\mathbf{C}_{i j}$ are odd. Now by the reciprocity theorem of Frobenius we obtain from (1), (2), and (7) the equation valid for all elements of \mathfrak{G}_{1}

$$
\begin{aligned}
C_{i j}=\cdots+a_{i-1, i} \sum_{k=1}^{e_{i}-1} \phi_{i-1, k}+\left(\varepsilon_{i} \phi_{i j}+a_{i i}\right. & \left.\sum_{k=1}^{e_{i}} \phi_{i k}\right) \\
& +a_{i+1, i} \sum_{k=1}^{e_{i+1} \phi_{i+1, k}}+\cdots
\end{aligned}
$$

Since all the e_{i} 's are even and the degrees of all the $\phi_{k l}$'s are odd, we see that $\mathrm{C}_{i j}(1) \equiv 1(\bmod 2)$.

Now we can prove the following:
Lemma. I. (i) $f_{2 l+1}=l d \quad(l=0,1, \cdots)$;

$$
\begin{aligned}
f_{2 l} & =\frac{1}{2}((2 l-1) d-1) & & (l=1,2, \cdots), \\
\text { (ii) } e_{2 l+1} & =\left(p^{d}-1\right) / q & & (l=0,1, \cdots) ; \\
& e_{2 l} & =p\left(p^{d}-1\right) / q & \\
\text { (iii) } r & =s . & &
\end{aligned}
$$

Proof. By Lemma F, our assertion is true for f_{1} and e_{1}. Then from (6) we obtain the equation

$$
p^{d}\left(p^{d}-1\right)\left(p^{(r-2) d}+\cdots+p^{d}+1\right)=e_{2}^{*} p^{2 f_{2}}+\cdots+e_{s}^{*} p^{2 f_{s}}
$$

Since d is odd, we have $2 f_{2}<d$. If $2 f_{2}<d-1$, we obtain from (6^{\prime}) the congruence $e_{2}^{*} \equiv 0\left(\bmod p^{2}\right)$, which implies the congruence $e_{2} \equiv 0\left(\bmod p^{2}\right)$. This contradicts Lemma G. Hence we must have $2 f_{2}=d-1$.

Now let $\mathfrak{M}=\mathfrak{M}_{1} \supset \mathfrak{M}_{2} \supset \mathfrak{M}_{3} \supset \cdots$ be a principal \mathfrak{Q}^{2}-series of \mathfrak{M}, and let us consider the factor group $\mathfrak{M} / \mathfrak{M}_{3}$ of order $p^{2 d}$ of \mathfrak{M}. By Lemma $F, \mathfrak{M}_{2} / \mathfrak{M}_{3}$ is the commutator subgroup of $\mathfrak{M} / \mathfrak{M}_{3}$. Hence it is easily seen that $\mathfrak{M}_{2} / \mathfrak{M}_{3}$ is the center of \mathfrak{M} / M_{3}. Since d is odd, the degree of any irreducible character of $\mathfrak{M} / \mathcal{M}_{3}$ divides ${ }^{4} p^{(d-1) / 2}$. Then from above we see that the degrees of all the

[^3]nonlinear irreducible characters of $\mathfrak{M} / \mathfrak{M}_{3}$ must be equal to $p^{(d-1) / 2}$. Let e_{2}^{\prime} be the number of irreducible characters of degree $p^{(d-1) / 2}$ of $\mathfrak{M} / \mathcal{M}_{3}$. Then corresponding to (6) we have the following equation $p^{2 d}=p^{d}+e_{2}^{\prime} p^{d-1}$, which implies $e_{2}^{\prime}=p\left(p^{d}-1\right)$. Since clearly $e_{2}^{\prime} \leqq e_{2}^{*}$, and since $e_{2}<p^{2}$ by Lemma H , we have the following inequality:
\[

$$
\begin{equation*}
\left(p^{d}-1\right) / q<p \tag{9}
\end{equation*}
$$

\]

Now let us assume $k>1$ and that our assertion is true for e_{i} and $f_{i}(i=1, \cdots, k-1)$. Then it follows from our assumption that

$$
\begin{aligned}
\sum_{i=1}^{k-1} e_{i}^{*} p^{2 f_{i}} & =\left(p^{d}-1\right)+p\left(p^{d}-1\right) p^{d-1}+\left(p^{d}-1\right) p^{2 d}+\cdots \\
& =p^{(k-1) d}-1
\end{aligned}
$$

Now from (6) we obtain the following equation

$$
p^{(k-1) d}\left(p^{d}-1\right)\left(p^{(r-k) d}+\cdots+p^{d}+1\right)=e_{k}^{*} p^{2 f_{k}}+\cdots
$$

This implies the inequality $(k-1) d \geqq 2 f_{k}$. If $(k-1) d \geqq 2 f_{k}+2$, then from ($6^{\prime \prime}$) we have the congruence $e_{k}^{*} \equiv 0\left(\bmod p^{2}\right.$), and therefore the congruence $e_{k} \equiv 0\left(\bmod p^{2}\right)$, contradicting Lemma H. Hence we must have

$$
(k-1) d= \begin{cases}2 f_{k} & \text { if } \mathrm{k} \text { is odd } \\ 2 f_{k}+1 & \text { if } \mathrm{k} \text { is even }\end{cases}
$$

Putting these values in ($6^{\prime \prime}$) we have

$$
\begin{aligned}
&\left(p^{d}-1\right)\left(1+p^{d}+\cdots\right)=e_{k}^{*}+e_{k+1}^{*} p^{2 f_{k+1}-2 f_{k}}+\cdots \quad \text { when } k \text { is odd } \\
& p\left(p^{d}-1\right)\left(1+p^{d}+\cdots\right)=e_{k}^{*}+e_{k+1}^{*} p^{2 f_{k+1}-2 f_{k}}+\cdots \quad \text { when } k \text { is even. }
\end{aligned}
$$

From these equations we have

$$
\begin{aligned}
& p^{d}-1 \equiv e_{k}^{*} \quad\left(\bmod p^{2}\right) \quad \text { when } k \text { is odd } \\
& p\left(p^{d}-1\right) \equiv e_{k}^{*} \quad\left(\bmod p^{2}\right) \quad \text { when } k \text { is even. }
\end{aligned}
$$

These imply the congruences

$$
\begin{array}{ll}
e_{k} \equiv\left(p^{d}-1\right) / q & \text { when } k \text { is odd } \\
e_{k} \equiv p\left(p^{d}-1\right) / q & \text { when } k \text { is even. }
\end{array}
$$

Both sides of these congruences are positive and less than p^{2} by (9) and Lemma H. Hence these congruences turn out to be equations. Thus our induction argument completes the proof of (i) and (ii).

Finally from (i) and (ii) we have $1+\sum_{k=1}^{s} e_{k}^{*} p^{2 f_{k}}=p^{s d}$. And on the other hand the left-hand side of this equation equals $p^{r d}$, the order of \mathfrak{M}. Hence we have $r=s$.
10. Lemma J. $q=\left(p^{d}-1\right) / 2$.

Proof. It is a classical result that the number of real irreducible characters of a group equals the number of real classes of the group. E, B, and $\mathbf{A}_{i}\left(i=1, \cdots, \frac{1}{2}(q-1)\right)$ are real characters of (5) (by (1) and (2)). \{1\}, the class of involutions and $\frac{1}{2}(q-1)$ classes of conjugate elements of Γ_{2} are real. On the other hand $\mathbf{C}_{i j}\left(i=1, \cdots, s ; j=1, \cdots, e_{i}\right)$ are nonreal characters of ©5. There are the same number of nonreal classes of conjugate elements of Γ_{1}. Hence if there is no real character of \mathbb{H} distinct from \mathbf{E}, \mathbf{B}, and $\mathbf{A}_{i}\left(i=1, \cdots, \frac{1}{2}(q-1)\right)$, then by Lemma $\mathrm{B}, \mathrm{\Gamma}_{0}$ contains only one, namely, the class of involutions. In particular this implies the equation $m+1=2^{h}$. Since by the theorem of Feit $m=p^{e}$, we have $m=p$, contradicting our assumption (2.1). Therefore there exists a real irreducible character \mathbf{R} of (5) distinct from \mathbf{E}, \mathbf{B}, and $\mathbf{A}_{i}\left(i=1, \cdots, \frac{1}{2}(q-1)\right)$.

Now in (7) let $\Delta_{i}=b_{i} \mathrm{R}+\cdots(i=1, \cdots, s)$. Then by the reciprocity theorem of Frobenius we have the equation valid for any element of \mathbb{J}_{1}

$$
\mathrm{R}=\sum_{i=1}^{s}\left(b_{i} \sum_{j=1}^{e_{i}} \phi_{i j}\right) .
$$

In particular this implies

$$
\mathbf{R}(1)=\sum_{i=1}^{s} b_{i} e_{i} p^{2 f i} q
$$

Since $e_{i} \equiv 0\left(\bmod \left(p^{d}-1\right) / q\right)(i=1, \cdots, s)$ by Lemma I, we obtain $\mathbf{R}(1) \equiv 0\left(\bmod p^{d}-1\right)$. As the degree of an irreducible character of \mathbb{G}, $\mathbf{R}(1)$ divides the order $(m+1) m q$ of \mathbb{B}. Therefore we have $m+1 \equiv 0$ $\left(\bmod \left(p^{d}-1\right) / q\right)$. On the other hand, since $p^{d}-1$ is a divisor of $m-1=p^{r d}-1$, we have $\left(p^{d}-1\right) / q=2$.

On account of Lemma J the second part of Lemma I can be rewritten as follows:
$\begin{array}{rlrl}\text { Lemma I (ii' }) . & e_{2 l+1} & =2 & \\ e_{2 l} & =2 p & & (l=0,1, \cdots), \\ & (l=1,2, \cdots) .\end{array}$
11. Lemma K. Let \mathbf{X} be any irreducible character of (\$) distinct from \mathbf{E}, \mathbf{B}, and $\mathbf{A}_{i}\left(i=1, \cdots, \frac{1}{2}(q-1)\right)$. Let p divide $\mathbf{X}(1)$ with the exact exponent ${ }^{5}$ $\nu(X(1))$. Then we have

$$
s d-\nu(X(1)) \geqq d+1
$$

Proof. (I) Let $\mathbf{X}=\mathbf{R}$ be real, and put $\mathbf{R}(1)=r q$ (by Lemma A). As in the proof of Lemma J let us assume $\Delta_{i}=b_{i} \mathbf{R}+\cdots(i=1, \cdots, s)$. Then using Lemma I (ii') we have the following equation:

$$
r=2\left(b_{1}+p b_{2} p^{(d-1) / 2}+b_{3} p^{d}+\cdots\right)
$$

Let us assume $b_{1}=\cdots=b_{k-1}=0$ and $b_{k} \neq 0(k=1,2, \cdots)$. Then from

[^4]this equation we have
\[

r= $$
\begin{cases}2\left(b_{k} p^{(k-1) d / 2}+p b_{k+1} p^{(k d-1) / 2}+\cdots\right) & \text { if } k \text { is odd } \tag{10}\\ 2\left(p b_{k} p^{((k-1) d-1) / 2}+b_{k+1} p^{k d / 2}+\cdots\right) & \text { if } k \text { is even }\end{cases}
$$
\]

Now by (10) it is enough to show that

$$
\begin{array}{ll}
b_{k}<p^{(d+1) / 2} & \text { if } k \text { is odd } \\
b_{k}<p^{(d-1) / 2} & \text { if } k \text { is even }
\end{array}
$$

In fact if this can be shown, we see that

$$
s d-\nu(r) \geqq \frac{1}{2}(2 s d-k d-1) \geqq \frac{1}{2}(s d-1) \geqq d+1
$$

If $k=1$, then since the norm of $\phi_{11}^{*}=\cdots+b_{1} \mathbf{R}+\cdots$ by (8.1) equals $q+1=\frac{1}{2}\left(p^{d}+1\right)<p^{d+1}$, we have $b_{1}<p^{(d+1) / 2}$.

If $k>1$ and odd, then since the norm of

$$
\begin{aligned}
p^{(d+1) / 2} \phi_{k-1,1}-\phi_{k 1}^{*}=\cdots & +\left(p^{(d+1) / 2} a_{k-1, k-1}+p^{(d+1) / 2} \varepsilon_{k-1}-a_{k, k-1}\right) \mathbf{C}_{k-1,1} \\
& +\sum_{j=2}^{2 p}\left(p^{(d+1) / 2} a_{k-1, k-1}-a_{k, k-1}\right) \mathbf{C}_{k-1, j}+\cdots \\
& -b_{k} \mathrm{R}+\cdots
\end{aligned}
$$

by (8.2) equals $p^{d+1}+1$, we have $b_{k}<p^{(d+1) / 2}$.
If k is even, then since the norm of $p^{(d-1) / 2} \phi_{k-1,1}^{*}-\phi_{k 1}^{*}$ by (8.2) equals $p^{d-1}+1$, we have as above $b_{k}<p^{(d-1) / 2}$.
(II) Let us assume $\mathbf{X}=\mathbf{C}_{k j}$ and put $\mathbf{C}_{k j}(1)=c q$ (by Lemma A). Using the reciprocity theorem of Frobenius we obtain the following equations (by (7) and Lemma I (ii'))

$$
c= \begin{cases}2\left(a_{1 k}+p a_{2 k} p^{(d-1) / 2}+\cdots\right)+\varepsilon_{k} p^{(k-1) d / 2} & \text { if } k \text { is odd } \\ 2\left(a_{1 k}+p a_{2 k} p^{(d-1) / 2}+\cdots\right)+\varepsilon_{k} p^{((k-1) d-1) / 2} & \text { if } k \text { is even }\end{cases}
$$

Unless $a_{1 k}=\cdots=a_{k-1, k}=0$, the situation is exactly the same as case (I). Hence we can assume that $a_{1 k}=\cdots=a_{k-1, k}=0$. Then the above equations can be rewritten as follows:

$$
c=\left\{\begin{array}{l}
2\left(a_{k k} p^{(k-1) d / 2}+p a_{k+1, k} p^{(k d-1) / 2}+\cdots\right)+\varepsilon_{k} p^{(k-1) d / 2} \tag{11}\\
2\left(p a_{k k} p^{((k-1) d-1) / 2}+a_{k+1, k} p^{k d / 2}+\cdots\right)+\varepsilon_{k} p^{((k-1) d-1) / 2} \\
\text { if } k \text { is odd } \\
\text { if } k \text { is even. }
\end{array}\right.
$$

By (11) the case where k is even is trivial, because $2 p a_{k k}+\varepsilon_{k}$ is prime to p. Hence we can assume that k is odd. Again by (11) it is enough to show that $2 a_{k k}+\varepsilon_{k}<p^{(d+1) / 2}$, and hence it is enough to show that

$$
2 a_{k k}^{2}+2 \varepsilon_{k} a_{k k}<\frac{1}{2}\left(p^{d+1}-1\right)
$$

If $k=1$, then since the norm of

$$
\phi_{11}^{*}=\left(a_{11}+\varepsilon_{1}\right) \mathbf{C}_{11}+a_{11} \mathbf{C}_{12}+\cdots
$$

by (8.1) equals $q+1=\frac{1}{2}\left(p^{d}+1\right)$, we have

$$
\left(a_{11}+\varepsilon_{1}\right)^{2}+a_{11}^{2} \leqq \frac{1}{2}\left(p^{d}+1\right)
$$

which implies that

$$
2 a_{11}^{2}+2 \varepsilon_{1} a_{11} \leqq \frac{1}{2}\left(p^{d}-1\right)<\frac{1}{2}\left(p^{d+1}-1\right)
$$

If $k>1$, then the norm of

$$
\begin{aligned}
p^{(d+1) / 2} \boldsymbol{\phi}_{k-1,1}^{*}-\boldsymbol{\phi}_{k 1}^{*}=\cdots & +\left(p^{(d+1) / 2} a_{k-1, k-1}+p^{(d+1) / 2} \varepsilon_{k-1}-a_{k, k-1}\right) \mathbf{C}_{k-1,1} \\
& +\sum_{j=2}^{2 p}\left(p^{(d+1) / 2} a_{k-1, k-1}-a_{k, k-1}\right) \mathbf{C}_{k-1, j} \\
& -\left(\varepsilon_{k}+a_{k k}\right) \mathbf{C}_{k 1}-a_{k k} \mathbf{C}_{k 2}+\cdots
\end{aligned}
$$

by (8.2) equals $p^{d+1}+1$. Therefore it is enough to show that

$$
\begin{aligned}
& \left(p^{(d+1) / 2} a_{k-1, k-1}+p^{(d+1) / 2} \varepsilon_{k-1}-a_{k, k-1}\right)^{2} \\
& \quad+(2 p-1)\left(p^{(d+1) / 2} a_{k-1, k-1}-a_{k, k-1}\right)^{2} \geqq \frac{1}{2}\left(p^{d+1}+1\right)
\end{aligned}
$$

Put $x=p^{(d+1) / 2} a_{k-1, k-1}-a_{k, k-1}$. Then it is easy to see that the minimal value of the quadratic form in x

$$
\left(x+p^{(d+1) / 2} \varepsilon_{k-1}\right)^{2}+(2 p-1) x^{2}
$$

is not less than $\frac{1}{2}\left(p^{d+1}+1\right)$.
12. Lemma L. The number c_{i} in (5) satisfies the congruences

$$
c_{i}+q \equiv 0 \quad\left(\bmod p^{d+1}\right)
$$

which implies in particular that $c_{i} \geqq q+3$ (for every i).
Proof. On account of (5) we have

$$
c_{i}=\frac{m q}{m+1}\left(1-\frac{1}{m}+\sum_{\mathbf{Z}} \frac{\mathbf{Z}(J)^{2} \mathbf{Z}\left(G_{i}\right)}{\mathbf{Z}(1)}\right)
$$

where \mathbf{Z} ranges over all the irreducible characters of \mathbb{F} distinct from \mathbf{E}, \mathbf{B}, and $\mathbf{A}_{i}\left(i=1, \cdots, \frac{1}{2}(q-1)\right)$. Then by Lemma K we obtain

$$
c_{i} \equiv c_{i}(m+1) \equiv-q \quad\left(\bmod p^{d+1}\right)
$$

Hence by Lemma J we obtain $c_{i}+\frac{1}{2}\left(p^{d}-1\right)=a p^{d+1}$, where a is a natural number. Therefore we have

$$
c_{i} \geqq p^{d+1}-\frac{1}{2}\left(p^{d}-1\right) \geqq \frac{1}{2}\left(p^{d}+5\right) .
$$

Now we can derive a required contradiction as follows. From (4) we have the following equation

$$
\begin{equation*}
\frac{1}{2}(m-1)(q+1)=c_{1} l_{1}+\cdots+c_{n} l_{n} \tag{12}
\end{equation*}
$$

where $l_{i} m q$ is the number of elements in the class $\Omega_{i}(i=1, \cdots, n)$. On the other hand, we have from the decomposition $\mathbb{G}=\Gamma_{0}+\Gamma_{1}+\Gamma_{2}+\{1\}$ the following equation

$$
\begin{equation*}
\frac{1}{2}(m+1)-(m-1) / 2 q=l_{1}+\cdots+l_{n} \tag{13}
\end{equation*}
$$

Since $c_{i} \geqq q+3$ for every i by Lemma L, we obtain from (12) and (13) the following inequality

$$
\frac{1}{2}(m-1)(q+1) \geqq(q+3)\left(\frac{1}{2}(m+1)-(m-1) / 2 q\right)
$$

This implies that

$$
0 \geqq(q-3) m+2 q^{2}+5 q+3
$$

This is a contradiction.

Bibliography

1. R. Brauer and W. Feit, On the number of irreducible characters of finite groups in a given block, Proc. Nat. Acad. Sci. U.S.A., vol. 45 (1959), pp. 361-365.
2. R. Brauer and K. Fowler, On groups of even order, Ann. of Math. (2), vol. 62 (1955), pp. 565-583.
3. R. Brauer and C. Nesbitt, On the modular characters of groups, Ann. of Math. (2), vol. 42 (1941), pp. 556-590.
4. W. Feit, On a class of doubly transitive permutation groups, Illinois J. Math., vol. 4 (1960), pp. 170-186.
5. W. Feit, M. Hall, Jr., and J. G. Thompson, Finite groups in which the centralizer of any non-identity element is nilpotent, Math. Zeitschrift, vol. 74 (1960), pp. 1-17.
6. M. Suzuki, On finite groups with cyclic Sylow subgroups for all odd primes, Amer. J. Math., vol. 77 (1955), pp. 657-691.
University of Chicago
Chicago, Illinois
Nagoya University
Nagoya-Chikusa, Japan

[^0]: Received April 5, 1961.
 ${ }^{1}$ This research was supported in part by the United States Air Force.

[^1]: ${ }^{2}$ See W. Burnside, Theory of groups of finite order, 2nd ed., Cambridge, University Press, 1911, p. 288.

[^2]: ${ }^{3}$ See $[5$, Section II].

[^3]: ${ }^{4}$ The square of the degree of an irreducible character of a p-group divides the index of the center in the whole group.

[^4]: ${ }^{5}$ Let n be an integer. Then $\nu(n)$ denotes the exact exponent with which n is divisible by p.

