
ON A CLASS OF DOUBLY TRANSITIVE PERMUTATION GROUPS

BY

NOBORU

Let 2 be the set of symbols l, m + i. Let @ be a doubly transitive
permutation group on 2 in which no nontrivial permutation leaves three sym-
bols fixed. Such a group (9 will be called a Zassenhaus group.
On the structure of Zassenhaus groups Feit [4] proved recently the following

elegant theorem: Let @ be a Zassenhaus group of degree m + i, which
contains no normal subgroup of order m - I. Then m must be a power of a
prime number: m pe. Let 9)} be a Sylow p-subgroup of @, and let J’ be
the commutator subgroup of )L Then the index of ’ in must be smaller
than 4q2, where q is the order of the subgroup , which consists of all the
permutations leaving each of the symbols I and 2 fixed. Moreover if )} is
abelian, then q -> (m i)/2.
Now the purpose of this paper is to prove the following.

THEOREM. If m is odd, then must be abelian.

1. In the following (9 denotes always a Zassenhaus group of even degree
m + 1, which contains nonormal subgroup oforderm + 1. Let F (i 0, 1,2)
be the set of all the permutations in @, each of which fixes just i symbols of .
Then according to our assumptions on @ we obtain the following decomposi-
tion of @ into its mutually disjoint subsets" (9 F0 -{- F1 -}- F2 + 1}, where
1 is the identity element of @.

Since (9 is doubly transitive, (9 possesses an irreducible character B, whose
values can be written as follows"

(1)

m for X= 1,

1 for X
B(X)

0 for

--1 for XeF0.. Let @1 be the subgroup of (9, which consists of all the permutations
leaving the symbol 1 fixed. Then we can choose an )} in the theorem of Felt
in the following way: )} is a normal subgroup of @1 and satisfies the condi-
tions that @1 )?: and n : 1. Now we assume that

(2.1) is not abelian.

Therefore the purpose of our proof is to derive a contradiction from this

Received April 5, 1961.
This research was supported in part by the United States Air Force.

341



342 NOBORU ITO

assumption, which is achieved at the end of this paper. The following facts
about 5 are known [4, Lemma 3.3]:

(2.2) is cyclic, q is odd > 1, m 1 (mod q), the normalizer of in
is a dihedral group of order 2q, and the centralizer of every nonidentity element of

coincides with .
In particular is the commutator subgroup of @1 Let

be the linear characters of @1, where 70 is the principal character of @1, and
v+(q-1)/ # for i 1, 1/2(q 1). Let X be an element of r2. Then
by the double transitivity of @ there exists an element X* in , which is
conjugate to X.
Now let A denote the character of @ induced by (i 1, 1/2(q 1) ).

Then A1, A(q-1)/. are distinct irreducible characters of @, and the values
of A can be written as follows [4, pp. 182-183]"

m -t- 1

(2) A(X)
n,(X*) q- o(X*)
1

Let X 1 be an element of 2.

for X 1,

for X e r,
for Xerl,

for X e r0.

(i 1, ,1/2(q- 1)).
Then by (2) we have

Zq--_’1)12 A(X)$,(X) )(,(X) + #(X)) (,(X) / #(X))

E: ,(x) (x) + E: ,(x).
Since the order of5 is odd, , 2q-I are all distinct and are the same as
1,’" yq-1 in some order. Therefore we have- v(X) #(X) - r/(X) #(X) 1 q 1
and

:r(X) -,(X) 1 -1.

Thus we have obtained the following equation"

(3) Zq--_1)/2 A,(X)h(X) q- 2.

3. LEMMX A. Any irreducible character X of @ different from E, B, and
A (i 1, 1/2(q 1)) has degree divisible by q, where E is the principal
character of @.

Proof. Let X 1 be any element of. By (2.2) the centralizer of X in
@ is . By the orthogonality relations for the group characters we have

q E(X)(X) q- B(X)(X) q- q)/
+ x(x)x(x) +...

q q- X(X)X(X) -t- (by (3)).
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Thus we have X(X) 0. Again by the orthogonality relations for the
group characters we have

X(1) a X(X) 0 (rood q).

4. Let X and Y be two distinct elements of. Assume that there exists
an element Z of @ such that Y Z-1XZ. Then Y belongs to 1 n Z-Z,
which implies by (2.2) that Z-1Z and Y X-. Thus the elements of
r. fall into 1/2(q 1) classes of conjugate elements in @. Let 1, (q-)n
be the classes of conjugate elements in @ from r..
The following fact is known [4, Lemma 3.4]"

(4.1) @ contains only one class of involutions, and there are mq involutions
.in @. No element 1 of 3 is the product of two involutions.

Let , be the classes of conjugate elements in gO from 10, where
is the class of involutions. Then using (2.2), (4.1), and [2, Lemmas

(2.A) and (2.B)] we have
(q--l)/2(4) .= c + q z_,-. + mq. 1,

where c is explained as follows: Let G be an element in . Then for
i > 1, c equals the number of involutions in @, which transform G into
G7, and c + 1 equals the number of involutions in the centralizer of an
involution.

If either i 1 or i > 1 and c > 0, then the class and the elements in
are called real. (Though the usual definitions of real class and real ele-

ment are more general [2, p. 565], they coincide in this particular case, by
Lemma B below, with ours.)
Put G J. Applying the orthogonality relations of group characters

and using (1) and (2), we obtain from (4) the following equation of Brauer-
Fowler [2, (23) ]

mq ( 1 Z(J)2Z(G))(5)
m-l-1 m z

where Z ranges over all the irreducible characters of gO distinct from E, B,
and A (i 1,..-, 1/2(q 1)).

5o LEMMA B. Every class i is real.

Proof. For some i 1 let us assume that c 0.
(5) the equation

1
1

_]_
Z(J)2Z(G)

z
o.

Then we have from

See W. BURNSIDE, Theory of groups of finite order, 2nd ed., Cambridge, University
Press, 1911, p. 288.
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Since m pe, it can be seen at once from this equation that there must be an
irreducible characterX of @ distinct from E, B, and A (i 1, 1/2(q 1))
whose degree is divisible by m. By Lemma A the degree of X is divisible by q,
too. Since m and q are relatively prime, we have X(1) xmq. Since the.
order of @ equals the sum of the squares of the degrees of all the irreducible
characters of @, we have the inequality (m -t- 1)mq > xmq2, which implies
that m -t- 1 > xmq. This is a contradiction, because q is greater than 1
by (2.2).
As an important consequence of Lemma B we have

LEMMA C. ( possesses only one 2-bloctc of the highest defect, namely the
principal 2-bloclc B1 (2).

Proof. By a theorem of Brauer-Nesbitt [3, Theorem 2] it is enough to
show that the centralizer of a Sylow 2-subgroup of @ is contained in .
Assume that an element X 1 of odd order is commutative with every ele-
ment of . By (4.1) and (2.2), X must belong to F0. Hence X is real by
Lemma B. Then the centralizer (X) of X has index 2 in the generalized
centralizer of X, which consists of all the elements Y such that Y-IXY X-.
Since (X) contains the Sylow 2-subgroup of gO, this is a contradiction.

6. LEMM+/- D. m 1 0 (mod 4).

Proof. If not, the order of gO is not divisible by 4, and @ contains a normal
subgroup of index 2, which contains !Ft. Therefore by Sylow’s theorem the
normalizer of !gt contains an involution, which implies the commutativity of, contradicting our assumption (2.1).

1LEMMA E. The number of irreducible characters in B(2) is less than -p

Proof. By Lemma D we have p 1 (mod 4) and e -= 1 (mod 2). Hence
m + 1 1 (-p)e

1 + (--p) - _{_ 1 (rood2).
p + 1 1 (-p)

Put p 1 2b, where b is an odd number. Then the order of a Sylow
2-subgroup of @ equals 2. By a theorem of Brauer-Feit [1, Theorem 1]
the number of irreducible characters in B1(2) is at most 22-. We see that

122a-2 < 1/4(p + 1) < p.

7. Let !ff. !fftr 1 be a series of normal subgroups
of !). It is called a principal -series, if every !J is ::-invariant and there is
no -invariant normal subgroup of !ff between and +1, which is distinct
fromand+l(i= 1,... ,r;r+l-- 1). Put’’ p.
LEMMA 1. Let 21 J2 I 1 be a principal -series

of 21. Then we have 2 ’ and ’+1= p (i 1, r). In par-
ticular we have e rd with odd r, d 1.
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Proof. Since it is well known that the degrees of all the irreducible repre-
sentations of a finite cyclic group over a prime field are equal, it is enough to
prove 9:R’. It is clear that ’. If Ft’, then we have
’2 1 (mod q) and J’’ 1 (mod q). Therefore we have

’t_-> 2q-- 1, 9)2"g’ >_- 2q+ 1, and J’’ >= 4q--4q-- 1,

which contradicts the theorem of Feit. Therefore we must have Ft ’.
Let 1 p/X < p/ < p/3 < < p/8 be the degrees of all the irreducible

characters of Yt. Let e be the number of irreducible characters of [ of
@ ddegreep/(i 2,...,s). Putel + 1 p. Then by LemmaF, e 1

is the number of linear characters of F. By the orthogonality relations for
the group characters we have

2f8(6) m p + ep/ + + esp

The following fact is known [4, Lemma 2.2]"

(7.1) e is divisible by q (i 1, s). @1 possesses ei ei/q irreducible
characters 1, e of degree p/q which are induced by the characters of ).

Since p is odd, has no real irreducible character except the principal
character. Therefore e is even (i 1, s). Since q is odd, ei is also
even (i 1,-.. s).

8. The centralizer of any element of t /1} is contained in @1. By
(7.1) every character . vanishes outside t, and e is even (i 1, s;
j 1,... ei). Let *- be the character of @ induced by .. Then by

(X) i(X) for anytheorems of Suzuki [5, Lemmas 4 and 5] we have *
element of {1}, and there exist e different irreducible characters C.
(j 1,... e) of @ for each i (i 1, ..., s), and the decomposition of
*. into its irreducible components can be written as follows (by using (1)
and (2))"

(7)

(i= 1,... ,s),

where e 1, ai and aii q- e are nonnegative integers, and A is a linear
combination of irreducible characters of @, which are distinct from E, B, C.
(j 1, e), and A (k 1, 1/2(q 1)), with nonnegative integral
coefficients.

LEMM& G. All the characters Cy (j 1,... e i 1,... s) are dif-
ferent.

See [5, Section II].
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Proof. First assume that some C. is real. Then since the order of @1 is
odd, the principal character is the only real character of @1. Let bj, be the
complex-conjugate character of .. Then j and j’ are different. From
(7) we have the equation *. *., c(Cj C.,). Transferring to
complex-conjugate characters we have * *, j c(C .,). Adding
these two equations we have

0 (2C- C,- .,),
which implies that C. C.,. This contradicts a theorem of Suzuki [5,
Lemma 5]. Hence no C. is real.
Now we assume that there exist two different numbers i and/c such that

Ci Cforsomejandl(j 1,..., e;l 1,..., e). Let-, and, be the complex-conjugate characters of and . Then from (7)
and (7) we have the equation,, (c, ) (c, ) (5 5,).
In particular for any element X from {1} we have by a theorem of
Suzuki [5, Lemma 4]

4,;(x) ,;,(x) :a(4,,(x) 4,,,(x)),

which contradicts the linear independence of ()11
:Now the systems of equations (71), (78) can be rewritten as follows"

1"1 1 C1 - al LI C1 - a C +

(7)

where the a are nonnegative integers and hi is a linear combina-
tion of irreducible characters of @, which are distinct from E, B, A
(k 1, 1/2(q 1)), and C (i 1, ..., s;j 1, e), with non-
negative integral coefficients. Let X be a linear combination of irreducible
characters of @ with integral coefficients" z az Z, where Z ranges over all
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irreducible characters of @. Then the number za is called the norm of
X. Now the following two facts about the system of equations (7) are
known [5, Lemma 4]"

(8.1) The norm of equals q + 1 (i 1, ei).

(8.2) The norm ofp/-/ (i <j) equals p:(/-/’)+ 1 (i,j 1,
s;k 1, ,e ;l 1, ,e).

9. LEMM/k H.

(8) 2 -t- e - e. -t- + e < 1/2p.

Proof. The number of distinct C.’s equals e -t- e +... e,. Hence
by Lemmas C and E it is enough to show that the degrees of the C are odd.
Now by the reciprocity theorem of Frobenius we obtain from (1), (2), and
(7) the equation valid for all elements of @

+ a+. +., + ....
Since all the e’s are even and the degrees of all the ,’s are odd, we see that
C(1) 1 (mod 2).
Now we can prove the following"

LEMMA I. (i) l+ ld (

f, ((2- 1)4- 1) ( , 2,...),

(ii) e,+= (-- 1)/q (l=O, 1,...);

e, p(p 1)/q (1 1, 2,...),

(iii) r s.

Proof. By Lemma F, our assertion is true for and e. Thenfrom (6) we
obtain the equation

(6’) p(pa_ 1)(p(-)+ Wpa+l) ep/*+... We,

Since d is odd, we have 2f < d. If 2f < d 1, we obtain from (6’) the
congruence e 0 (mod p), which implies the congruence e 0 (mod p).
This contradicts Lemma G. Hence we must have 2f d 1.
Now let be a principal -sefies of , and let

us consider the factor group/ of order p of
is the commutator subgroup of /. Hence it is easily seen that ,/a
is the center of /a. Since d is odd, the degree of any irreducible character
of/divides p(-). Then from above we see that the degrees of all the

The square of the degree of an irreducible character of a p-group divides the index
of the center in the whole group.
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nonlinear irreducible characters of /3 must be equal to p(-1)/2 Let e2 be
the number of irreducible characters of degree p(-1)/ of /!)3 Then cor-

pd-lresponding to (6) we have the following equation p p W e which
p * and since e < p by Lemmaimplies e p( 1). Since clearly e e

H, we have the following inequality"

(9) (p- 1)/q < p.

Now let us assume /c > 1 and that our assertion is true for e and
f (i 1, ,/ 1). Then it follows from our assumption that

p(k-)a_ 1.

Now from (6) we obtain the following equation

p.f(6tt) p(k-)(p 1)(p(r-)a -t- -t- p - 1) e -{-....

This implies the inequality (/ 1) d >_- 2f. If (/ 1) d >_- 2f + 2, then
from (6t) we have the congruence e --- 0 (mod p), and therefore the con-
gruence e 0 (mod p), contradicting Lemma H. Hence we must have

(k,-1)d-
1,2f_t_ 1

if k is odd,
if k is even.

Putting these values in (6) we have

(pa 1)(1 + paw e* + * p:+-2:ek+l 2v

* * p2.fk+1--2fkp(p’ 1)(1 -t- pa + e + e+ - when/ is odd,

when/c is even.

From these equations we have

e*p -1--

p(pa_ 1) e*
(mod p) when/c is odd,

(mod p2) when/ is even.

These imply the congruences

e (pa 1)/q when k is odd,

e p(p 1)/q when/c is even.

Both sides of these congruences are positive and less than p2 by (9) and
Lemma H. Hence these congruences turn out to be equations. Thus our
induction argument completes the proof of (i) and (ii).

Finally from (i) and (ii) we have 1 -t- -- e p2i p. And on the
other hand the left-hand side of this equation equals pr, the order of .
Hence we have r s.
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10. LEMMJ. q- (p--1)/2.

Proof. It is a classical result that the number of real irreducible characters
of a group equals the number of real classes of the group. E, B, and
A(i 1,.--,1/2(q 1)) are real characters of@ (by (1) and (2)). {1},
the class of involutions and 1/2(q 1) classes of coniugate elements of F,. are
real. On the other hand Cj (i 1, s;j 1, e) are nonreal char-
acters of @. There are the same number of nonreal classes of coniugate
elements of F1. Hence if there is no real character of @ distinct from E, B,
and A (i 1, 1/2(q 1)), then by Lemma B, r0 contains only one,
namely, the class of involutions. In particular this implies the equation
m W 1 2h. Since by the theorem ofFeitm p, we havem p, con-
tradicting our assumption (2.1). Therefore there exists a real irreducible
character R of @ distinct from E, B, and A (i 1, 1/2(q 1)).
Now in (7) letA= bR+ (i= 1,...,s). Then by the reciprocity

theorem of Frobenius we have the equation valid for any element of @1
R ’=1 (b 1#).

In particular this implies
R(1) =b e p2fiq.

Since e -= 0 (mod (p 1)/q) (i 1,... s) by Lemma I, we obtain
R(1) 0 (mod p 1). As the degree of an irreducible character of @,
R(1) divides the order (m + 1)mq of @. Therefore we have m + 1 -= 0
(mod (p 1)/q). On the other hand, since p 1 is a divisor of
m- 1 pr_ 1, we have (p-- 1)/q 2.
On account of Lemma J the second part of Lemma I can be rewritten as

follows"

LEMMA I (ii’). e2+1 2 (1 0, 1, ...),

e,. 2p (1 1,2,...).

11. LEMMA I41.
and A(i 1,
, X(1) Then we have

sd- (X(1)) __> d + 1.

Proof. (I) Let X R be real, and put R (1) rq (by Lemma A).
the proof of Lemma J let us assume A b R - (i 1, s).
using Lemma I (ii’) we have the following equation:

r 2(bl - pb2 p(-1)]2 + b3 p + "").

Let us assume bl bk-1 0 and bk 0 (/c 1, 2, ..-).

Let n be an integer.
by p.

Let X be any irreducible character of @ distinct from E, B,
1/2 (q 1) ). Let p divide X(1) with the exact exponent

As in
Then

Then from

Then (n) denotes the exact exponent with which n is divisible
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this equation we have

p-1)2 -t- pb+ p(kd-1)/2 .jr....
(10) r

2(pb p((-1)-)2 _{_ b+p -Now by (10) it is enough to show that

b <: p(+) if/ is odd,

b p(-)2 if k is even.

if/ is odd,

if/ is even.

In fact if this can be shown, we see that

sd- (r) >- 1/2(2sd--kd-- 1) __> 1/2(sd-- 1) >-d+ 1.

If/ 1, then since the norm of ’1 b R -t- by (8.1) equals
q 1 1/2(p 1) < p+l, we have

If ] > 1 and odd, then since the norm of

--bR+...
by (8.2) equals p+l

__
1, we have bk < p(+1)2.

If k is even, then since the norm of p(-)2,_,1 * by (8.2) equals
d--1p - 1, we have as above b < p(-)/2.
(II) Let us assume X Cj and put C(1) cq (by Lemma/k). Using

the reciprocity theorem of Frobenius we obtain the following equations (by
(7) and Lemma I (ii)

-{- pa2 p(d-)]2
_

...) .. t p(-l)d]2
c

L2(al -t- pa2 p(-)]2
_ -- 8k p((k--)d--)]2

if k is odd,
if/ is even.

Unless a a_, 0, the situation is exactly the same as case (I).
Hence we can assume that al a_, 0. Then the above equations
can be rewritten as follows:

(11) c=

2(ak p(-)2 _{_ pak+l,k p(d-1)12
__

...)

__
’k

2(pa p((k-1)4-1)/2
if/ is odd,

-t- a+,p - .-.) -t- s p((-l)d-)/2
if/ is even.

By (11) the case where/c is even is trivial, because 2pa + is prime to p.
Hence we can assume that/ is odd. Again by (11) it is enough to show that
2a -t- s p(+1)/2, and hence it is enough to show that

-+ 1).2a 2a <
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If/ 1, then since the norm of

by (8.1) equals q -t- 1 (p W 1), we have
1 d

which implies that

2a1 + 2ea (p-- 1) < (p+l_ 1).

If k > 1, then the norm of

kp a_,_ a,_) C_,

by (8.2) equals p+ W 1. Therefore it is enough to show that

(p(+)]e- p(+)/e_,_ W a,_)

+ (2p- 1)(p(+)a_._- a,_) (p+ T 1).

Put x p(+)a_,_ a,_. Then it is easy to see that the minimal
value of the quadratic form in x

(x + p(+)/e_) + (2p 1)x

is not less than (p+ + 1).

12. LEuux L. The number c in (5) satisfies the congruees

c+q0 (modp+),
which implies in particular that c q 3 (for every i).

Proof. On account of (5) we have

mq 1 Z(J)Z(G)c 1 + Z ]roW1 m z

where Z ranges over all the irreducible characters of distinct from E, B, and
A (i 1, {(q 1)). Then by Lemma K we obtain

c c(m+ 1) --q (modp+).
Hence by Lemma J we obtuin c {(p 1) ap+, where a is a natural
number. Therefore we have

c p+- {(p- 1) {(p + 5).
Now we can derive a required contradiction as follows.

the following equation

(12) {(m 1)(q + 1) ct It + + c, l,,

From (4) we have
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where li mq is the number of elements in the class (i 1, n). On the
other hand, we have from the decomposition @ F0 -t- F1 + F + {1} the
following equation

(13) 1/2(m + 1) (m- 1)/2q 11 -{-... -{- 1..

Since c => q -[- 3 for every i by Lemma L, we obtain from (12) and (13) the
following inequality

1/2(m-- 1)(q- 1) => (qWa)(1/2(m- 1) (m- 1)/2q).

This implies that
0_-> (q- 3)mW2q2-5q-t-3.

This is a contradiction.
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