ON A CLASS OF DOUBLY TRANSITIVE PERMUTATION GROUPS¹

BY

Noboru Ito

Let Ω be the set of symbols $1, \dots, m + 1$. Let \mathfrak{G} be a doubly transitive permutation group on Ω in which no nontrivial permutation leaves three symbols fixed. Such a group \mathfrak{G} will be called a Zassenhaus group.

On the structure of Zassenhaus groups Feit [4] proved recently the following elegant theorem: Let \mathfrak{G} be a Zassenhaus group of degree m + 1, which contains no normal subgroup of order m + 1. Then m must be a power of a prime number: $m = p^e$. Let \mathfrak{M} be a Sylow p-subgroup of \mathfrak{G} , and let \mathfrak{M}' be the commutator subgroup of \mathfrak{M} . Then the index of \mathfrak{M}' in \mathfrak{M} must be smaller than $4q^2$, where q is the order of the subgroup \mathfrak{O} , which consists of all the permutations leaving each of the symbols 1 and 2 fixed. Moreover if \mathfrak{M} is abelian, then $q \geq (m - 1)/2$.

Now the purpose of this paper is to prove the following.

THEOREM. If m is odd, then \mathfrak{M} must be abelian.

1. In the following \mathfrak{G} denotes always a Zassenhaus group of even degree m + 1, which contains no normal subgroup of order m + 1. Let Γ_i (i = 0, 1, 2) be the set of all the permutations in \mathfrak{G} , each of which fixes just *i* symbols of Ω . Then according to our assumptions on \mathfrak{G} we obtain the following decomposition of \mathfrak{G} into its mutually disjoint subsets: $\mathfrak{G} = \Gamma_0 + \Gamma_1 + \Gamma_2 + \{1\}$, where 1 is the identity element of \mathfrak{G} .

Since \emptyset is doubly transitive, \emptyset possesses an irreducible character **B**, whose values can be written as follows:

(1)
$$\mathbf{B}(X) = \begin{cases} m \text{ for } X = 1, \\ 1 \text{ for } X \in \Gamma_2, \\ 0 \text{ for } X \in \Gamma_1, \\ -1 \text{ for } X \in \Gamma_0. \end{cases}$$

2. Let \mathfrak{G}_1 be the subgroup of \mathfrak{G} , which consists of all the permutations leaving the symbol 1 fixed. Then we can choose an \mathfrak{M} in the theorem of Feit in the following way: \mathfrak{M} is a normal subgroup of \mathfrak{G}_1 and satisfies the conditions that $\mathfrak{G}_1 = \mathfrak{M}\mathfrak{Q}$ and $\mathfrak{M} \cap \mathfrak{Q} = 1$. Now we assume that

(2.1) \mathfrak{M} is not abelian.

Therefore the purpose of our proof is to derive a contradiction from this

Received April 5, 1961.

¹ This research was supported in part by the United States Air Force.

assumption, which is achieved at the end of this paper. The following facts about Ω are known [4, Lemma 3.3]:

(2.2) \mathfrak{Q} is cyclic, q is odd > 1, $m \equiv 1 \pmod{q}$, the normalizer of \mathfrak{Q} in \mathfrak{G} is a dihedral group of order 2q, and the centralizer of every nonidentity element of \mathfrak{Q} coincides with \mathfrak{Q} .

In particular \mathfrak{M} is the commutator subgroup of \mathfrak{G}_1 . Let η_0 , η_1 , \cdots , η_{q-1} be the linear characters of \mathfrak{G}_1 , where η_0 is the principal character of \mathfrak{G}_1 , and $\eta_{i+(q-1)/2} = \overline{\eta}_i$ for $i = 1, \cdots, \frac{1}{2}(q-1)$. Let X be an element of Γ_2 . Then by the double transitivity of \mathfrak{G} there exists an element X^* in \mathfrak{Q} , which is conjugate to X.

Now let \mathbf{A}_i denote the character of \mathfrak{G} induced by η_i $(i = 1, \dots, \frac{1}{2}(q-1))$. Then $\mathbf{A}_1, \dots, \mathbf{A}_{(q-1)/2}$ are distinct irreducible characters of \mathfrak{G} , and the values of \mathbf{A}_i can be written as follows [4, pp. 182–183]:

(2)
$$\mathbf{A}_{i}(X) = \begin{cases} m+1 & \text{for } X = 1, \\ \eta_{i}(X^{*}) + \bar{\eta}_{i}(X^{*}) & \text{for } X \in \Gamma_{2}, \\ 1 & \text{for } X \in \Gamma_{1}, \\ 0 & \text{for } X \in \Gamma_{0}. \\ (i = 1, \dots, \frac{1}{2}(q-1)). \end{cases}$$

Let $X \neq 1$ be an element of \mathfrak{Q} . Then by (2) we have

$$\sum_{i=1}^{(q-1)/2} \mathbf{A}_i(X) \bar{\mathbf{A}}_i(X) = \sum_{i=1}^{(q-1)/2} (\eta_i(X) + \bar{\eta}_i(X)) \overline{(\eta_i(X) + \bar{\eta}_i(X))} = \sum_{i=1}^{q-1} \eta_i(X) \bar{\eta}_i(X) + \sum_{i=1}^{q-1} \eta_i^2(X).$$

Since the order of \mathfrak{Q} is odd, $\eta_1^2, \dots, \eta_{q-1}^2$ are all distinct and are the same as $\eta_1, \dots, \eta_{q-1}$ in some order. Therefore we have

$$\sum_{i=1}^{q-1} \eta_i(X) \,\bar{\eta}_i(X) = \sum_{i=0}^{q-1} \eta_i(X) \,\bar{\eta}_i(X) - 1 = q - 1$$

and

$$\sum_{i=1}^{q-1} \eta_i^2(X) = \sum_{i=0}^{q-1} \eta_i(X) - 1 = -1.$$

Thus we have obtained the following equation:

(3)
$$\sum_{i=1}^{(q-1)/2} \mathbf{A}_i(X) \bar{\mathbf{A}}_i(X) = q - 2.$$

3. LEMMA A. Any irreducible character **X** of \mathfrak{G} different from **E**, **B**, and \mathbf{A}_i $(i = 1, \dots, \frac{1}{2}(q - 1))$ has degree divisible by q, where **E** is the principal character of \mathfrak{G} .

Proof. Let $X \neq 1$ be any element of \mathfrak{Q} . By (2.2) the centralizer of X in \mathfrak{G} is \mathfrak{Q} . By the orthogonality relations for the group characters we have

$$q = \mathbf{E}(X)\bar{\mathbf{E}}(X) + \mathbf{B}(X)\bar{\mathbf{B}}(X) + \sum_{i=1}^{(q-1)/2} \mathbf{A}_i(X)\bar{\mathbf{A}}_i(X) + \mathbf{X}(X)\bar{\mathbf{X}}(X) + \cdots = q + \mathbf{X}(X)\bar{\mathbf{X}}(X) + \cdots$$
(by (3)).

Thus we have $\mathbf{X}(X) = 0$. Again by the orthogonality relations for the group characters we have

$$\mathbf{X}(1) = \sum_{\mathbf{X} \in \mathfrak{Q}} \mathbf{X}(X) \equiv 0 \pmod{q}.$$

4. Let X and Y be two distinct elements of \mathfrak{Q} . Assume that there exists an element Z of \mathfrak{G} such that $Y = Z^{-1}XZ$. Then Y belongs to $\mathfrak{Q} \cap Z^{-1}\mathfrak{Q}Z$, which implies by (2.2) that $\mathfrak{Q} = Z^{-1}\mathfrak{Q}Z$ and $Y = X^{-1}$. Thus the elements of Γ_2 fall into $\frac{1}{2}(q-1)$ classes of conjugate elements in \mathfrak{G} . Let $\mathfrak{L}_1, \dots, \mathfrak{L}_{(q-1)/2}$ be the classes of conjugate elements in \mathfrak{G} from Γ_2 .

The following fact is known [4, Lemma 3.4]:

(4.1) \mathfrak{G} contains only one class of involutions, and there are mq involutions in \mathfrak{G} . No element $\neq 1$ of \mathfrak{M} is the product of two involutions.

Let \Re_1, \dots, \Re_n be the classes of conjugate elements in \mathfrak{G} from Γ_0 , where \Re_1 is the class of involutions. Then using (2.2), (4.1), and [2, Lemmas (2.A) and (2.B)] we have

(4)
$$\Re_1^2 = \sum_{i=1}^n c_i \,\Re_i + q \sum_{i=1}^{(q-1)/2} \Re_i + mq \cdot 1,$$

where c_i is explained as follows: Let G_i be an element in \mathfrak{R}_i . Then for i > 1, c_i equals the number of involutions in \mathfrak{G} , which transform G_i into G_i^{-1} , and $c_1 + 1$ equals the number of involutions in the centralizer of an involution.

If either i = 1 or i > 1 and $c_i > 0$, then the class \Re_i and the elements in \Re_i are called real. (Though the usual definitions of real class and real element are more general [2, p. 565], they coincide in this particular case, by Lemma B below, with ours.)

Put $G_1 = J$. Applying the orthogonality relations of group characters and using (1) and (2), we obtain from (4) the following equation of Brauer-Fowler [2, (23)]²

(5)
$$c_i = \frac{mq}{m+1} \left(1 - \frac{1}{m} + \sum_{\mathbf{Z}} \frac{\mathbf{Z}(J)^2 \mathbf{Z}(G_i)}{\mathbf{Z}(1)} \right),$$

where Z ranges over all the irreducible characters of \mathfrak{G} distinct from E, B, and \mathbf{A}_i $(i = 1, \dots, \frac{1}{2}(q - 1))$.

5. LEMMA B. Every class \Re_i is real.

Proof. For some i > 1 let us assume that $c_i = 0$. Then we have from (5) the equation

$$1 - \frac{1}{m} + \sum_{\mathbf{Z}} \frac{\mathbf{Z}(J)^2 \mathbf{Z}(G_i)}{\mathbf{Z}(1)} = 0.$$

² See W. BURNSIDE, *Theory of groups of finite order*, 2nd ed., Cambridge, University Press, 1911, p. 288.

Since $m = p^e$, it can be seen at once from this equation that there must be an irreducible character **X** of \mathfrak{G} distinct from **E**, **B**, and \mathbf{A}_i $(i = 1, \dots, \frac{1}{2}(q-1))$ whose degree is divisible by m. By Lemma A the degree of **X** is divisible by q, too. Since m and q are relatively prime, we have $\mathbf{X}(1) = xmq$. Since the order of \mathfrak{G} equals the sum of the squares of the degrees of all the irreducible characters of \mathfrak{G} , we have the inequality $(m + 1)mq > x^2m^2q^2$, which implies that $m + 1 > x^2mq$. This is a contradiction, because q is greater than 1 by (2.2).

As an important consequence of Lemma B we have

LEMMA C. \bigotimes possesses only one 2-block of the highest defect, namely the principal 2-block $B_1(2)$.

Proof. By a theorem of Brauer-Nesbitt [3, Theorem 2] it is enough to show that the centralizer of a Sylow 2-subgroup \mathfrak{T} of \mathfrak{G} is contained in \mathfrak{T} . Assume that an element $X \neq 1$ of odd order is commutative with every element of \mathfrak{T} . By (4.1) and (2.2), X must belong to Γ_0 . Hence X is real by Lemma B. Then the centralizer $\mathfrak{C}(X)$ of X has index 2 in the generalized centralizer of X, which consists of all the elements Y such that $Y^{-1}XY = X^{\pm 1}$. Since $\mathfrak{C}(X)$ contains the Sylow 2-subgroup \mathfrak{T} of \mathfrak{G} , this is a contradiction.

6. LEMMA D. $m + 1 \equiv 0 \pmod{4}$.

Proof. If not, the order of \mathfrak{G} is not divisible by 4, and \mathfrak{G} contains a normal subgroup of index 2, which contains \mathfrak{M} . Therefore by Sylow's theorem the normalizer of \mathfrak{M} contains an involution, which implies the commutativity of \mathfrak{M} , contradicting our assumption (2.1).

LEMMA E. The number of irreducible characters in $B_1(2)$ is less than $\frac{1}{2}p^2$.

Proof. By Lemma D we have $p \equiv -1 \pmod{4}$ and $e \equiv 1 \pmod{2}$. Hence

$$\frac{m+1}{p+1} = \frac{1-(-p)^{e}}{1-(-p)} = 1+(-p)+\dots+(-p)^{e-1} \equiv 1 \pmod{2}.$$

Put $p + 1 = 2^{a}b$, where b is an odd number. Then the order of a Sylow 2-subgroup of \mathfrak{G} equals 2^{a} . By a theorem of Brauer-Feit [1, Theorem 1] the number of irreducible characters in $B_1(2)$ is at most 2^{2a-2} . We see that

$$2^{2a-2} \leq \frac{1}{4}(p+1)^2 < \frac{1}{2}p^2.$$

7. Let $\mathfrak{M} = \mathfrak{M}_1 \supset \mathfrak{M}_2 \supset \cdots \supset \mathfrak{M}_r \supset 1$ be a series of normal subgroups of \mathfrak{M} . It is called a principal Q-series, if every \mathfrak{M}_i is Q-invariant and there is no Q-invariant normal subgroup of \mathfrak{M} between \mathfrak{M}_i and \mathfrak{M}_{i+1} , which is distinct from \mathfrak{M}_i and \mathfrak{M}_{i+1} $(i = 1, \dots, r; \mathfrak{M}_{r+1} = 1)$. Put $\mathfrak{M}: \mathfrak{M}' = p^d$.

LEMMA F. Let $\mathfrak{M} = \mathfrak{M}_1 \supset \mathfrak{M}_2 \supset \cdots \supset \mathfrak{M}_r \supset 1$ be a principal \mathfrak{Q} -series of \mathfrak{M} . Then we have $\mathfrak{M}_2 = \mathfrak{M}'$ and $\mathfrak{M}_i: \mathfrak{M}_{i+1} = p^d$ $(i = 1, \dots, r)$. In particular we have e = rd with odd r, d > 1.

Proof. Since it is well known that the degrees of all the irreducible representations of a finite cyclic group over a prime field are equal, it is enough to prove $\mathfrak{M}_2 = \mathfrak{M}'$. It is clear that $\mathfrak{M}_2 \supseteq \mathfrak{M}'$. If $\mathfrak{M}_2 \neq \mathfrak{M}'$, then we have $\mathfrak{M}:\mathfrak{M}_2 \equiv 1 \pmod{q}$ and $\mathfrak{M}_2:\mathfrak{M}' \equiv 1 \pmod{q}$. Therefore we have

$$\mathfrak{M}:\mathfrak{M}_2 \geq 2q+1, \hspace{0.2cm} \mathfrak{M}_2:\mathfrak{M}' \geq 2q+1, \hspace{0.2cm} ext{and} \hspace{0.2cm} \mathfrak{M}:\mathfrak{M}' \geq 4q^2+4q+1,$$

which contradicts the theorem of Feit. Therefore we must have $\mathfrak{M}_2 = \mathfrak{M}'$. Let $1 = p^{f_1} < p^{f_2} < p^{f_3} < \cdots < p^{f_s}$ be the degrees of all the irreducible characters of \mathfrak{M} . Let e_i^* be the number of irreducible characters of \mathfrak{M} of degree p^{f_i} $(i = 2, \dots, s)$. Put $e_1^* + 1 = p^d$. Then by Lemma $F, e_1^* + 1$ is the number of linear characters of M. By the orthogonality relations for the group characters we have

(6)
$$m = p^d + e_2^* p^{2f_2} + \cdots + e_s^* p^{2f_s}.$$

The following fact is known [4, Lemma 2.2]:

(7.1) e_i^* is divisible by q $(i = 1, \dots, s)$. \mathfrak{G}_1 possesses $e_i = e_i^*/q$ irreducible characters ϕ_{i1} , \cdots , ϕ_{ie_i} of degree $p^{f_i}q$, which are induced by the characters of \mathfrak{M} .

Since p is odd, \mathfrak{M} has no real irreducible character except the principal character. Therefore e_i^* is even $(i = 1, \dots, s)$. Since q is odd, e_i is also even $(i = 1, \cdots, s)$.

8.³ The centralizer of any element of $\mathfrak{M} - \{1\}$ is contained in \mathfrak{G}_1 . By (7.1) every character ϕ_{ij} vanishes outside \mathfrak{M} , and e_i is even $(i = 1, \dots, s;$ $j = 1, \dots, e_i$. Let ϕ_{ij}^* be the character of \mathfrak{G} induced by ϕ_{ij} . Then by theorems of Suzuki [5, Lemmas 4 and 5] we have $\phi_{ij}^*(X) = \phi_{ij}(X)$ for any element of $\mathfrak{M} - \{1\}$, and there exist e_i different irreducible characters C_{ij} $(j = 1, \dots, e_i)$ of \mathfrak{G} for each $i \ (i = 1, \dots, s)$, and the decomposition of ϕ_{ij}^* into its irreducible components can be written as follows (by using (1)) and (2):

$$\phi_{i1}^{*} = \varepsilon_{i} \mathbf{C}_{i1} + a_{ii} \sum_{j=1}^{e_{i}} \mathbf{C}_{ij} + p^{f_{i}} \sum_{i=1}^{(q-1)/2} \mathbf{A}_{i} + p^{f_{i}} \mathbf{B} + \Delta_{i}^{*},$$
(7_i)
$$\vdots$$

$$\phi_{ie_{i}}^{*} = \varepsilon_{i} \mathbf{C}_{ie_{i}} + a_{ii} \sum_{j=1}^{e_{i}} \mathbf{C}_{ij} + p^{f_{i}} \sum_{i=1}^{(q-1)/2} \mathbf{A}_{i} + p^{f_{i}} \mathbf{B} + \Delta_{i}^{*}$$
(*i* = 1, ..., s)

where $\varepsilon_i = \pm 1$, a_{ii} and $a_{ii} + \varepsilon_i$ are nonnegative integers, and Δ_i^* is a linear combination of irreducible characters of \mathfrak{G} , which are distinct from E, B, \mathbf{C}_{ij} $(j = 1, \dots, e_i)$, and \mathbf{A}_k $(k = 1, \dots, \frac{1}{2}(q - 1))$, with nonnegative integral coefficients.

LEMMA G. All the characters \mathbf{C}_{ij} $(j = 1, \dots, e_i; i = 1, \dots, s)$ are different.

³ See [5, Section II].

Proof. First assume that some C_{ij} is real. Then since the order of \mathfrak{G}_1 is odd, the principal character is the only real character of \mathfrak{G}_1 . Let $\phi_{ij'}$ be the complex-conjugate character of ϕ_{ij} . Then j and j' are different. From (7_i) we have the equation $\phi_{ij}^* - \phi_{ij'}^* = \varepsilon_i(\mathbf{C}_{ij} - \mathbf{C}_{ij'})$. Transferring to complex-conjugate characters we have $\phi_{ij'}^* - \phi_{ij}^* = \varepsilon_i(\mathbf{C}_{ij} - \mathbf{C}_{ij'})$. Adding these two equations we have

$$0 = \varepsilon_i (2\mathbf{C}_{ij} - \mathbf{C}_{ij'} - \mathbf{\bar{C}}_{ij'}),$$

which implies that $C_{ij} = C_{ij'}$. This contradicts a theorem of Suzuki [5, Lemma 5]. Hence no C_{ij} is real.

Now we assume that there exist two different numbers i and k such that $\mathbf{C}_{ij} = \mathbf{C}_{kl}$ for some j and l $(j = 1, \dots, e_i; l = 1, \dots, e_k)$. Let $\phi_{ij'}$ and $\phi_{kl'}$ be the complex-conjugate characters of ϕ_{ij} and ϕ_{kl} . Then from (7_i) and (7_k) we have the equation

$$\phi_{ij}^* - \phi_{ij'}^* = \varepsilon_i (\mathbf{C}_{ij} - \mathbf{\bar{C}}_{ij}) = \pm \varepsilon_k (\mathbf{C}_{kl} - \mathbf{\bar{C}}_{kl}) = \pm (\phi_{kl}^* - \phi_{kl'}^*).$$

In particular for any element X from $\mathfrak{M} - \{1\}$ we have by a theorem of Suzuki [5, Lemma 4]

$$\phi_{ij}(X) - \phi_{ij'}(X) = \pm (\phi_{kl}(X) - \phi_{kl'}(X)),$$

which contradicts the linear independence of $\phi_{11}, \cdots, \phi_{se_s}$.

Now the systems of equations $(7_1), \dots, (7_s)$ can be rewritten as follows:

$$\phi_{11}^{*} = \varepsilon_1 \mathbf{C}_{11} + a_{11} \sum_{i=1}^{e_1} \mathbf{C}_{1i} + a_{12} \sum_{i=1}^{e_2} \mathbf{C}_{2i} + \cdots \\ + a_{1s} \sum_{i=1}^{e_s} \mathbf{C}_{si} + \sum_{i=1}^{(q-1)/2} \mathbf{A}_i + \mathbf{B} + \Delta_1 .$$
:

$$\phi_{1e_1}^* = \varepsilon_1 \mathbf{C}_{1e_1} + a_{11} \sum_{i=1}^{e_1} \mathbf{C}_{1i} + a_{12} \sum_{i=1}^{e_2} \mathbf{C}_{2i} + \cdots \\ + a_{1s} \sum_{i=1}^{e_s} \mathbf{C}_{si} + \sum_{i=1}^{(q-1)/2} \mathbf{A}_i + \mathbf{B} + \Delta_1,$$

(7)

$$\begin{aligned}
\phi_{s1}^{*} &= a_{s1} \sum_{i=1}^{e_{1}} \mathbf{C}_{1i} + \dots + a_{s,s-1} \sum_{i=1}^{e_{s-1}} \mathbf{C}_{s-1,i} + \varepsilon_{s} \mathbf{C}_{s1} \\
&+ a_{ss} \sum_{i=1}^{e_{s}} \mathbf{C}_{si} + p^{f_{s}} \sum_{i=1}^{(q-1)/2} \mathbf{A}_{i} + p^{f_{s}} \mathbf{B} + \Delta_{s}, \\
&\vdots \\
\phi_{se_{s}}^{*} &= a_{s1} \sum_{i=1}^{e_{1}} \mathbf{C}_{1i} + \dots + a_{s,s-1} \sum_{i=1}^{e_{s-1}} \mathbf{C}_{s-1,i} + \varepsilon_{s} \mathbf{C}_{se_{s}} \\
&+ a_{ss} \sum_{i=1}^{e_{s}} \mathbf{C}_{si} + p^{f_{s}} \sum_{i=1}^{(q-1)/2} \mathbf{A}_{i} + p^{f_{s}} \mathbf{B} + \Delta_{s},
\end{aligned}$$

where the a_{ij} are nonnegative integers and Δ_i is a linear combination of irreducible characters of \mathfrak{G} , which are distinct from \mathbf{E} , \mathbf{B} , \mathbf{A}_k $(k = 1, \dots, \frac{1}{2}(q - 1))$, and \mathbf{C}_{ij} $(i = 1, \dots, s; j = 1, \dots, e_i)$, with nonnegative integral coefficients. Let \mathbf{X} be a linear combination of irreducible characters of \mathfrak{G} with integral coefficients: $\sum_{\mathbf{Z}} a_{\mathbf{Z}} \mathbf{Z}$, where \mathbf{Z} ranges over all irreducible characters of \mathfrak{G} . Then the number $\sum_{\mathbf{Z}} a_{\mathbf{Z}}^2$ is called the norm of X. Now the following two facts about the system of equations (7) are known [5, Lemma 4]:

(8.1) The norm of ϕ_{1i}^* equals q + 1 $(i = 1, \dots, e_1)$.

(8.2) The norm of $p^{f_j - f_i} \phi_{ik}^* - \phi_{jl}^*$ (i < j) equals $p^{2(f_j - f_i)} + 1$ $(i, j = 1, \dots, s; k = 1, \dots, e_i; l = 1, \dots, e_j)$.

9. LEMMA H.

(8)
$$2 + e_1 + e_2 + \cdots + e_s < \frac{1}{2}p^2$$
.

Proof. The number of distinct C_{ij} 's equals $e_1 + e_2 + \cdots + e_s$. Hence by Lemmas C and E it is enough to show that the degrees of the C_{ij} are odd. Now by the reciprocity theorem of Frobenius we obtain from (1), (2), and (7) the equation valid for all elements of \mathfrak{G}_1

$$C_{ij} = \dots + a_{i-1,i} \sum_{k=1}^{e_{i-1}} \phi_{i-1,k} + (\varepsilon_i \phi_{ij} + a_{ii} \sum_{k=1}^{e_i} \phi_{ik}) \\ + a_{i+1,i} \sum_{k=1}^{e_{i+1}} \phi_{i+1,k} + \dots$$

Since all the e_i 's are even and the degrees of all the ϕ_{kl} 's are odd, we see that $\mathbf{C}_{ij}(1) \equiv 1 \pmod{2}$.

Now we can prove the following:

LEMMA I. (i)
$$f_{2l+1} = ld$$
 $(l = 0, 1, \cdots);$
 $f_{2l} = \frac{1}{2}((2l-1)d-1)$ $(l = 1, 2, \cdots),$
(ii) $e_{2l+1} = (p^d - 1)/q$ $(l = 0, 1, \cdots);$
 $e_{2l} = p(p^d - 1)/q$ $(l = 1, 2, \cdots),$
(iii) $r = s.$

Proof. By Lemma F, our assertion is true for f_1 and e_1 . Then from (6) we obtain the equation

(6')
$$p^{d}(p^{d}-1)(p^{(r-2)d}+\cdots+p^{d}+1) = e_{2}^{*}p^{2/2}+\cdots+e_{s}^{*}p^{2/s}$$
.

Since d is odd, we have $2f_2 < d$. If $2f_2 < d - 1$, we obtain from (6') the congruence $e_2^* \equiv 0 \pmod{p^2}$, which implies the congruence $e_2 \equiv 0 \pmod{p^2}$. This contradicts Lemma G. Hence we must have $2f_2 = d - 1$.

Now let $\mathfrak{M} = \mathfrak{M}_1 \supset \mathfrak{M}_2 \supset \mathfrak{M}_3 \supset \cdots$ be a principal Q-series of \mathfrak{M} , and let us consider the factor group $\mathfrak{M}/\mathfrak{M}_3$ of order p^{2d} of \mathfrak{M} . By Lemma F, $\mathfrak{M}_2/\mathfrak{M}_3$ is the commutator subgroup of $\mathfrak{M}/\mathfrak{M}_3$. Hence it is easily seen that $\mathfrak{M}_2/\mathfrak{M}_3$ is the center of $\mathfrak{M}/\mathfrak{M}_3$. Since *d* is odd, the degree of any irreducible character of $\mathfrak{M}/\mathfrak{M}_3$ divides $p^{(d-1)/2}$. Then from above we see that the degrees of all the

⁴ The square of the degree of an irreducible character of a p-group divides the index of the center in the whole group.

nonlinear irreducible characters of $\mathfrak{M}/\mathfrak{M}_3$ must be equal to $p^{(d-1)/2}$. Let e'_2 be the number of irreducible characters of degree $p^{(d-1)/2}$ of $\mathfrak{M}/\mathfrak{M}_3$. Then corresponding to (6) we have the following equation $p^{2d} = p^d + e'_2 p^{d-1}$, which implies $e'_2 = p(p^d - 1)$. Since clearly $e'_2 \leq e^*_2$, and since $e_2 < p^2$ by Lemma H, we have the following inequality:

$$(9) (pd-1)/q < p.$$

Now let us assume k > 1 and that our assertion is true for e_i and f_i $(i = 1, \dots, k - 1)$. Then it follows from our assumption that

$$\sum_{i=1}^{k-1} e_i^* p^{2f_i} = (p^d - 1) + p(p^d - 1)p^{d-1} + (p^d - 1)p^{2d} + \cdots$$
$$= p^{(k-1)d} - 1.$$

Now from (6) we obtain the following equation

$$(6'') \quad p^{(k-1)d}(p^d - 1)(p^{(r-k)d} + \cdots + p^d + 1) = e_k^* p^{2f_k} + \cdots$$

This implies the inequality (k-1) $d \ge 2f_k$. If (k-1) $d \ge 2f_k + 2$, then from (6") we have the congruence $e_k^* \equiv 0 \pmod{p^2}$, and therefore the congruence $e_k \equiv 0 \pmod{p^2}$, contradicting Lemma H. Hence we must have

$$(k-1) d = \begin{cases} 2f_k & \text{if } k \text{ is odd,} \\ 2f_k + 1 & \text{if } k \text{ is even.} \end{cases}$$

Putting these values in (6'') we have

 $(p^{d} - 1)(1 + p^{d} + \cdots) = e_{k}^{*} + e_{k+1}^{*} p^{2f_{k+1} - 2f_{k}} + \cdots \text{ when } k \text{ is odd,}$ $p(p^{d} - 1)(1 + p^{d} + \cdots) = e_{k}^{*} + e_{k+1}^{*} p^{2f_{k+1} - 2f_{k}} + \cdots \text{ when } k \text{ is even.}$

From these equations we have

$$p^d-1\equiv e_k^*\pmod{p^2}$$
 when k is odd,
 $p(p^d-1)\equiv e_k^*\pmod{p^2}$ when k is even.

These imply the congruences

$$egin{aligned} &e_k\equiv(p^d-1)/q & ext{when }k ext{ is odd},\ &e_k\equiv p(p^d-1)/q & ext{when }k ext{ is even}. \end{aligned}$$

Both sides of these congruences are positive and less than p^2 by (9) and Lemma H. Hence these congruences turn out to be equations. Thus our induction argument completes the proof of (i) and (ii).

Finally from (i) and (ii) we have $1 + \sum_{k=1}^{s} e_k^k p^{2f_k} = p^{sd}$. And on the other hand the left-hand side of this equation equals p^{rd} , the order of \mathfrak{M} . Hence we have r = s.

10. LEMMA J.
$$q = (p^d - 1)/2$$
.

Proof. It is a classical result that the number of real irreducible characters of a group equals the number of real classes of the group. **E**, **B**, and \mathbf{A}_i $(i = 1, \dots, \frac{1}{2}(q - 1))$ are real characters of \mathfrak{G} (by (1) and (2)). {1}, the class of involutions and $\frac{1}{2}(q - 1)$ classes of conjugate elements of Γ_2 are real. On the other hand \mathbf{C}_{ij} $(i = 1, \dots, s; j = 1, \dots, e_i)$ are nonreal characters of \mathfrak{G} . There are the same number of nonreal classes of conjugate elements of Γ_1 . Hence if there is no real character of \mathfrak{G} distinct from **E**, **B**, and \mathbf{A}_i $(i = 1, \dots, \frac{1}{2}(q - 1))$, then by Lemma B, Γ_0 contains only one, namely, the class of involutions. In particular this implies the equation $m + 1 = 2^h$. Since by the theorem of Feit $m = p^e$, we have m = p, contradicting our assumption (2.1). Therefore there exists a real irreducible character **R** of \mathfrak{G} distinct from **E**, **B**, and \mathbf{A}_i $(i = 1, \dots, \frac{1}{2}(q - 1))$.

Now in (7) let $\Delta_i = b_i \mathbf{R} + \cdots (i = 1, \cdots, s)$. Then by the reciprocity theorem of Frobenius we have the equation valid for any element of \mathfrak{G}_1

$$\mathbf{R} = \sum_{i=1}^{s} \left(b_i \sum_{j=1}^{e_i} \phi_{ij} \right).$$

In particular this implies

$$\mathbf{R}(1) = \sum_{i=1}^{s} b_i e_i p^{2f_i} q.$$

Since $e_i \equiv 0 \pmod{(p^d - 1)/q}$ $(i = 1, \dots, s)$ by Lemma I, we obtain $\mathbf{R}(1) \equiv 0 \pmod{p^d - 1}$. As the degree of an irreducible character of \mathfrak{G} , $\mathbf{R}(1)$ divides the order (m + 1)mq of \mathfrak{G} . Therefore we have $m + 1 \equiv 0 \pmod{(p^d - 1)/q}$. On the other hand, since $p^d - 1$ is a divisor of $m - 1 = p^{r^d} - 1$, we have $(p^d - 1)/q = 2$.

On account of Lemma J the second part of Lemma I can be rewritten as follows:

LEMMA I (ii').
$$e_{2l+1} = 2$$
 $(l = 0, 1, \dots),$
 $e_{2l} = 2p$ $(l = 1, 2, \dots).$

11. LEMMA K. Let X be any irreducible character of \mathfrak{G} distinct from E, B, and \mathbf{A}_i $(i = 1, \dots, \frac{1}{2}(q - 1))$. Let p divide $\mathbf{X}(1)$ with the exact exponent⁵ $\nu(X(1))$. Then we have

$$sd - \nu(X(1)) \ge d + 1.$$

Proof. (I) Let $\mathbf{X} = \mathbf{R}$ be real, and put $\mathbf{R}(1) = rq$ (by Lemma A). As in the proof of Lemma J let us assume $\Delta_i = b_i \mathbf{R} + \cdots (i = 1, \cdots, s)$. Then using Lemma I (ii') we have the following equation:

$$r = 2(b_1 + pb_2 p^{(d-1)/2} + b_3 p^d + \cdots).$$

Let us assume $b_1 = \cdots = b_{k-1} = 0$ and $b_k \neq 0$ $(k = 1, 2, \cdots)$. Then from

⁵ Let n be an integer. Then $\nu(n)$ denotes the exact exponent with which n is divisible by p.

this equation we have

(10)
$$r = \begin{cases} 2(b_k p^{(k-1)d/2} + pb_{k+1} p^{(kd-1)/2} + \cdots) & \text{if } k \text{ is odd,} \\ 2(pb_k p^{((k-1)d-1)/2} + b_{k+1} p^{kd/2} + \cdots) & \text{if } k \text{ is even.} \end{cases}$$

Now by (10) it is enough to show that

$$b_k < p^{(d+1)/2}$$
 if k is odd,
 $b_k < p^{(d-1)/2}$ if k is even.

In fact if this can be shown, we see that

$$sd - \nu(r) \geq \frac{1}{2}(2sd - kd - 1) \geq \frac{1}{2}(sd - 1) \geq d + 1.$$

If k = 1, then since the norm of $\phi_{11}^* = \cdots + b_1 \mathbf{R} + \cdots$ by (8.1) equals $q + 1 = \frac{1}{2}(p^d + 1) < p^{d+1}$, we have $b_1 < p^{(d+1)/2}$. If k > 1 and odd, then since the norm of

$$p^{(d+1)/2}\phi_{k-1,1} - \phi_{k1}^* = \dots + (p^{(d+1)/2}a_{k-1,k-1} + p^{(d+1)/2}\varepsilon_{k-1} - a_{k,k-1})\mathbf{C}_{k-1,1} + \sum_{j=2}^{2p} (p^{(d+1)/2}a_{k-1,k-1} - a_{k,k-1})\mathbf{C}_{k-1,j} + \dots - b_k \mathbf{R} + \dots$$

by (8.2) equals $p^{d+1} + 1$, we have $b_k < p^{(d+1)/2}$.

If k is even, then since the norm of $p^{(d-1)/2}\phi_{k-1,1}^* - \phi_{k1}^*$ by (8.2) equals $p^{d-1} + 1$, we have as above $b_k < p^{(d-1)/2}$.

(II) Let us assume $\mathbf{X} = \mathbf{C}_{kj}$ and put $\mathbf{C}_{kj}(1) = cq$ (by Lemma A). Using the reciprocity theorem of Frobenius we obtain the following equations (by (7) and Lemma I (ii'))

$$c = \begin{cases} 2(a_{1k} + pa_{2k} p^{(d-1)/2} + \cdots) + \varepsilon_k p^{(k-1)d/2} & \text{if } k \text{ is odd,} \\ 2(a_{1k} + pa_{2k} p^{(d-1)/2} + \cdots) + \varepsilon_k p^{((k-1)d-1)/2} & \text{if } k \text{ is even.} \end{cases}$$

Unless $a_{1k} = \cdots = a_{k-1,k} = 0$, the situation is exactly the same as case (I). Hence we can assume that $a_{1k} = \cdots = a_{k-1,k} = 0$. Then the above equations can be rewritten as follows:

(11)
$$c = \begin{cases} 2(a_{kk} p^{(k-1)d/2} + pa_{k+1,k} p^{(kd-1)/2} + \cdots) + \varepsilon_k p^{(k-1)d/2} \\ & \text{if } k \text{ is odd,} \\ 2(pa_{kk} p^{((k-1)d-1)/2} + a_{k+1,k} p^{kd/2} + \cdots) + \varepsilon_k p^{((k-1)d-1)/2} \\ & \text{if } k \text{ is even.} \end{cases}$$

By (11) the case where k is even is trivial, because $2pa_{kk} + \varepsilon_k$ is prime to p. Hence we can assume that k is odd. Again by (11) it is enough to show that $2a_{kk} + \varepsilon_k < p^{(d+1)/2}$, and hence it is enough to show that

$$2a_{kk}^2 + 2\varepsilon_k a_{kk} < \frac{1}{2}(p^{d+1} - 1).$$

350

If k = 1, then since the norm of

$$\phi_{11}^* = (a_{11} + \varepsilon_1) \mathbf{C}_{11} + a_{11} \mathbf{C}_{12} + \cdots$$

by (8.1) equals $q + 1 = \frac{1}{2}(p^d + 1)$, we have

$$(a_{11} + \varepsilon_1)^2 + a_{11}^2 \leq \frac{1}{2}(p^d + 1),$$

which implies that

$$2a_{11}^2 + 2\varepsilon_1 a_{11} \leq \frac{1}{2}(p^d - 1) < \frac{1}{2}(p^{d+1} - 1).$$

If k > 1, then the norm of

$$p^{(d+1)/2}\phi_{k-1,1}^* - \phi_{k1}^* = \dots + (p^{(d+1)/2}a_{k-1,k-1} + p^{(d+1)/2}\varepsilon_{k-1} - a_{k,k-1})\mathbf{C}_{k-1,1} \\ + \sum_{j=2}^{2p} (p^{(d+1)/2}a_{k-1,k-1} - a_{k,k-1})\mathbf{C}_{k-1,j} \\ - (\varepsilon_k + a_{kk})\mathbf{C}_{k1} - a_{kk}\mathbf{C}_{k2} + \dots$$

by (8.2) equals $p^{d+1} + 1$. Therefore it is enough to show that $(p^{(d+1)/2}a_{k-1,k-1} + p^{(d+1)/2}\varepsilon_{k-1} - a_{k,k-1})^2 + (2p-1)(p^{(d+1)/2}a_{k-1,k-1} - a_{k,k-1})^2 \ge \frac{1}{2}(p^{d+1}+1).$

Put $x = p^{(d+1)/2} a_{k-1,k-1} - a_{k,k-1}$. Then it is easy to see that the minimal value of the quadratic form in x

$$(x + p^{(d+1)/2}\varepsilon_{k-1})^2 + (2p - 1)x^2$$

is not less than $\frac{1}{2}(p^{d+1}+1)$.

12. LEMMA L. The number c_i in (5) satisfies the congruences

$$c_i + q \equiv 0 \pmod{p^{d+1}},$$

which implies in particular that $c_i \ge q + 3$ (for every i).

Proof. On account of (5) we have

$$c_i = \frac{mq}{m+1} \left(1 - \frac{1}{m} + \sum_{\mathbf{Z}} \frac{\mathbf{Z}(J)^2 \mathbf{Z}(G_i)}{\mathbf{Z}(1)} \right),$$

where Z ranges over all the irreducible characters of \mathfrak{G} distinct from E, B, and \mathbf{A}_i $(i = 1, \dots, \frac{1}{2}(q-1))$. Then by Lemma K we obtain

$$c_i \equiv c_i(m+1) \equiv -q \pmod{p^{d+1}}.$$

Hence by Lemma J we obtain $c_i + \frac{1}{2}(p^d - 1) = ap^{d+1}$, where a is a natural number. Therefore we have

$$c_i \ge p^{d+1} - \frac{1}{2}(p^d - 1) \ge \frac{1}{2}(p^d + 5).$$

Now we can derive a required contradiction as follows. From (4) we have the following equation

(12)
$$\frac{1}{2}(m-1)(q+1) = c_1 l_1 + \cdots + c_n l_n,$$

where $l_i mq$ is the number of elements in the class $\Re_i (i = 1, \dots, n)$. On the other hand, we have from the decomposition $\mathfrak{G} = \Gamma_0 + \Gamma_1 + \Gamma_2 + \{1\}$ the following equation

(13)
$$\frac{1}{2}(m+1) - (m-1)/2q = l_1 + \cdots + l_n$$

Since $c_i \ge q + 3$ for every *i* by Lemma L, we obtain from (12) and (13) the following inequality

$$\frac{1}{2}(m-1)(q+1) \ge (q+3)(\frac{1}{2}(m+1) - (m-1)/2q).$$

This implies that

$$0 \ge (q-3)m + 2q^2 + 5q + 3.$$

This is a contradiction.

BIBLIOGRAPHY

- 1. R. BRAUER AND W. FEIT, On the number of irreducible characters of finite groups in a given block, Proc. Nat. Acad. Sci. U.S.A., vol. 45 (1959), pp. 361-365.
- 2. R. BRAUER AND K. FOWLER, On groups of even order, Ann. of Math. (2), vol. 62 (1955), pp. 565-583.
- 3. R. BRAUER AND C. NESBITT, On the modular characters of groups, Ann. of Math. (2), vol. 42 (1941), pp. 556–590.
- 4. W. FEIT, On a class of doubly transitive permutation groups, Illinois J. Math., vol. 4 (1960), pp. 170–186.
- W. FEIT, M. HALL, JR., AND J. G. THOMPSON, Finite groups in which the centralizer of any non-identity element is nilpotent, Math. Zeitschrift, vol. 74 (1960), pp. 1-17.
- M. SUZUKI, On finite groups with cyclic Sylow subgroups for all odd primes, Amer. J. Math., vol. 77 (1955), pp. 657-691.

UNIVERSITY OF CHICAGO CHICAGO, ILLINOIS NAGOYA UNIVERSITY NAGOYA-CHIKUSA, JAPAN