THE DIMENSION OF THE SET OF ZEROS AND THE GRAPH OF A SYMMETRIC STABLE PROCESS

BY
R. M. Blumenthal and R. K. Getoor

1. Introduction

Let $\{X(t) ; t \geqq 0\}$ be the one-dimensional symmetric stable process of index α with $0<\alpha \leqq 2$, that is, a process with stationary independent increments whose continuous transition density $f(t, x-y)$ is given by

$$
\begin{equation*}
f(t, x)=(2 \pi)^{-1} \int_{-\infty}^{\infty} e^{-t|\xi| \alpha} e^{i x \xi} d \xi . \tag{1.1}
\end{equation*}
$$

We assume throughout this paper that $X(0)=0$ and that the sample functions are normalized to be right continuous and have left-hand limits everywhere. Furthermore we assume that $\{X(t) ; t \geqq 0\}$ is defined over some basic probability space $(\Omega, \mathfrak{F}, P)$ where \mathfrak{F} is complete relative to P. Let

$$
\begin{equation*}
Z(\omega)=\{t>0: X(t, \omega)=0 \quad \text { or } \quad X(t-, \omega)=0\} . \tag{1.2}
\end{equation*}
$$

It is known, e.g. [8], that if $0<\alpha \leqq 1$, then $Z(\omega)$ is empty for almost all ω. Our first result is the following theorem.

Theorem A. $P[\operatorname{dim} Z(\omega)=1-1 / \alpha]=1$ if $1<\alpha \leqq 2$, where "dim" is the usual Hausdorff-Besicovitch dimension (see Section 2).

If $Z^{\prime}(\omega)=\{t: X(t, \omega)=0\}$, then since for fixed ω the sets $Z(\omega)$ and $Z^{\prime}(\omega)$ differ at most by a countable number of points, we have the following corollary to Theorem A.

Corollary. $\quad P\left[\operatorname{dim} Z^{\prime}(\omega)=1-1 / \alpha\right]=1$ if $1<\alpha \leqq 2$.
If $\alpha=2$, our process is essentially Brownian motion, and in this case the above result is due to S. J. Taylor [9].

Our second result gives the dimension of the graph of $X(t)$.
Theorem B. Let $G(\omega)=\{(t, X(t, \omega)): t \geqq 0\}$; then
(i) $P[\operatorname{dim} G(\omega)=2-1 / \alpha]=1$ if $1<\alpha \leqq 2$
(ii) $P[\operatorname{dim} G(\omega)=1]=1 \quad$ if $0<\alpha \leqq 1$.

Again in the case $\alpha=2$ this result is due to S. J. Taylor [9]. However, there seems to be a lapse in his proof. In particular the equation in line (-6) on page 270 is incorrect, but this is easily corrected.

In Section 2, following Lévy [6], we define the concept of stochastic equivalence for random sets and show that if two random sets A and B are stochastically equivalent, then for each $\beta>0$ the β-dimensional Hausdorff measures

[^0]$\Lambda^{\beta}(A)$ and $\Lambda^{\beta}(B)$ are random variables with the same distribution. In Section 3 we prove that Z and the range of the stable subordinator of index $1-1 / \alpha$ (defined in Section 3) are stochastically equivalent. Theorem A then follows from known results on the dimension of the range of a stable subordinator [2].

Finally in Section 4 we give a proof of Theorem B.

2. Random sets

Given a probability space (Ω, \mathcal{F}, P) where \mathfrak{F} is complete relative to P, and a function A from Ω to subsets of the real line, R, we say that A is a random set if
(i) $A(\omega)$ is compact for almost all ω,
(ii) $\quad\{\omega: A(\omega) \subset E\}$ is in \mathfrak{F} for all open subsets E of R.

Two random sets A and B (not necessarily defined over the same probability space) are stochastically equivalent if for every set E that is a finite union of open intervals

$$
\begin{equation*}
P\{\omega: A(\omega) \subset E\}=P\{\omega: B(\omega) \subset E\} \tag{2.1}
\end{equation*}
$$

These definitions were suggested by Lévy [6, Ch. VI].
We now recall the definition of Hausdorff measure and dimension. Given $\alpha>0, \varepsilon>0$, and K a subset of R, we set $\Lambda_{\varepsilon}^{\alpha}(K)=\inf \sum\left|I_{j}\right|^{\alpha}$ where the infimum is taken over all covers of K by a countable union of intervals, I_{j}, none of which has a diameter exceeding ε. Here $|B|$ denotes the diameter of the set B. Moreover $\Lambda^{\alpha}(K)=\lim _{\varepsilon \rightarrow 0} \Lambda_{\varepsilon}^{\alpha}(K)$ exists, and

$$
\begin{equation*}
\inf \left\{\alpha>0: \Lambda^{\alpha}(K)=0\right\}=\sup \left\{\alpha \geqq 0: \Lambda^{\alpha}(K)=\infty\right\} \tag{2.2}
\end{equation*}
$$

The common value of the infimum and supremum in (2.2) is called the Hausdorff dimension of K and is written $\operatorname{dim} K$. Clearly if K is compact, we may compute $\Lambda_{\varepsilon}^{\alpha}(K)$ by using only those covers of K which are finite unions of open intervals with rational endpoints.

The following lemma is basic.
Lemma 2.1. If A is a random set, then $\Lambda^{\alpha}(A)$ is a random variable (possibly taking on the value $+\infty$). If A and B are stochastically equivalent random sets, then $\Lambda^{\alpha}(A)$ and $\Lambda^{\alpha}(B)$ have the same distribution.

Proof. Using a convenient, although incorrect, notation we will let E denote a generic finite collection I_{1}, \cdots, I_{n} of open intervals with rational endpoints and also let E denote the (open) set $\bigcup_{j=1}^{n} I_{j}$. We define $d(E)=\max _{j \leqq n}\left|I_{j}\right|$ and $S_{\alpha}(E)=\sum_{j=1}^{n}\left|I_{j}\right|^{\alpha}$. For a fixed ω and $b \geqq 0$ we have $\Lambda_{\varepsilon}^{\alpha}(A(\omega))<b$ if and only if there is an E with $d(E) \leqq \varepsilon$ and $S_{\alpha}(E)<b$ such that $A(\omega) \subset E$. Let E_{1}, E_{2}, \cdots be an enumeration of those E 's having the property that $d(E) \leqq \varepsilon$ and $S_{\alpha}(E)<b$. If $\Delta_{i}=\left\{\omega: A(\omega) \subset E_{i}\right\}$, then

$$
\left\{\omega: \Lambda_{\varepsilon}^{\alpha}(A)<b\right\}=\cup_{i=1}^{\infty} \Delta_{i}
$$

By the definition of random set each Δ_{i} is in \mathfrak{F}, and hence $\Lambda_{\varepsilon}^{\alpha}(A)$ is a random variable. Letting $\varepsilon \rightarrow 0$ through a sequence of values yields the first assertion of Lemma 2.1.

Moreover we have

$$
\begin{equation*}
P\left\{\omega: \Lambda_{\varepsilon}^{\alpha}(A)<b\right\}=\lim _{n \rightarrow \infty} P\left(\bigcup_{i=1}^{n} \Delta_{i}\right) \tag{2.3}
\end{equation*}
$$

and for a fixed n the inclusion-exclusion formula implies that

$$
P\left(\cup_{i=1}^{n} \Delta_{i}\right)=\sum P\left(\Delta_{i}\right)-\sum P\left(\Delta_{i} \cap \Delta_{j}\right)+\sum P\left(\Delta_{i} \cap \Delta_{j} \cap \Delta_{k}\right)-\cdots
$$

Looking at a typical intersection we see that

$$
P\left(\Delta_{i} \cap \cdots \cap \Delta_{k}\right)=P\left\{\omega: A(\omega) \subset E_{i} \cap \cdots \cap E_{k}\right\}
$$

Thus if A and B are stochastically equivalent random sets, the left side of (2.3) is unchanged if A is replaced by B. Hence $\Lambda_{\varepsilon}^{\alpha}(A)$ and $\Lambda_{\varepsilon}^{\alpha}(B)$ have the same distribution. Again letting $\varepsilon \rightarrow 0$ through a sequence of values yields the second assertion of Lemma 2.1.

3. Proof of Theorem A

Let $\{T(t) ; t \geqq 0\}$ be the stable subordinator of index $\beta, 0<\beta<1$, that is, a process with stationary independent and positive increments whose transition density $g(t, u)$ is given by

$$
\begin{equation*}
e^{-t s_{s} \beta}=\int_{0}^{\infty} e^{-s u} g(t, u) d u \tag{3.1}
\end{equation*}
$$

We assume that $T(0)=0$, and that the sample functions of T are normalized to be right continuous and have left-hand limits everywhere. The sample functions of T are strictly monotone increasing with probability one. As in Section $1, X=\{X(t) ; t \geqq 0\}$ is the symmetric stable process of index α, and we will assume throughout this section that $1<\alpha \leqq 2$. Moreover we will assume that the index β of our stable subordinator T is given by $\beta=1-1 / \alpha$.

Given a subset E of $[0, \infty)$ we say that X touches a in E if $X(t)=a$ or $X(t-)=a$ for some t in E, and we say that T touches E if $T(t)$ is in E or $T(t-)$ is in E for some $t \geqq 0$.

Lemma 3.1. If $I=[a, b]$ where $0<a<b<\infty$, then $P[X$ touches 0 in $I]=P[T$ touches $I]$

$$
=[\Gamma(1 / \alpha) \Gamma(1-1 / \alpha)]^{-1} \int_{0}^{(b-a) / b} u^{1 / \alpha-1}(1+u)^{-1} d u
$$

Proof. We begin with the process X. Let $h(t, x)$ be the probability that a stable process of index $\alpha, 1<\alpha \leqq 2$, starting from x touches 0 in $[0, t]$. Kac [5, Equation (5.4)] has shown that

$$
\begin{equation*}
\int_{0}^{\infty} e^{-s t} h(t, x) d t=\left[s K_{s}(0)\right]^{-1} K_{s}(x) \tag{3.2}
\end{equation*}
$$

where

$$
\begin{equation*}
K_{s}(x)=(2 \pi)^{-1} \int_{-\infty}^{\infty}\left(s+|\xi|^{\alpha}\right)^{-1} \cos x \xi d \xi \tag{3.3}
\end{equation*}
$$

Thus if $p(a, t)$ denotes the probability that X (starting from 0) touches 0 in [a, t] we have for $t>a$

$$
\begin{equation*}
p(a, t)=\int_{-\infty}^{\infty} f(a, x) h(t-a, x) d x \tag{3.4}
\end{equation*}
$$

where f is the transition density of X defined in (1.1). If we set $p(a, t)=0$ for $t \leqq a$ and take Laplace transforms on t, we obtain

$$
\int_{0}^{\infty} e^{-s t} p(a, t) d t=\left[2 \pi s K_{s}(0)\right]^{-1} e^{-s a} \int_{-\infty}^{\infty} f(a, x) d x \int_{-\infty}^{\infty} \frac{\cos \xi x d \xi}{s+|\xi|^{\alpha}}
$$

and the right-hand side, after a change of integration order and a change of variable, becomes

$$
\begin{equation*}
b_{\alpha} \int_{0}^{\infty}\left[s^{-1} e^{-s a(u+1)}\right] u^{1 / \alpha-1}(1+u)^{-1} d u \tag{3.5}
\end{equation*}
$$

where

$$
\begin{equation*}
b_{\alpha}=[\Gamma(1 / \alpha) \Gamma(1-1 / \alpha)]^{-1} \tag{3.6}
\end{equation*}
$$

The term in square brackets in (3.5) is the Laplace transform of the function which is 1 on $[a(u+1), \infty)$ and 0 elsewhere. Thus

$$
\begin{equation*}
p(a, t)=b_{\alpha} \int_{0}^{(t-a) / a} u^{1 / \alpha-1}(1+u)^{-1} d u \tag{3.7}
\end{equation*}
$$

provided $t>a$. If $t=b$, this is one half of the assertion of Lemma 3.1.
We turn our attention now to the subordinator T of index $\beta=1-1 / \alpha$. Let $S_{t}=\inf \{\tau: T(\tau) \geqq t\}$, and let $F_{t}(A)$ be the probability that $T\left(S_{t}\right)$ is in A. Since $P\{T(\tau-)=a$ for some $\tau \geqq 0\}=0$ for each fixed a, it follows that

$$
P\{T \text { touches } I\}=P\left\{T\left(S_{a}\right) \leqq b\right\}=F_{a}([a, b])
$$

From the fact that $T(\tau)$ has the same distribution as $\tau^{1 / \beta} T(1)$, it follows easily that $E\left(S_{t}\right)=c t^{\beta}$ where c is a positive constant and E is the expectation operator. So the usual first passage time relationship (i.e., the strong Markov property) implies that

$$
(t+a)^{\beta}=a^{\beta}+\int_{a}^{a+t}(a+t-x)^{\beta} F_{a}(d x), \quad t>a
$$

This is an expression of convolution type, and so we can find F_{a} by taking Laplace transforms. The result is

$$
F_{a}([a, t])=[\Gamma(\beta) \Gamma(1-\beta)]^{-1} a^{\beta} \int_{a}^{t} x^{-1}(x-a)^{-\beta} d x
$$

Making the change of variable $u=a^{-1}(x-a)$, replacing t by b, and recalling that $\beta=1-1 / \alpha$, we find that

$$
\begin{equation*}
F_{a}([a, b])=p(a, b) \tag{3.8}
\end{equation*}
$$

and thus the proof of Lemma 3.1 is complete.
Lemma 3.2. If D is a finite disjoint union of closed intervals bounded away from 0, then

$$
P[X \text { touches } 0 \text { in } D]=P[T \text { touches } D] .
$$

Proof. By the inclusion-exclusion formula it suffices to show that $P\left[\cap_{j=1}^{n}\left\{X\right.\right.$ touches 0 in $\left.\left.\left[a_{j}, b_{j}\right]\right\}\right]=P\left[\bigcap_{j=1}^{n}\left\{T\right.\right.$ touches $\left.\left.\left[a_{j}, b_{j}\right]\right\}\right]$,
where $0<a_{1}<b_{1}<a_{2}<\cdots<b_{n}$. If $a>0$, let

$$
R_{a}=\inf \{t \geqq a: X(t)=0 \quad \text { or } \quad X(t-)=0\}
$$

(or $+\infty$ if there are no such t); then $P\left\{R_{a} \leqq t\right\}=p(a, t)$. Hence $P\left\{R_{a}<\infty\right\}=1$. If $R_{a}<\infty$, it follows from the discussion in Hunt [4, p. 54] that $X\left(R_{a}\right)=0$ with probability one. Thus, using the strong Markov property repeatedly, we have

$$
\begin{align*}
& P\left[\bigcap_{j=1}^{n}\left\{X \text { touches } 0 \text { in }\left[a_{j}, b_{j}\right]\right\}\right]=\int_{a_{1}}^{b_{1}} p\left(a_{1}, d \tau_{1}\right) \\
& \quad \int_{a_{2}-\tau_{1}}^{b_{2}-\tau_{1}} p\left(a_{2}-\tau_{1}, d \tau_{2}\right) \cdots \int_{a_{n-1}-\tau_{n-2}}^{b_{n-1}-\tau_{n-1}} p\left(a_{n-1}-\tau_{n-2}, d \tau_{n-1}\right) \tag{3.9}\\
& \\
& \quad \cdot p\left(a_{n}-\tau_{n-1}, b_{n}-\tau_{n-1}\right) .
\end{align*}
$$

The same argument with X replaced by T and R_{a} by S_{a} shows that

$$
\begin{align*}
& P\left[\bigcap_{j=1}^{n}\left\{T \text { touches }\left[a_{j}, b_{j}\right]\right\}\right]=\int_{a_{1}}^{b_{1}} F_{a_{1}}\left(d \tau_{1}\right) \\
& \qquad \int_{a_{2}-\tau_{1}}^{b_{2}-\tau_{1}} F_{a_{2}-\tau_{1}}\left(d \tau_{2}\right) \cdots \int_{a_{n-1}-\tau_{n-2}}^{b_{n-1}-\tau_{n-2}} F_{a_{n-1}-\tau_{n-2}}\left(d \tau_{n-1}\right) \tag{3.10}\\
& \quad \cdot F_{a_{n}-\tau_{n-1}}\left(\left[a_{n}-\tau_{n-1}, b_{n}-\tau_{n-1}\right]\right) .
\end{align*}
$$

But Lemma 3.1, or more exactly (3.8), implies that the right-hand sides of (3.9) and (3.10) are equal, and hence Lemma 3.2 is established.

We are now ready to prove Theorem A.
Proof of Theorem A. Let J be the closed interval $[c, d]$ with $0<c<d<\infty$. We define

$$
\begin{aligned}
& A(\omega)=\{t \in J: X(t, \omega)=0 \text { or } X(t-, \omega)=0\} \\
& B(\omega)=\{t \in J: T(\tau, \omega) \text { touches } t\}
\end{aligned}
$$

Both $A(\omega)$ and $B(\omega)$ are compact for almost all ω since the sample functions of X and T are right continuous and have left-hand limits. For a moment
let Y be the two-dimensional process $Y(t)=(t, X(t))$. If E is an open set in R, let $D=J-E$, and define

$$
Q=\inf \{t: Y(t) \epsilon D \times\{0\} \quad \text { or } \quad Y(t-) \epsilon D \times\{0\}\}
$$

or $Q=\infty$ if there are no such t. Hunt [4, pp. 54-55] has shown that Q is a random variable. Since $\{Q=\infty\}=\{A \subset E\}$, it follows that A is a random set. A similar argument shows that B is a random set.

We next show that A and B are stochastically equivalent. To this end let E be a finite union of open intervals; then $D=J-E$ is a finite disjoint union of closed intervals bounded away from 0 since $c>0$. Using Lemma 3.2 we have
$P(A \subset E)=1-P[X$ touches 0 in $D]=1-P[T$ touches $D]=P[B \subset E]$.
Thus A and B are stochastically equivalent, and therefore Lemma 2.1 implies that $\Lambda^{\theta}(A)$ and $\Lambda^{\theta}(B)$ have the same distribution for each fixed $\theta>0$. If we let

$$
Z(\omega)=\{t>0: X(t, \omega)=0 \quad \text { or } \quad X(t-, \omega)=0\}
$$

and

$$
R(\omega)=\{t>0: T(\tau, \omega) \text { touches } t\}
$$

then as $c \rightarrow 0$ and $d \rightarrow \infty$ the set A swells out to Z, and B to R. Thus $\Lambda^{\theta}(Z)$ and $\Lambda^{\theta}(R)$ have the same distribution. By the right continuity of the sample functions the sets $R(\omega)$ and $T([0, \infty), \omega)$ differ by at most a countable set for each fixed ω, and so these sets have the same dimension. In [2, Theorem 3.2] we showed that $\operatorname{dim} T([0, \infty), \omega)=\beta=1-1 / \alpha$ for almost all ω. (Actually we showed $\operatorname{dim} T([0,1], \omega)=\beta$ for almost all ω, but clearly this implies the preceding statement.) Combining this with the fact that for each fixed $\theta>0$ the random variables $\Lambda^{\theta}(Z)$ and $\Lambda^{\theta}(R)$ have the same distribution yields

$$
P[\operatorname{dim} Z=1-1 / \alpha]=1
$$

Thus Theorem A is established.

4. Proof of Theorem B

Let us consider first the case $1<\alpha \leqq 2$. If we define

$$
T_{x}(\omega)=\inf \{t \geqq 0: X(t, \omega)=x \quad \text { or } \quad X(t-, \omega)=x\}
$$

then it follows from the results of Kac [5] that $P\left[T_{x}<\infty\right.$] $=1$, and from those of Hunt [4, pp. 54, 55] that $X\left(T_{x}\right)=x$ with probability one. Combining these facts with the strong Markov property and the corollary to Theorem A it follows that if we define

$$
\begin{equation*}
Z_{x}(\omega)=\{t: X(t, \omega)=x\} \tag{4.1}
\end{equation*}
$$

then for $1<\alpha \leqq 2$

$$
\begin{equation*}
P\left[\operatorname{dim} Z_{x}(\omega)=1-1 / \alpha\right]=1 \tag{4.2}
\end{equation*}
$$

Given a probability measure μ on $ß(R)$, the Borel sets of R, the symmetric stable process of index α with initial distribution μ can be realized as $\{x+X(t, \omega) ; t \geqq 0\}$ over the probability space $(R \times \Omega, \mathbb{B}(R) \times \mathfrak{F}, \mu \times P)$ where $X(t, \omega) ; t \geqq 0\}$ is the symmetric stable process of index α with $X(0)=0$ defined over (Ω, \mathcal{F}, P). Let us put $Y(t,(x, \omega))=x+X(t, \omega)$ for the moment. The measurability discussion in the proof of Theorem A, which depended only on the sample function properties and the regularity of the transition probabilities, implies that

$$
\Delta=\{(x, \omega): \operatorname{dim}\{t: Y(t,(x, \omega))=0\}=1-1 / \alpha\}
$$

is measurable relative to the completion of $\mathfrak{B}(R) \times \mathfrak{F}$ with respect to $\mu \times P$ The set $\Delta_{-x}=\{\omega:(-x, \omega) \in \Delta\}$ is just $\left\{\omega: \operatorname{dim} Z_{x}(\omega)=1-1 / \alpha\right\}$, so by Fubini's theorem and (4.2) the set Δ has probability one. The probability measure meant is, of course, the completion of $\mu \times P$. Again by Fubini's theorem there is a set $\Omega_{0} \in \mathcal{F}$ with $P\left(\Omega_{0}\right)=0$ such that if $\omega \notin \Omega_{0}$ then the set $\Delta^{\omega}=\{x:(x, \omega) \in \Delta\}$ is in the completion of $\Theta(R)$ with respect to μ and $\mu\left(\Delta^{\omega}\right)=1$. (We are always assuming that \mathfrak{F} is complete relative to P.) Finally taking μ to be equivalent (in the sense of absolute continuity) to Lebesgue measure we have that for all $\omega \notin \Omega_{0}$, where $P\left(\Omega_{0}\right)=0$, $\operatorname{dim} Z_{x}(\omega)=1-1 / \alpha$ for almost all (Lebesgue measure) x.
J. M. Marstrand [7] has shown that if E is a subset of the (t, x) plane such that for every point x in a given linear set A we have $\Lambda^{\beta}\{t:(t, x) \epsilon E\}>p$, then $\Lambda^{\beta+\lambda}(E) \geqq k p \Lambda^{\lambda}(A)$, where k is a positive constant. Combining Marstrand's theorem with the observations following (4.2) we easily find that

$$
\begin{equation*}
P(\operatorname{dim} G(\omega) \geqq 2-1 / \alpha]=1 \tag{4.3}
\end{equation*}
$$

provided $1<\alpha \leqq 2$.
We now adapt an argument of Besicovitch and Ursell [1] to prove the opposite inequality. For each $\varepsilon>0$ define as follows

$$
M_{k \varepsilon}=\sup _{0 \leqq t \leqq \varepsilon}|X(t+(k-1) \varepsilon)-X((k-1) \varepsilon)|, \quad k=1,2, \cdots
$$

Since the process X has stationary independent increments, the random variables $M_{1 \varepsilon}, M_{2 \varepsilon}, \cdots$ are independent and identically distributed. Moreover, since $X(r t)$ has the same distribution as $r^{1 / \alpha} X(t)$ for any $r>0$, we easily see that $M_{1 \varepsilon}$ has the same distribution as $\varepsilon^{1 / \alpha} M_{11}$. If $R(k, \varepsilon)$ is a rectangle with center at $((k-1) \varepsilon, X[(k-1) \varepsilon])$ and with sides 2ε and $2 M_{k \varepsilon}$, then clearly $R(1, \varepsilon), \cdots, R\left(\left[\varepsilon^{-1}\right], \varepsilon\right)$ is a cover of

$$
G(\omega ; 0,1)=\{(t, X(t, \omega)): 0 \leqq t \leqq 1\}
$$

for each ω. Here $\left[\varepsilon^{-1}\right]$ is the greatest integer in ε^{-1}. However, each of the rectangles $R(k, \varepsilon)$ can be covered by $\left[\varepsilon^{-1} M_{k \varepsilon}\right]+1$ squares of side 2ε. Let us denote this cover of $G(\omega ; 0,1)$ by squares of side 2ε by $E(\varepsilon)$. If $E=\left(E_{1}, \cdots, E_{n}\right)$ is any finite cover of $G(\omega ; 0,1)$ and $\beta>0$, let

$$
S_{\beta}(E)=\sum_{i=1}^{n}\left|E_{i}\right|^{\beta} .
$$

Thus if $\beta>0$ we have

$$
\begin{align*}
S_{\beta}[E(\varepsilon)] & =\sum_{k=1}^{\left[\varepsilon^{-1}\right]}\left(\left[\varepsilon^{-1} M_{k \varepsilon}\right]+1\right)(2 \sqrt{2} \varepsilon)^{\beta} \\
& \leqq C \sum_{k=1}^{[\varepsilon-1]} M_{k \varepsilon} \varepsilon^{\beta-1}+C \varepsilon^{\beta-1} \tag{4.4}
\end{align*}
$$

where C is a positive constant depending only on β. If $\beta>2-1 / \alpha>1$, then the second term above goes to zero as $\varepsilon \rightarrow 0$. On the other hand if we let $\varepsilon=n^{-1}$, then for any $x>0$ we have

$$
P\left\{\sum_{k=1}^{n} \varepsilon^{\beta-1} M_{k \varepsilon} \leqq x\right\}=P\left\{n^{1-\beta-1 / \alpha}\left[M_{11}+\cdots+M_{n 1}\right] \leqq x\right\}
$$

Thus if $\beta>2-1 / \alpha$, and if we assume for the moment that M_{11} has a finite expectation, the weak law of large numbers implies that the last displayed expression approaches one as $n \rightarrow \infty$. Therefore $S_{\beta}\left[E\left(n^{-1}\right)\right] \rightarrow 0$ in probability, and hence a subsequence approaches zero with probability one provided $\beta>2-1 / \alpha$. This proves that

$$
\begin{equation*}
P[\operatorname{dim} G(\omega ; 0,1) \leqq 2-1 / \alpha]=1 \tag{4.5}
\end{equation*}
$$

subject to the finiteness of the expectation of M_{11}. Concerning this: pick a $C>0$ such that for every $t \leqq 1, P\{|X(t)-X(1)| \geqq C\} \leqq \frac{1}{2}$. This can be done since almost all sample functions of X are bounded on bounded intervals. A standard argument then shows that for every $\lambda>C$

$$
P\left[M_{11} \geqq 2 \lambda\right] \leqq 2 P\{|X(1)| \geqq \lambda\}
$$

But $E\{|X(1)|\}<\infty$ since $\alpha>1$, and hence $E\left(M_{11}\right)<\infty$. Clearly (4.3) and (4.5) taken together yield Theorem B (i).

Finally we consider the case $0<\alpha \leqq 1$. Recall that if $f:[0,1] \rightarrow R^{N}$, then $\beta-\operatorname{var} f=\sup \sum_{j=0}^{n-1}\left|f\left(t_{j+1}\right)-f\left(t_{j}\right)\right|^{\beta}$, where the supremum is taken over all finite subdivisions $0 \leqq t_{0}<t_{1}<\cdots<t_{n}=1$ of [0, 1]. If $Y(t)$ denotes the two-dimensional process $(t, X(t))$, then $Y([0,1], \omega)=G(\omega ; 0,1)$. Clearly we have

$$
\beta-\operatorname{var} Y(\cdot, \omega) \leqq 2^{\beta-1}[\beta-\operatorname{var} X(\cdot, \omega)+\beta-\operatorname{var} h]
$$

where $h(t)=t$. If $\beta>1$, then $\beta-\operatorname{var} h$ is finite, and if in addition $\alpha \leqq 1$, Theorem 4.1 of [2] implies that $\beta-\operatorname{var} X(\cdot, \omega)$ is finite for almost all ω. Thus applying Theorem 8.4 of [3] we find that $\Lambda^{\beta} Y([0,1], \omega)<\infty$ for almost all ω provided $\beta>1$. Therefore

$$
\begin{equation*}
P[\operatorname{dim} G(\omega ; 0,1) \leqq 1]=1 \tag{4.6}
\end{equation*}
$$

To prove the opposite inequality consider $r(t, \omega)=\left[X(t, \omega)^{2}+t^{2}\right]^{1 / 2}$; then

$$
P[r(t) \leqq u]=P\left[X^{2}(t) \leqq u^{2}-t^{2}\right]
$$

It follows easily that the random variable $r(t)$ has a probability density $g_{t}(u)$ given by

$$
\begin{aligned}
g_{t}(u) & =2 t^{-1 / \alpha} u\left(u^{2}-t^{2}\right)^{-1 / 2} f\left(1, t^{-1 / \alpha}\left(u^{2}-t^{2}\right)^{1 / 2}\right), & & u>t \\
& =0, & & u \leqq t
\end{aligned}
$$

where $f(1, x)$ is the probability density of $X(1)$ given by (1.1). Therefore if $\beta>0$,

$$
\begin{aligned}
E\left\{r(t)^{-\beta}\right\} & =\int_{0}^{\infty} u^{-\beta} g_{t}(u) d u \\
& =2 t^{-\beta / \alpha} \int_{0}^{\infty}\left(t^{2-2 / \alpha}+x^{2}\right)^{-\beta / 2} f(1, x) d x
\end{aligned}
$$

where we have made the change of variable $x=t^{-1 / \alpha}\left(u^{2}-t^{2}\right)^{1 / 2}$. But $t^{2-2 / \alpha}+x^{2} \geqq t^{2-2 / \alpha}$ for all x, and thus we obtain

$$
\begin{equation*}
E\left\{r(t)^{-\beta}\right\} \leqq C t^{-\beta} \tag{4.7}
\end{equation*}
$$

where C is a positive constant. Since $t^{-\beta}$ is integrable near $t=0$ if $\beta<1$, a standard argument using capacity (see [2], [3], or [9]) yields

$$
\begin{equation*}
P[\operatorname{dim} Y([0,1], \omega) \geqq 1]=1 \tag{4.8}
\end{equation*}
$$

The reasoning leading to (4.7) is that of Taylor [9].
Combining (4.6) and (4.8) we find

$$
\begin{equation*}
P[\operatorname{dim} G(\omega ; 0,1)=1]=1 \tag{4.9}
\end{equation*}
$$

and clearly this implies Theorem B (ii).

References

1. A. S. Besicovitch and H. D. Ursell, Sets of fractional dimensions (V): On dimensional numbers of some continuous curves, J. London Math. Soc., vol. 12 (1937), pp. 18-25.
2. R. M. Blumenthal and R. K. Getoor, Some theorems on stable processes, Trans. Amer. Math. Soc., vol. 95 (1960), pp. 263-273.
3. --, Sample functions of stochastic processes with stationary independent increments, J. Math. Mech., vol. 10 (1961), pp. 493-516.
4. G. A. Hunt, Markoff processes and potentials I, Illinois J. Math., vol. 1 (1957), pp. 44-93.
5. M. Kac, Some remarks on stable processes, Publ. Inst. Statist. Univ. Paris, vol. 6 (1957), pp. 303-306.
6. Paul Levy, Processus stochastiques et mouvement brownien; suivi d'une note de M. Loève, Paris, Gauthier-Villars, 1948.
7. J. M. Marstrand, The dimension of Cartesian product sets, Proc. Cambridge Philos. Soc., vol. 50 (1954), pp. 198-202.
8. H. P. McKean, Jr., Sample functions of stable processes, Ann. of Math. (2), vol. 61 (1955), pp. 564-579.
9. S. J. Taylor, The α-dimensional measure of the graph and the set of zeros of a Brownian path, Proc. Cambridge Philos. Soc., vol. 51 (1955), pp. 265-274.

University of Washington
Seattle, Washington

[^0]: Received March 13, 1961.

