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1. Introduction

Let {X(); -> 0} be the one-dimensional symmetric stable process of
index a with 0 < _<- 2, that is, a process with stationary independent incre-
ments whose continuous transition density f(t, x y) is given by

(1.1) f(, :c) (2-)- e-lle d.

We assume throughout ghis paper tha X(O) 0 and that the sample func-
tions are normalized to be right continuous and have left-hand limigs every-
where. Furghermore we assume ghag {X() -> 0} is defined over some basic
probability space (f, Y, P) where y is complete relative to P. Let

(1.2) Z(o) {t > O’X(t, o) 0 or X(t--, w) 0}.

It is known, e.g. [8], that if 0 < a -<_ 1, then Z() is empty for almost all .
Our first result is the following theorem.

TnolnA. P[dimZ(o) 1 l/a] 1if1 < a <-_ 2, where "dim"
is the usual Hausdorff-Besicovitch dimension (see Section 2).

If Z’() {t’X(t, 0) 0}, then since for fixed w the sets Z(o) and Z’(w)
differ at most by a countable number of points, we have the following corollary
to Theorem A.

COIOLLn. P[dimZ’(o) 1-- l/a] 1if1 < a <= 2.

If a 2, our process is essentially Brownian motion, and in this case the
above result is due to S. J. Taylor [9].
Our second result gives the dimension of the graph of X(t).

TnnonnM B. Let G() (t, X(t, o) "t >= O} then
(i) P[dimG(o) 2- l/a] 1 if 1 < a <= 2
(ii) P[dimG() 1] 1 if 0 < a <- 1.

Again in the case a 2 this result is due to S. J. Taylor [9]. However,
there seems to be a lapse in his proof. In particular the equation in line
(-6) on page 270 is incorrect, but this is easily corrected.
In Section 2, following Lvy [6], we define the concept of stochastic equiva-

lence for random sets and show that if two random sets A and B are stochas-
tically equivalent, then for each/ > 0 the -dimensional Hausdorff measures
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AS(A) and AS(B) are random variables with the same distribution. In
Section 3 we prove that Z and the range of the stable subordinator of index
1 1/a (defined in Section 3) are stochastically equivalent. Theorem A
then follows from known results on the dimension of the range of a stable sub-
ordinator [2].

Finally in Section 4 we give a proof of Theorem B.

2. Random sets

Given a probability space (, if, P) where ff is complete relative to P,
and a function A from 2 to subsets of the real line, R, we say that A is a
random set if

(i) A () is compact for almost all ,
(ii) /:A() c E} is in ff for all open subsets E of R.

Two random sets A and B (not necessarily defined over the same probability
space) are stochastically equivalent if for every set E that is a finite union of
open intervals

(2.1) P/:A(o) c E} P/:B() E}.
These definitions were suggested by Ldvy [6, Ch. VII.
We now recall the definition of Hausdorff measure and dimension. Given

a > 0, e > 0, and K a subset of R, we set A(K) inf I" I" where the
infimum is taken over all covers of K by a countable union of intervals, I.,
none of which has a diameter exceeding . Here [B denotes the diameter
of the set B. Moreover A"(K) lim0 A(K) exists, and

(2.2) inf {a > 0:A"(K) 0} sup {a _-> 0:A"(K) }.
The common value of the infimum and supremum in (2.2) is called the Haus-
dorf dimension of K and is written dim K. Clearly if K is compact, we may
compute A(K) by using only those covers of K which are finite unions of
open intervals with rational endpoints.
The following lemma is basic.

LEMMA 2.1. If A is a random set, then A(A) is a random variable (possibly
taking on the value oo). If A and B are stochastically equivalent random sets,
then A A and A B have the same distribution.

Proof. Using a convenient, although incorrect, notation we will let E
denote a generic finite collection I1,..., In of open intervals with ra-
tional endpoints and also let E denote the (open) set (in.__11.. We define
d(E) max._n Ij[ and S,(E) Zjnl /J {a" For a fixed and b _>_ 0 we
have A(A ()) < b if and only if there is an E with d(E) <= e and S,(E) < b
such that A(0) E. Let E, E2, be an enumeration of those E’s
having the property that d E) <_- eand S,(E) < b. If Ai {o:A() E},
then

{:A"(A) < b} U7=1 hi.
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By the definition of random set each/ is in , and hence A’ (A) is a random
variable. Letting --, 0 through a sequence of values yields the first asser-
tion of Lemma 2.1.
Moreover we have

(2.3) P{co:A’(A) < b} lim,_., P(U=I A),

and for a fixed n the inclusion-exclusion formula implies that

P(O;__, P(a ) E P(a + E P(a,,

Looking at a typical intersection we see that

p(a n n Ak) P{co:A(o) c E n n Ek}.

Thus if A and B are stochastically equivalent random sets, the left side of
(2.3) is unchanged if A is replaced by B. Hence A’(A) and A’(B) have
the same distribution. Again letting e -- 0 through a sequence of values
yields the second assertion of Lemma 2.1.

3. Proof of Theorem A
Let {T(t); -> 0} be the stable subordinator of index/, 0 </ < 1, that is,

a process with stationary independent and positive increments whose transi-
tion density g(t, u) is given by

(3.1) e-tS f0 e-8g(t, u) du.

We assume that T(0) 0, and that the sample functions of T are normalized
to be right continuous and have left-hand limits everywhere. The sample
functions of T are strictly monotone increasing with probability one. As in
Section 1, X {X(t) => 0} is the symmetric stable process of index a, and we
will assume throughout this section that 1 < a -< 2. Moreover we will assume
that the index of our stable subordinator T is given by/ 1 1/a.

Given a subset E of [0, we say that X touches a in E if X(t) a or
X(t--) a for some in E, and we say that T touches E if T(t) is in E
or T(t- is in E for some -> 0.

LEMM/k 3.1. If I [a, b] where 0 < a < b < =), then

P[X touches 0 in I] P[T touches I]

[r(1/a)r(1 -l/a)]-1
o

Proof. We begin with the process X. Let h(t, x) be the probability that
a stable process of index a, 1 < a -< 2, starting from x touches 0 in [0, t].
Kac [5, Equation (5.4)] has shown that

(3.2) f e-8th(t, x) dt [sK,(O)]-Zgs(x),
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where

(3.3) K.(x) / I 1") cos

Thus if p(a, t) denotes the probability that X (starting from 0) touches 0 in
[a, t] we have for > a

(3.4) p(a, t) f(a, x)h(t a, x) dx,

where f is the transition density of X defined in (1.1). If we set p(a, t) 0
for -< a and take Laplace transforms on t, we obtain

fo e-Stp(a, t) dt [2-sKs(O)]-le f(a, x) dx cos x d

and the right-hand side, after a change of integration order and a change of
variable, becomes

(3.5)

-where

(3.6)

b, fo [8--1e--Sa(u+l)]ul/-l(1 + u)-I du,

The term in square brackets in (3.5) is the Laplace transform of the function
which is 1 on [a(u -t- 1), and 0 elsewhere. Thus

t-a)/a

(3.7) p(a, t) b, ul/"-1(1 + u du

provided > a. If b, this is one half of the assertion of Lemma 3.1.
We turn our attention now to the subordinator T of index 1 1/a.

Let St inf {r:T(r) _>- t}, and let Ft(A) be the probability that T(St) is
in A. Since P/T(r-) a for some => 0} 0 for each fixed a, it follows
that

P{T touches I} PIT(Sa) <= b} Fa([a, b]).

From the fact that T(r) has the same distribution as rl/T(1), it follows
easily that E(St) ct where c is a positive constant and E is the expectation
operator. So the usual first passage time relationship (i.e., the strong
Markov property) implies that

(t + a) as -[- (a + x)Fa(dx), > a.

This is an expression of convolution type, and so we can find Fa by taking
Laplace transforms. The result is

Fa([a, t]) [r(t)r(1 -/)]-laa x-l(x a)- dx.

b, IF(l/a) F(1 l/a)]-1.
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Making the change of variable u a-l(x a), replacing by b, and recalling
that f 1 l/a, we find that

(3.8) Fa([a, b]) p(a, b),

and thus the proof of Lemm 3.1 is complete.

:LEMMX 3.2. If D is a finite disjoint union of closed interals bounded away
from O, then

P[X touches 0 in D] P[T touches D].

Proof. By the inclusion-exclusion formul it suffices to show that

P[[’I=/X touches 0 in [a., b.]}] P[. {T touches [a., b.]}],

where0 < a < b < a < < b. Ira > 0, let

Ra inf {t => a’X(t) 0 or X(t-) 0}

(or A- if there are no such t); then P{Ra <= t} p(a, t). Hence
P{Ra < 1. If Ra < , it follows from the discussion in Hunt [4, p. 54]
that X(Ra) 0 with probability one. Thus, using the strong Markov
property repeatedly, we have

P[n {X gouehes 0 in [ai, b.]}] p(l,

p(a. r, dry) p(a_ r_, dr_)
a2vl an-- 1--’n--

p(a r,_, b, r_).

The same argument with X replaced by T and R by S, shows that

P[CI__ {T gouehes [a., bl}] F(dr)

Fa-r(d’2) Fa_r--,,_.(d’n-)

fa,.-r,_, ([an ’n--, bn ’n--]).
But Lemma 3.1, or more exactly (3.8), implies that the right-hand sides of
(3.9) and (3.10) are equal, and hence Lemma 3.2 is established.
We are now ready to prove Theorem A.
Proof of Theorem A. Let J be the closed interval [c, d] with 0 < c < d < .

We define
A(o) {teJ:X(t,0) 0 or X(t-,o) 0}

B() e J" T(r, ) touches t}.

Both A () and B() are compact for almost all o since the sample functions
of X and T are right continuous and have left-hand limits. For a moment
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let Y be the two-dimensional process Y(t) (t, X(t)). If E is an open
set in R, let D J E, and define

Q inf/t’Y(t) en X {0} or Y(t-) eD X
or Q if there are no such t. Hunt [4, pp. 54-55] has shown that Q is a
random variable. Since {Q {A c E}, it follows that A is a random
set. A similar argument shows that B is a random set.
We next show that A and B are stochastically equivalent. To this end let

E be a finite union of open intervals; then D J E is a finite disjoint
union of closed intervals bounded away from 0 since c > 0. Using Lemma
3.2 we have

P(A E) 1 P[X touches0 in D] 1- PIT touches D] P[B El.
Thus A and B are stochastically equivalent, and therefore Lemma 2.1 implies
that A(A) and A(B) have the same distribution for each fixed 0 > 0. If
we let

Z(o) {t > O’X(t,o) 0 or X(t-,o) O}
and

R() {t > 0"T(r, ) touches t},

then as c -- 0 and d --. the set A swells out to Z, and B to R. Thus Aa(Z)
and Aa(R) have the same distribution. By the right continuity of the sample
functions the sets R() and T([0, o), o) differ by at most a countable set
for each fixed , and so these sets have the same dimension. In [2, Theorem
3.2] we showed that dim T([0, ), o) 1 1/a for almost all 0. (Ac-
tually we showed dim T([0, 1], o) # for almost all o, but clearly this implies
the preceding statement.) Combining this with the fact that for each fixed
0 > 0 the random variables Aa(Z) and Aa(R) have the same distribution
yields

P[dim Z 1- l/a] 1.

Thus Theorem A is established.

4. Proof of Theorem B
Let us consider first the case 1 < a =< 2. If we define

T(o) inf{t => O’X(t, o) x or Z(t-, o) x},

then it follows from the results of Kac [5] that P[T < oo] 1, and from
those of Hunt [4, pp. 54, 55] that X(T) x with probability one. Com-
bining these facts with the strong Markov property and the corollary to
Theorem A it follows that if we define

(4.1) Zx(0) {t:X(t, o) x},
then forl < a =< 2

(4.2) P[dim Zx(o) 1- l/a] 1.
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Given a probability measure on (R), the Borel sets of R, the symmetric
stable process of index a with initial distribution can be realized as
{x + X(t, o); _-> 0} over the probability space (R , 6t(R) if, P)
where X(t, o); _-> 0} is the symmetric stable process of index a with
X(0) 0 defined over (gt, if, P). Let us put Y(t, (x, )) x -t- X(t, )
for the moment. The measurability discussion in the proof of Theorem A,
which depended only on the sample function properties and the regularity
of the transition probabilities, implies that

A /(x, )’dim

is measurable relative to the completion of 6t(R) X ff with respect to t P
The set A_ {o:(--x, o) cA} is just {o:dimZ(o) 1 l/a}, so by
Fubini’s theorem and (4.2) the set A has probability one. The probability
measure meant is, of course, the completion of t P. Again by Fubini’s
theorem there is a set gt0 e ff with P(0) 0 such that if 0 e0 then the
set A {x: (x, 0) e A is in the completion of ((R) with respect to t and
(A) 1. (We are always assuming that ff is complete relative to P.)
Finally taking t to be equivalent (in the sense of absolute continuity)
to Lebesgue measure we have that for all toe,t0, where P(0) 0,
dim Z(0) 1 1/a for almost all (Lebesgue measure) x.

J. M. Marstrand [7] has shown that if E is a subset of the (t, x) plane such
that for every point x in a given linear set A we have A{t: (t, x) e E} > p,
then A+X(E) >- kpAX(A), where /c is a positive constant. Combining
Marstrand’s theorem with the observations following (4.2) we easily find that

(4.3) P(dim G() _>_ 2- l/a] 1

provided 1 < a <_- 2.
We now adapt an argument of Besicovitch and Ursell [1] to prove the

opposite inequality. For each e > 0 define as follows

M sup0_t_<_ X(t + ( 1)e) X(( 1)e)], ] 1, 2, ....
Since the process X has stationary independent increments, the random
variables MI M., are independent and identically distributed. More-
over, since X(rt) has the same distribution as r/"X(t) for any r > 0, we
easily see that M has the same distribution as e/"M. If R(k, e) is a
rectangle with center at ((] 1), X[(]c 1)e]) and with sides 2 and
2M, then clearly R(1, ), R([e-], ) is a cover of

G(; 0, 1) {(t, X(t, o))’0 <- <-_ 1}

for each o. Here [e-1] is the greatest integer in e-1. However, each of
[e Mk] + 1 squares of sidethe rectangles R(/, ) can be covered by

Let us denote this cover of G(o; 0, 1) by squares of side 2e by E(e). If
E (El, En) is any finite cover of G(; 0, 1) and > 0, let

Sa(E) 1 E .
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Thus if t3 > 0 we have

[ M,] + 1) (2//)
(4.4)

-<_ C[:’ Mk - + C-,
where C is a positive constant depending only on t3.
then the second term above goes to zero as e - 0.
let e n-1, then for any x > 0 we have

If> 2- 1/a > 1,
On the other hand if we

Thus if/3 > 2 1/, and if we assume for the moment that M has a finite
expectation, the weak law of large numbers implies that the last displayed
expression approaches one as n -- oo. Therefore Sa[E(n-)] 0 in proba-
bility, and hence a subsequence approaches zero with probability one pro-
vided t3 > 2 1/c. This proves that

P[dimG(oa;0,1) =< 2- 1/c] 1,

subject to the finiteness of the expectation of MI. Concerning this: pick a
C > 0 such that for every -< 1, P{IX(t) X(1) I->- C} -< 1/2. This can
be done since almost all sample functions of X are bounded on bounded
intervals. A standard argument then shows that for every k > C

P[M >= 2k] <= 2P{I X(1) __> }.
But E{I X(1)I} < oo since ce > 1, and hence E(Mn) < o. Clearly (4.3)
and (4.5) taken together yield Theorem B (i).

Finally we consider the case 0 < a =< l. Recall that if f:[0, 1] --. RN,
then/3 var f sup s.-01 f(tj+) f(tj)!8, where the supremum is taken
over all finite subdivisions0 -<_ to < tl < < tn 1 of [0, 1]. If Y(t)
denotes the two-dimensional process (t, X(t) ),.then Y([0, 1], o) G(o; 0, 1).
Clearly we have- var Y(., 0) __< 2-[- var X(., ) + f- var h],

where h (t) t. If > 1, then fl var h is finite, and if in addition a _-< 1,
Theorem 4.1 of [2] implies that B var X(., o) is finite for almost all .
Thus applying Theorem 8.4 of [3] we find that AaY([0, 1], 0) < for almost
all provided > 1. Therefore

(4.6) P[dim G(; 0, 1) =< 1] 1.

To prove the opposite inequality consider r(t, ) IX(t, )2 + t]/2; then

P[r(t) <-_ u]- P[X2(t) <- u- t].
It follows easily that the random variable r(t) has a probability density
g(u) given by

ge(u) 2t-’u(u- t)-f(1, t-l"(u- t)), u > t,

O, u <- t,
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where f(1, x) is the probability density of X(1) given by (1.1). Therefore
if > O,

E{r(t)-} f u-agt(u) du

2t-" (t-" q- x)-af(1, x) dx,

where we have made the change of variable x t-"(u t). But
-v" -t- x >_- -" for all x, and thus we obtain

(4.7) E{ r(t) -8} <_ Ct-,
where C is a positive constant. Since -a is integrable near 0 if $ < 1,
a standard argument using capacity (see [2], [3], or [9]) yields

(4.8) P[dim Y([0, 1], ) => 1] 1.

The reasoning leading to (4.7) is that of Taylor [9].
Combining (4.6) and (4.8) we find

(4.9) P[dim G(0; 0, 1) 1] 1,

and clearly this implies Theorem B (ii).
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