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1. Introduction

Let {X(#); ¢ = 0} be the one-dimensional symmetric stable process of
index a with 0 < a = 2, that is, a process with stationary independent incre-
ments whose continuous transition density f(¢,  — y) is given by

(1.1) fGt,z) = (21‘_)_1 ‘/_‘°° ot e ik dt.

We assume throughout this paper that X(0) = 0 and that the sample func-
tions are normalized to be right continuous and have left-hand limits every-
where. Furthermore we assume that { X (¢) ;¢ = 0} is defined over some basic
probability space (2, F, P) where F is complete relative to P. Let

(1.2) Z(w) = {t>0:X(t,w) =0 or X(i—, ) = 0}.

It is known, e.g. [8], that if 0 < a = 1, then Z(w) is empty for almost all w.
Our first result is the following theorem.

TueoreM A. Pldim Z(w) =1 — 1/a] = 141 < a < 2, where “dim”
s the usual Hausdorff-Besicovitich dimension (see Section 2).

If Z'(w) = {t:X(t, w) = 0}, then since for fixed w the sets Z(w) and Z’'(w)
differ at most by a countable number of points, we have the following corollary
to Theorem A.

CoroLLARY. Pldim Z'(w) =1 —1/a]l =141 < a = 2.

If @« = 2, our process is essentially Brownian motion, and in this case the
above result is due to S. J. Taylor [9].

Our second result gives the dimension of the graph of X (¢).

TaEOREM B. Let G(w) = {(¢, X(¢, w)):t = 0}; then
(i) PldmGw) =2—1/al=1 of 1 <a=2
(ii) Pldim G(w) = 1] =1 if 0<a=1.

Again in the case & = 2 this result is due to S. J. Taylor [9]. However,
there seems to be a lapse in his proof. In particular the equation in line
(—6) on page 270 is incorrect, but this is easily corrected.

In Section 2, following Lévy [6], we define the concept of stochastic equiva-
lence for random sets and show that if two random sets A and B are stochas-
tically equivalent, then for each 8 > 0 the g-dimensional Hausdorff measures
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DIMENSION IN A SYMMETRIC STABLE PROCESS 309

A%(4) and A°(B) are random variables with the same distribution. In
Section 3 we prove that Z and the range of the stable subordinator of index
1 — 1/« (defined in Section 3) are stochastically equivalent. Theorem A
then follows from known results on the dimension of the range of a stable sub-
ordinator [2].

Finally in Section 4 we give a proof of Theorem B.

2. Random sets

Given a probability space (2, F, P) where ¥ is complete relative to P,
and a function 4 from Q to subsets of the real line, R, we say that 4 is a
random set if

(i) A(w) is compact for almost all w,
(ii) {w:A(w) C K} isin F for all open subsets & of R.

Two random sets 4 and B (not necessarily defined over the same probability
space) are stochastically equivalent if for every set E that is a finite union of
open intervals

(2.1) P{w:A(w) C E} = P{w:B(w) C E}.
These definitions were suggested by Lévy [6, Ch. VI].

We now recall the definition of Hausdorff measure and dimension. Given
a > 0,& > 0,and K a subset of B, we set AZ(K) = inf Y | I; |* where the
infimum is taken over all covers of K by a countable union of intervals, I; ,

none of which has a diameter exceeding . Here | B | denotes the diameter
of the set B. Moreover A*(K) = lim..o A;(K) exists, and

(22)  inf{a > 0:A%(K) = 0} = sup {a = 0:A%(K) = w}.

The common value of the infimum and supremum in (2.2) is called the Haus-
dorff dimension of K and is written dim K. Clearly if K is compact, we may
compute A;(K) by using only those covers of K which are finite unions of
open intervals with rational endpoints.

The following lemma is basic.

LemMA 2.1, If A is a random set, then A*(A) is a random variable (possibly
taking on the value + ). If A and B are stochastically equivalent random sets,
then A*(A) and A*(B) have the same distribution.

Proof. Using a convenient, although incorrect, notation we will let F
denote a generic finite collection Iy, ---, I, of open intervals with ra-
tional endpoints and also let E denote the (open) set Uj_; I;. We define
d(E) = maxj<, | I; | and So(E) = D ju|I;|% Forafixedwandb = 0 we
have A7 (A (w)) < bif and only if there is an Z with d(E) = cand S,(E) < b
such that A(w) < E. Let E,, E,, --- be an enumeration of those E’s
having the property that d(E) < eand S.(E) <b. If A; = {w:A(w) C E},
then

{wiAZ(A) < b} = UL A;.
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By the definition of random set each A;is in &, and hence A;(4) is a random
variable. Letting ¢ — 0 through a sequence of values yields the first asser-
tion of Lemma 2.1.

Moreover we have

(2.3) Plw: A7 (4) < b} = limg,o P(Uiq Ay),
and for a fixed » the inclusion-exclusion formula implies that
PUMP,A) = D P(A) — 2 P(AinAy) + D P(AinAjnAy) — - .
Looking at a typical intersection we see that
P(Ain -+ nA;) = Plo:A(w) C Ein -+ n By,

Thus if A and B are stochastically equivalent random sets, the left side of
(2.3) is unchanged if A is replaced by B. Hence A7 (A) and A7 (B) have
the same distribution. Again letting ¢ — 0 through a sequence of values
yields the second assertion of Lemma 2.1.

3. Proof of Theorem A

Let {T(t);t = 0} be the stable subordinator of index 8,0 < 8 < 1, that is,
a process with stationary independent and positive increments whose transi-
tion density g(t, w) is given by

(3.1) = f g(t, w) du.

0

We assume that 7(0) = 0, and that the sample functions of T’ are normalized
to be right continuous and have left-hand limits everywhere. The sample
functions of T are strictly monotone increasing with probability one. As in
Section 1, X = {X (t) ;¢ = 0} is the symmetric stable process of index «, and we
will assume throughout this section that 1 < o < 2. Moreover we will assume
that the index 8 of our stable subordinator T is given by 8 = 1 — 1/a.

Given a subset £ of [0, ) we say that X touches a ¢n E if X(t) = a or
X(t—) = a for some ¢ in F, and we say that T' touches E if T(t) is in E
or T(t—) isin % for some ¢ = 0.

Lemma 3.1. If I = [a, b] where 0 < a < b < o, then
P[X touches 0 in I] = P[T touches I]

®—a)/b
= [0(1/a)T@ =1/ [ a1+ u) ™ du.
0
Proof. We begin with the process X. Let h(¢, ) be the probability that
a stable process of index a, 1 < a = 2, starting from z touches 0 in [0, ¢].

Kac [5, Equation (5.4)] has shown that

(32) [ et 2) dt = R(OTE.(2),

0



DIMENSION IN A SYMMETRIC STABLE PROCESS 311

where
(3.3) Ki(z) = (2r)™" [_: (s 4+ |£]*)™ cos £ dE.

Thus if p(a, t) denotes the probability that X (starting from 0) touches 0 in
[a, t] we have fort > a

(3.4) p(a 1) = [of(a,x)h(t — 4, 2) dz,

where f is the transition density of X defined in (1.1). If we set p(a,t) = 0
for ¢ £ a and take Laplace transforms on ¢, we obtain

© —st — —1 —sa ® “ CO__S Ex dz
j; e p(a, t) dt = [27asK,(0)] e [w fla, 2) de L w's + lzq'la’

and the right-hand side, after a change of integration order and a change of
variable, becomes

(35) b [ " e e ) g,
0

where

(3.6) by = [[(1/a)T(1 — 1/a)]%

The term in square brackets in (3.5) is the Laplace transform of the function
which is 1 on [a(uw -+ 1), «) and 0 elsewhere. Thus

(t—a)/a

(37) p(a,t) = ba fo W1+ w) " du

provided ¢t > a. If ¢ = b, this is one half of the assertion of Lemma 3.1.

We turn our attention now to the subordinator T of index 8 = 1 — 1/a.
Let S; = inf {r:T(7) = ¢}, and let F,(A) be the probability that T'(S;) is
in 4. Since P{T'(r—) = a for some 7 = 0} = 0 for each fixed a, it follows
that

P{T touches I} = P{T(S.) < b} = Fu([a, b]).

From the fact that T(7) has the same distribution as 7/*T(1), it follows
easily that E(S;) = ct’ where ¢ is a positive constant and E is the expectation
operator. So the usual first passage time relationship (i.e., the strong
Markov property) implies that

a+it
(t+a)f =d® + f (a +t — z)’F.(dz), t> a.

This is an expression of convolution type, and so we can find F, by taking
Laplace transforms. The result is

t
a

Fulla, ) = MBI — O [ 7z — a)® dn.
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Making the change of variable v = a™'(z — a), replacing ¢ by b, and recalling
that 8 = 1 — 1/a, we find that

(3.8) Fu(la, b]) = p(a,b),
and thus the proof of Lemma 3.1 is complete.

LemMma 3.2. If D is a finite disjoint union of closed intervals bounded away
from 0, then
P[X touches 0 in D] = P[T touches D].

Proof. By the inclusion-exclusion formula it suffices to show that
P[Nj_; {X touches 0 in [a;, b;]}] = P[Nj {T touches [a;, b;]}],
where 0 < oy < by < @< -+ <b,. Ifa>0,let
R,=inf{t =2 a:X(t) =0 or X(1—) = 0}

(or + o if there are no such ¢); then P{R, =< #§ = p(a, t). Hence
P{R, < v} =1. If R, < «, it follows from the discussion in Hunt [4, p. 54]
that X(R,) = 0 with probability one. Thus, using the strong Markov
property repeatedly, we have

b1
PN} {X touches 0 in [a;, bj]}] = f p(ay, dr)

ay

bg—71 bn—1—Tn-1
(3.9) . f p(az — 71, dr) - / p(@ny — Tu—s, dTn1)

a—T1 an—1—Tn—2
'p(an — Tn—1, bn - Tn,—-l).

The same argument with X replaced by T and R, by S, shows that

by
P[N}- {T touches [a;, b;]}] = Fo,(dr1)
1

a

3.10 bo—71 bp—1—Tn—2
( ) 'f Faz—n(d7'2) e f Fan_l—f,.._g<d7n—1)
ag—T1

Ap—-1—Tp-2
'Fa”—'r,,_l([an — Tn—1, bn - Tn.1]).

But Lemma 3.1, or more exactly (3.8), implies that the right-hand sides of
(3.9) and (3.10) are equal, and hence Lemma 3.2 is established.
We are now ready to prove Theorem A.
Proof of Theorem A. Let J be the closed interval [c, d] with0 < ¢ < d < .
We define
Al(w) = {teJ: X, w) =0 or X(i—,w) = 0}

B(w) = {teJ:T(r, w) touches t}.

Both 4 () and B(w) are compact for almost all « since the sample functions
of X and T are right continuous and have left-hand limits. For a moment
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let Y be the two-dimensional process Y (¢) = (¢, X(t)). If E is an open
set in R, let D = J — E, and define

Q = inf {£:Y(t) eD X {0} or Y(t—) eD X {0}

or Q = o if there are no such ¢. Hunt [4, pp. 54-55] has shown that Q is a
random variable. Since {Q = x} = {4 C E}, it follows that A is a random
set. A similar argument shows that B is a random set.

We next show that 4 and B are stochastically equivalent. To this end let
E be a finite union of open intervals; then D = J — F is a finite disjoint
union of closed intervals bounded away from 0 since ¢ > 0. Using Lemma
3.2 we have

P(A Cc E) =1 — P[X touches 0in D] = 1 — P[T touches D] = P[B C E].

Thus A and B are stochastically equivalent, and therefore Lemma 2.1 implies

that A’(4) and A°(B) have the same distribution for each fixed § > 0. If
we let

Z(w) ={t>0:X(t,w) =0 or X(t—,w) = 0}
and

R(w) = {t > 0:T(r, w) touches i},

then as ¢ — 0 and d — <« the set A swells out to Z, and Bto R. Thus A’(Z)
and A°(R) have the same distribution. By the right continuity of the sample
functions the sets R(w) and T'([0, «), w) differ by at most a countable set
for each fixed w, and so these sets have the same dimension. In [2, Theorem
3.2] we showed that dim 7([0, ©),w) = 8 =1 — 1/afor almost all . (Aec-
tually we showed dim 7T'([0, 1], w) = g for almost all w, but clearly this implies
the preceding statement.) Combining this with the fact that for each fixed
6 > 0 the random variables A°(Z) and A°(R) have the same distribution
yields
PdmZ =1— 1/a] = 1.

Thus Theorem A is established.

4. Proof of Theorem B
Let us consider first the case 1 < a < 2. If we define

T.(w) = inf{t = 0:X(t,0) =2 or X(i—,w) = a},

then it follows from the results of Kac [5] that P[T, < «] = 1, and from
those of Hunt [4, pp. 54, 55] that X (T,) = x with probability one. Com-
bining these facts with the strong Markov property and the corollary to
Theorem A it follows that if we define

(4.1) Zy(w) = {t:X(t, w) = a},
then for 1 < o =< 2
(4.2) Pldim Z,(w) =1 — 1/a] = 1.
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Given a probability measure u on ®(R), the Borel sets of R, the symmetric
stable process of index o with initial distribution u can be realized as
{x 4+ X(t, w); t = 0} over the probability space (R X @, ®(R) X F, u X P)
where X (¢, w); ¢ = 0} is the symmetric stable process of index o with
X(0) = 0 defined over (2, F, P). Let us put Y(¢, (2, w)) = z + X(¢, w)
for the moment. The measurability discussion in the proof of Theorem A,
which depended only on the sample function properties and the regularity
of the transition probabilities, implies that

A= {(z,w):dim {£: V(¢ (z,0) =0 =1 — 1/a}

is measurable relative to the completion of B(R) X F with respect to u X P
The set A_, = {w:(—2, w) €A} is just {w:dim Z,(w) = 1 — 1/a}, so by
Fubini’s theorem and (4.2) the set A has probability one. The probability
measure meant is, of course, the completion of 4 X P. Again by Fubini’s
theorem there is a set Qe F with P(Q2) = 0 such that if w¢Qy then the
set A® = {x:(x, w) € A} is in the completion of B(R) with respect to u and
w(A®) = 1. (We are always assuming that & is complete relative to P.)
Finally taking u to be equivalent (in the sense of absolute continuity)
to Lebesgue measure we have that for all w¢Qy, where P(Q) = 0,
dim Z,(w) = 1 — 1/« for almost all (Lebesgue measure) z.

J. M. Marstrand [7] has shown that if £ is a subset of the (¢, ) plane such
that for every point z in a given linear set A4 we have A®(t: (¢, z) e B} > p,
then A*™(E) = kpAM(A), where k is a positive constant. Combining
Marstrand’s theorem with the observations following (4.2) we easily find that

(4.3) P(dim G(w) =22 — 1/a]l =1
provided 1 < o £ 2.

We now adapt an argument of Besicovitch and Ursell [1] to prove the
opposite inequality. For each ¢ > 0 define as follows

My = supo<i<e | X+ (K —1)e) — X((k—1e) ], k=1,2,---.

Since the process X has stationary independent increments, the random
variables My, , M;. , - - - are independent and identically distributed. More-
over, since X (rt) has the same distribution as »"/*X(¢) for any r > 0, we
easily see that M. has the same distribution as ¢/*My, . If R(k, €) is a
rectangle with center at ((k — 1)e, X[(k — 1)¢]) and with sides 2¢ and
2M ;. , then clearly R(1, ¢), - -+, R([¢"], ¢) is a cover of

G(w;0,1) = {(t, X({,w)):0 =t = 1}

for each w. Here [¢7'] is the greatest integer in ¢'. However, each of
the rectangles R(%, €) can be covered by [¢"My] + 1 squares of side 2.
Let us denote this cover of G(w; 0, 1) by squares of side 2¢ by E(e). If
E = (E,, ---,FE,) is any finite cover of G(w; 0, 1) and 8 > 0, let

Se(B) = 2| B ).
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Thus if 8 > 0 we have
SelE (€)] L (€M) + 1) (24/26)°
< XN My &7 + 0
where C is a positive constant depending only on 8. If 8 > 2 — 1/a > 1,

then the second term above goes to zero as ¢ — 0. On the other hand if we
let ¢ = n™, then for any > 0 we have

P{ZZ=1 8‘9—1Mke = x} = P{nl—ﬂ—lla[Mu + -+ Myl £ 2.

Thus if 8 > 2 — 1/, and if we assume for the moment that My, has a finite
expectation, the weak law of large numbers implies that the last displayed
expression approaches one as n — . Therefore Sg[E(n™")] — 0 in proba-
bility, and hence a subsequence approaches zero with probability one pro-
vided 8 > 2 — 1/a. This proves that

(4.5) Pldim G(w;0,1) =2 — 1/a] = 1,

subject to the finiteness of the expectation of My . Concerning this: pick a
C > 0 such that forevery ¢t < 1, P{| X(¢t) — X(1) | = C} £ 3. This can
be done since almost all sample functions of X are bounded on bounded
intervals. A standard argument then shows that for every A > C

P[My = 2\] < 2P{| X(1) | = .

But E{| X(1)|} < « since @ > 1, and hence E(My) < «. Clearly (4.3)
and (4.5) taken together yield Theorem B (i).

Finally we consider the case 0 < a < 1. Recall that if f:[0, 1] — R,
then 8 — varf = sup 2= | f(tj+1) — f(t;)|°, where the supremum is taken
over all finite subdivisions 0 = # < # < -+ <, = 1of [0, 1]. If Y(¢)
denotes the two-dimensional process (¢, X(¢)), then Y ([0, 1], ») = G(w;0, 1).
Clearly we have

B—varY(-,w) =278 — var X(-, w) + B — var h],
where h(¢) = ¢t. If 8 > 1, then 8 — var h is finite, and if in addition a < 1,

Theorem 4.1 of [2] implies that 3 — var X (-, ) is finite for almost all w.
Thus applying Theorem 8.4 of [3] we find that APY ([0, 1], w) < oo for almost
all w provided 8 > 1. Therefore

(4.6) Pldim G(w; 0,1) £ 1] = L.
To prove the opposite inequality consider 7(¢, w) = [X (¢, w)® + ¢']'*; then
Plr(t) = ul = P[X*(t) =o' — ¢
It follows easily that the random variable r(¢) has a probability density
g:(u) given by
gi(w) = 2 — )7, V(G = YD, u >t
= 0, u =i,

(44)
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where f(1, ) is the probability density of X (1) given by (1.1). Therefore
ifg >0,

E{r(t)™?) = [o g, (u) du

= 2P f (7% + %)L, x) d,
o

where we have made the change of variable z = ¢ /*(«* — ). But
£ 4 2* = 7% for all z, and thus we obtain

(4.7) Bir() ™} £ ¢,

where C is a positive constant. Since ¢ is integrable near ¢ = 0 if 8 < 1,
a standard argument using capacity (see [2], [3], or [9]) yields

(4.8) P[dim Y ([0, 1], w) = 1] = 1.

The reasoning leading to (4.7) is that of Taylor [9].
Combining (4.6) and (4.8) we find

(4.9) Pldim ((w;0,1) = 1] =1,
and clearly this implies Theorem B (ii).
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