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It is a well known fact (see [1], p. 296) that any discrete-parameter super-
martingale Xn} ndg can be represented as a sum:

X,= Y,+Z,,

Y} being martingale, and {Zn} a process with decreasing sample functions,
such that Z0 0. Moreover, if the supermartingle {Xn} is uniformly in-
tegmble, the same is true for Yn} and {Zn}. Doob has raised the problem of
the existence of such a decomposition for continuous-parameter supermartin-
gales. We shall solve this problem here, lthough the necessary and suffi-
cient condition we give is not very easy to handle. Our proof has been adapted
from that of a theorem in potential theory, concerning the representation of
excessive functions as potentials of dditive functionls ([3], pp. 75-83).
A reader with some knowledge of Hunt’s potential theory for Markov proc-
esses, nd the theory of dditive functionals, will easily recognize here some
kind of a coarse potential theory, with supermrtingales replacing excessive
functions. Our terminology hs been chosen in accordance with this ide.
We shall use freely the results contained in Chapter VII (mrtingale theory)

of Doob’s book. A number of definitions will be recalled, for the reader’s
convenience.

1. Let 2 be a set, a Borel field of subsets of , P a probability measure
defined on (, if). We are given a family {} ,R+ of Borel subfields of if,
such that , s<t.

We may, and do, suppose that the Borel field has been completed with
respect to P, and that each t contains all sets of measure zero. A measur-
able stochastic process {Xt}tR+ is well adapted to the t family if, for each
t, Xt is t-measurable. Let t+ denote the intersection l,>t t any process
which is well adapted to the t family is well adapted to the t+ family.
A supermartingale (relative to the t family) is a real valued process {Xt},

well adapted to the t family, such that

(ii) V,, ,, [X,+t I,] =< X a.s.
If equality holds a.s. in (ii), the process is a martingale. We shall be concerned
here only with sample right continuous supermartingales. If {X} is such
a supermartingale, then (ii) holds with :t replaced by +. Let indeed A
be an event in ff,+, and let s be a decreasing sequence which converges to s.
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Fors < s-+-t

f. x,+t dP <-, f. X,, dP.

Now X --n X,, from sample right continuity; as the family {Xn} is
uniformly integrable (Theorem 4.2s of [1]), we may integrate to the limit,
and this yields the desired inequality.

Consequently, when we deal with a right continuous supermartingale, we
may suppose that the family is such that t + for every t--if necessary,
we just replace the fit family by the fit+ family. From now on, we shall
assume that this condition is realized, and delete the mention of the fit family,
all well adapted processes or supermartingales being understood as relative
to it.
Let/Xt} be a supermartingale whose expectation E[Xt] is a right continuous

function of t; it is possible then to find a right continuous supermartingale
Yt} equivalent to {Xt} (for each t, P[Xt Yt] 0). To prove it, we define

Yt(o) Xt+(o) limb ,,8,ational X,(

on the set of o such that this limit exists for every t, and Yt(o) 0 on the
complement of this set (which is a null set). As f ft+, we get a well
adapted process. Using once more Theorem 4.2s of [1], we find that

fA Yt dP lim fa X dP <= fa Xt dP (A . fit).

If we take for A the set {Xt+ > Xt}, this yields that Yt <= Xt a.s. for each t,
and equality follows from the right continuity of E[Xt].
A stopping time is a positive, possibly infinite, random variable T(0) such

that, for every a _>- 0, the event {T < a} belongs to fa. We shall denote
by f r the Borel field of events A in f with the property that, for every
a >= 0, A n {T < a} efa. If is a constant, and T a stopping time greater
than t, then f fr (the same is true with two stopping times S and T
such that S -< T, but we shall not need it). Let {Xt} be a uniformly in-
tegrable right continuous supermartingale; if we consider a random variable
X, a.s. equal to limt Xt(o), then the process {Xt}0_t_isa supermartingale
(a martingale if the original one is). For any stopping time T, we may set
Xr(). Xr()() if T(0) < , X.(o) if T(o) ;it is easily seen that
X r is a random variable. The basic results about stopping times are Doob’s
"optional sampling theorems", which will be used several times in the re-
mainder of this paper.
We are now ready for the first definition.

DEFINITION 1. Let a be a number, 0 -< a -_< , and let {Xt} be a right
continuous supermartingale, uniformly integrable on the interval [0, a].
We shall say that it belongs to the class (D) on this interval, if all the random
variables Xr are uniformly integrable, T being any stopping time bounded
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by a. If {Xt} belongs to the class (D) on every interval [0, a], a < oo, it
will be said to belong locally to the class (D).
We have never met a right continuous supermartingale, uniformly in-

tegrable on an interval [0, a], and not belonging to the class (D) on it. No
satisfactory condition is known, implying that sufficiently general classes of
right continuous supermartingales are contained in the class (D). The best
we know in that direction is the following:

PROPOSiTiON 1. Any right continuous martingale IXt} belongs locally to
the class D
Any right continuous supermartingale IXt}, which is bounded from above,

belongs locally to the class D
Any right continuous supermartingale {Xt}, which belongs locally to the class

(D), and is uniformly integrable, belongs to the class (D).

Proof. If a < oo, and T is a stopping time, T -< a, then Xr E[Xa ff r] a.s.
Hence

As n.P[] Xr > n] __< E[ Zr I] -< E[I Za 1], the second integral goes to 0 as
n -- oo uniformly in T, and the first assertion is proved. To prove the second
one, we may suppose that the right continuous supermartingale is negative.
Then

f( Xr dP >- f X dP.

And we conclude as above, using the inequality ([1], p. 353)
n.P[inf X, < -n] =< E[] X

The proof of the last assertion will require some definitions that will be
useful later. As {X,} is uniformly integrable, we may set

x, + (z,
The first process is a martingale, equivalent to a right continuous one, and the
same reasoning as above will show that it belongs to the class (D). The
second process is a positive right continuous supermartingale {Y,}, such
that lim** Y,() 0 a.s. To recall the analogy with the Riesz decomposi-
tion, we shall call such a right continuous supermartingale a potential. Here,
Y,} is uniformly integrable, and belongs locally to the class (D) let us prove

that it actually belongs to the class (D). Since both inf(T, a) and
sup(T, a) are stopping times,

f Yr dPY, dP -5
T>a}

--<-- fir -<,Y r>}
Yr dP + E[Ya].
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As E[Ya] --a, 0, from the uniform integrability, and [Yt} belongs locally to
the class (D), it is easily seen that the first integral is small when n is large
enough, independently of T.

2. The aim of this section, and the following one, will be the solution of
Doob’s decomposition problem for a right continuous supermartingale which
belongs to the class (D). The "Riesz decomposition" we have considered
a few lines above shows that it is sufficient to solve the problem for a po-
tential.

DEFINITION 2. A right continuous increasing process is a well adapted
stochastic process {At} such that: (i) A0 0 a.s. (ii) For almost every co,
the function ---. At(co) is positive, increasing (in the wide sense), and right
continuous. Let A.(co) be limt. At(co); we shall say that the right con-
tinuous increasing process is integrable if E[A.] < .
The right continuous increasing processes will play here the role played by

additive functionals in the theory of Markov processes. It is obvious that
the process {-A } is a negative supermartingale, that it belongs to the class
(D) locally, and globally if E[A.] < ; if {At} is an integrable right con-
tinuous increasing process, any right continuous version of the supermartingale
[E[A, fit] A t} is therefore a potential of the class (D), which we shall call
the potential generated by [A,}. Such a potential can, from its very definition,
be written in Doob’s decomposed form, so that our result for the class (D)
will be implied by the following, more precise statement.

THEOREM 1. A potential {Xt} belongs to the class (D) if, and only if, it is
generated by some integrable right continuous increasing process.

The sufficiency is obvious from what we have just said. The key to the
proof of the necessity is the following lemma"

LEMM/k 1. Let {Xt} be a right continuous supermartingale, and [X} a
sequence of decomposed right continuous supermartingales:

X =Mt -At,

the {M} being martingales, and the {A} right continuous increasing processes.
Suppose that, for each t, the X$ converge to X, in the L topology, and the A
are uniformly integrable in n. Then the decomposition problem is solvable for
the supermartingale {X,}; more precisely, there are a right continuous increasing
process {At}, and a martingale [Mt}, such that X M At.

Proof. We denote by w the weak topology w(L, L*); a sequence of in-
tegrable random variables f converges to a random variable f in the w-to-
pology, if and only if f is integrable, and E[fn.g] E[f.g] for any bounded
random variable g. A fundamental theorem in functional analysis (see for
instance [2], p. 294) asserts that any uniformly integrable sequence of random
variables contains a w-convergent subsequence. Using a diagonal procedure,
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we may then find a sequence nk of integers, such that the A converge in
the w-topology to random variables At, for all rational values of t. To
simplify the notations, we shall suppose that the whole sequence is so con-
vergent. Obviously, A0 0. As, it being complete and containing all
sets of measure 0, an integrable random variable f is iit-measurable if and only
if it is orthogonal to all bounded random variables g such that E[g iit] 0 a.s.,
it follows that A’ is iit-measurable (one can use the Hahn-Banach theorem,
if the above assertion does not seem obvious enough). For s < t, s and
rational, A’ A is obviously a.s. positive, he inequality

(At As) dP >- O,

where B denotes any f set, behaving well as n oo. As the X2 X in a
stronger topology than w (w-topology itself would be sufficient), the M2
converge to random variables M for rational, and the process {M} is
easily seen to be a martingale; there is therefore a right continuous martingale
{Mr}, defined for all values of t, such that P[Mt M’t] 0 for each rational t.
If we define now At X -- Mt, {A t} is a right continuous increasing process,
or at least becomes so after a modification on a set of measure zero. The
lemma is then proved.

3. This section will be spent in a construction of the X, A for a po-
tential [X,} of the class (D). We shall use the following device, which re-
places in our theory the operators of a Markov semigroup" let {X,} be a right
continuous supermartingale, and ]c a positive number; define Y, E[X+k it].
As

:E[Yt+ lift] E[E[Xt++ E[x++

N Ivy] rt,

the Yt process is a supermartingale smaller than {Xt} its expectation [Yt]
[Xt+] is a right continuous function of t, so that we may denote by {p Xt}
a right continuous version of {Yt}. If {Xt} is a potential, so is {p Xt}.

LEMM 2. Let {Xt} be a potential and belong to the class D). We consider
the measurable, positive, well adapted processes H {Ht} with the property that
the right continuous increasing processes

A(H) d

are integrable, and the potentials Y(H) Yt(H, w) they generate are majorized
by Xt}. Then, for eh t, the random variables At(H) of all such processes
A (H) are uniformly integrable.

Proof. It is obviously sufficient to prove that the A(H) are uniformly
integmble.
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(1) If the X process is bounded by some positive constant c, then
t[A(H)] =< 2c, and the uniform integrability follows.

A(H, o) 2 fo [A(H, w) A(H, )] dA,(H, )

2 Jo [A(H, o) A(H, o)]H(o) du.

Hence, by using Fubini’s theorem

l[A(H)] 2 f E[H. (A,c(H) A(H))] du.

We replace now the expectation t[...] by t[E[... ]], and use the fact,
that Y(H) ][A(H) A(H) ], and H is -measurable"

E[A.(u)] 2 f0 I[Y(H).H] du

__< 2c f0 t[H] du 2c][Y0(H)] _-< 2c.
(2) To reach the general case, it will be enough to prove now that any H

process such thut Y(H) is majorized by {X} is equal to a sum H W H of
two such processes, where A (H) generates a potential bounded by c, and
where t[A(H)] is smller than some number , independent of H, such
that o -o 0. Let G denote the indicator of the interval [0, c]. Define

H(o) H(o).GCoX(o);Hc-- H- H.
Let also T() be the infimum of all such that X(o) __> c; as c goes to in-
finity, TO(co) -- a.s., therefore Xre -- 0 a.s., and the class (D) property
implies that t[Xre] -- 0. T is a stopping time, and G oX 1 before time
T. Hence

][A.(Hc)] E H(1 G oX)du <__l, Hdu

the lst integral is also equal to

[A(H) A o(U)] [[A(H) A re(H) fir]]

][Yo(H)] =< ][X],
and the assertion relative to the H process is proved. We prove now that
Y(H) is bounded by c"

Yt(H) I[A(H) At(H) lift] a.s.

F., H.GCoXdul
Let S() be the infimum of all s >= such that X,(0) -<c; the right sample
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continuity implies that Xso() =< c. As
sc()

H,() .G o Xs() ds O,

we get

Y(H) <= Y, Hdul E Hdu[s

E[Yso ]ff,] -< c a.s.

This holds for each t, therefore a.s. for every rational t, and a.s. for every
in consideration of the right continuity.
Lemmas 1 and 2 will now imply Theorem 1, if we prove that we can find a

sequence of processes Hn, verifying the assumptions of Lerama 2, and such
that Yt(Hn) tends to Xt in the L topology as n - . This is done ia the
-following lerama.

LEMM.4. 3. The notations are the same as in Lemma 2. Let k be a positive
number, and Ht,k() (Xt() pXt())/]. The processes H
verify the assumptions of Lemma 2, and their potentials increase to Xt} as t O.

now, for s => t, E[p X8 ,] E[E[X. V,]l ff,] E[Xs. at]. The first
-member is therefore equal to

1
t1F.,[- f [Xs X+] ds

The last integral is positive, and its expectation is smaller than E[X,]; it
tends to 0 as u --. in the L norm, and there remains

]Yt(H) , [X, p X.] ds fit X. ds
at

which is easily seen to increase to X as/ -- 0.

4. We shall now extend Theorem 1 to right continuous supermurtingMes
that belong locally to the class (D).

TEORE 2. Doob’s decomposition problem is solvable for a right continuous
supermartingale {Xt} if and only if it belongs to the class (D) on every finite
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interval. More precisely, Xt} is then equal to the difference of a martingale
and a right continuous increasing process.

Proof. The necessity is obvious. To prove the sufficiency, we choose a
positive number a and define

X(oo) Xt(oo) (0 <- <- a), X(oa) Xa(o) (a < t);

the X’t process is a right continuous supermartingale of the class (D). Using
Theorem 1, we write" X’t M At, {Mr} and {A} being respectively a
martingale and a right continuous increasing process. We let now a tend to
infinity; it is easily seen in the above expression of the Yt(Hk) that the A’t
depend only on the values of {X’t} on intervals [0, -+- e], with e arbitrarily
small. When a -+ m, they do not vary any more once a has reached values
greater than t; we use again Lemma 1 (or rather the trivial part of it), and
Theorem 2 follows.
The most interesting consequence of Theorem 2 seems to be the following"

Doob’s decomposition problem is always solvable for positive submartingales
(semimartingales). This was not known even for the absolute value of
Brownian motion and might, according to Doob, simplify the proof of some
rather difficult theorems of L4vy’s in Brownian motion theory.

All the results we have found till now are invariant through a monotonic
transformation of the real line; they are therefore true for supermartingales
defined only on an interval.

5. Among the right continuous increasing processes, the continuous ones
may be considered as particularly interesting, and it is natural to wonder
whether a representation involving a continuous increasing process is possible
for some classes of supermartingales. The answer to this question is given
in Theorem 3 below. Our proof is nothing more than an adaptation to
martingale theory of a proof given by Shur in [4]; we shall be therefore as
brief as possible, the reader being referred to [4] for details.

DEFINITION 3. Let {Xt} be a right continuous supermartingale and belong
to the class (D). We shall say {Xt} is regular if, for any increasing sequence
of stopping times Tn, with the limit T, the equality [Xr] limn
holds.

For instance, any uniformly integrable martingale is regular. A locally
regular right continuous supermartingale can be defined as in Definition 2;
the extension of the following results to locally regular supermartingales is left
to the reader.

THEOREM 3. Let {X} be a potential and belong to the class (D). {Xt} is
generated by some integrable continuous increasing process if, and only if, it is
regular.
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The proof will consist of several propositions or lemmas. Let us remark
first that the necessity is obvious since, if {Xt} is generated by some con-
tinuous increasing process {At}, E[Xr.] E[E[A At. r.]]
E[A.] E[A r.], and the regularity follows from Lebesgue’s convergence
theorem.

PROPOSITION 2. Let {Xt} be a potential and belong to the class (D). There
exists a series of bounded potentials {X} whose sum is Xt}. If {X} is regular,
so is each {X}.

Proof. As the proof is nearly the same as that of an assertion in Lemma 2,
we shall just sketch it- Let {A } be an integrable right continuous increasing
process which generates {Xt} (Theorem 2), and let G, be the indicator of the
interval In, n -F 1[. We denote by {XT} the potential generated by the
right continuous increasing process

f G o X() dA().At(co)
o.tl

It is obvious that {At} {A}. As the regularity property is equivalent
to the fact that (the notations being those of Definition 3) ][A r.] -- l[A r],
and for the general right continuous increasing process lim, t[A r.] -< t[A r],
if {Xt} is regular, so are the {X}. We prove now that {X} is bounded by
n + lasinLemma2" LetS, be the first time Xs enters the interval [O, n + 1]
after time t; then

X7 E[A: A -< E[A As I] E[Xs, -< n / 1 a.s.

Our problem is thus reduced to a problem concerning potentials bounded
by a constant c; indeed, if we may prove that {X} is the potential of some
continuous increasing process {B}, the series of continuous increasing func-
tions -- B (co) of is uniformly convergent on the whole real line for every
o such that B(co) < , i.e., almost every co; its sum is therefore a.s.
continuous.
The following lemma is due to Shur, and is the key to his proof.

IEMM. 4. Let and be two positive numbers, XI a regular potential, and
T(co) the infimum of all such that X(co) p X(co) >= . Then
increases a.s. to infinity as ]c tends to O.

Proof. As the T increase when ]c decreases, it is sufficient to prove that
the property holds when k - 0 through a sequence of values. Define T
as the limit of T. If ]c h,

Xt(co) p,, Xt(co) >= Xt(co) pk Xt(co);

giving the value T(co), and remarking that (right continuity)

Xr- pXr =>
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on the set {T(o) < oo}, we get on this set

Xrk-- PXrk-->-- e.

Remark now that {ph Xt} is a regular potential, take expectations, and let
]c -- oo. There remains

E[Xr- phXr] >= .P[T <
Let now h -- 0; the first member tends to 0, and the lemma is proved.

LEMMA 5. Let {X} be a potential bounded by c. We set

5 X Xt p Z /tc, A X, ds.

Let A be the w-limit of the A as tends to O; the convergence to A holds in
fact in the L sense.

Proof. We shall show that [(A A)] 0.0 0, nd this will imply
the truth of the lemma. Using the same method as in the first prt of Lemma
2, we get

E[(A A)] E ds(A X, A X,) (5 X A X) du

writing f as f fT, taking then the conditional expectation of this first
integral with respect to ,, of the second one with respect to ff,, and using
the computation of E[f(X p X) du[,] found in Lemms 3, there
remains for the first member

X du X du ft.

[ [+ 1 [+E ds( X, X, E X du X du ,
Split now the domain of integration (supposing h k) in two: the set where
T() is greater than, say, + 1, and its complement. On the first set, the
absolute value of the conditional expectation inside the symbol f is smaller
than 4, and the integrals f X, ds have an expectation smaller than c
(Lemma 3); the absolute value of the whole integral, taken over this set, is
therefore majorized by 16c. On the set {T() + 1}, whose measure
tends to 0 with k, we majorize the conditional expectations by 2c, and find
that the whole expression is smaller than

4c dP (A X + A X) ds.
Tk+]

As the expectations E[(f X, ds)] have been seen to be bounded by 2c,
these random variables are uniformly integrable, and their integrsls, on sets
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whose measures tend to 0, tend to 0; the integral goes therefore to 0 together
with/, and the lemma is proved.

Let now [0, t] bean interval, and 0 tl < t <... < tn be a subdivi-
sion of [0, t]; we consider a sequence of subdivisions whose "step" (the step of
the t-subdivision is the number sup (t+l t)) decreases to 0. We have
then the following lemma, the proof of which is similar to that of the pre-
ceding one, and is left to the reader:

LEMMA. 6. The sums

tend to 0 uniformly in k, as the step of the subdivision (t)=o,...., tends to O.

We can now conclude, after Shur: Fatou’s lemma implies that the sum
t[(At+, Ate) 2] tends to 0 together with the step of the subdivision,

and this implies, as the functions At(c0) are increasing, that they are
continuous.

6. We shall now apply the results we have obtained to a generalization of
the stochastic integral defined in Chapter IX of Doob’s book. The following
proposition will be useful for that purpose.

PROPOSITION 3. Let Y} be a potential; it belongs to the class (D) if and
only if, for any increasing sequence Tn of stopping times which increases a.s.
to infinity, lim t[Yrn] 0.

Proof. The necessity is obvious. Let S be, conversely, the first time Yt
enters the interval [n, ]; the sample functions of Yt being a.s. bounded on
finite intervals, S increases a.s. to infinity together with the integer n, and
our hypothesis implies that I[Ysn] -- . We consider now a stopping time
T, and prove that flYr>nl Yr dl) tends to 0 as n goes to infinity, independently
from T. LetR(co) beequalto if T(co) < S(co),to T(co) if T(co) >= S():
our integral is majorized by I[YRn] and, R being a stopping time greater
than S, by li[Ys]. The proposition is proved.

THEOREM 4. Let {Xt} be a square integrable martingale.
right continuous increasing process A } such that, for any s <

There exists a

Proof. A reasoning on an interval [0, a], with a < , will be sufficient,
as it will be possible to obtain such a right continuous increasing process on
each interval [na, (n 1)a], and the sum of the increasing processes A
obtained in this manner, and taken as equal to 0 on the interval [0, na], to
A.+) on [(n 1)a, [, works well for the whole process. A monotonic
change in the scale of time transforms the interval [0, a] into [0, ], and we
are brought back to the same problem, with the new feature that
supt t[Xt] < .
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We define now
E[(X 

Let s and be two numbers, s < t; orthogonality of increments implies that

[(X X) 1 [(X X) ,] + [(X X) d,

and therefore, taking expectations with respect to fiB, the same equality
with fit replaced by if8 (or any smaller Borel field). Thus

Y, _>_ [(Z Z) ,] [Y,

The Yt process is therefore a supermartingale. Since the Xt process is right
continuous in the L sense (Theorem 4.2, p. 328, of [1]), E[Yt] is a right con-
tinuous function, and we may choose a right continuous version of the Yt
process. Let Tn be a sequence of stopping times which increases a.s. to
infinity: Xr tends to 0 in the L sense (Theorem 4.1 (iii) of [1], p. 319),
and it follows that E[Yr] E[(X Xr) ] -- 0. Using Proposition 3,
we find that Yr} is a potential and belongs to the class (D). By our Theorem
2, we may find a right continuous increasing process {At} which generates
{Y,}:

E[(X X,)= ft,] E[A= A,

and, by the same orthogonality argument as above,

[(X X) 1 [A A. I].

7. We come now to the stochastic integral" Our aim is to define an
integral

o
Yt(o) dZt()

for well adapted processes Yt} we begin with step processes defined in the fol-
lowing manner" 0 to < tl < < tn is a sequence of numbers, the Yt()
are t-measurable square integrable random variables, and Ytn 0. We
set Yt() Yt() on the interval [t, t 1[ (tn+l o). The integral

f’ Y dXt is defined as the sum, Y,,(o)[XT+, () X,,(oa)1,

XT+x being the left limit of Xt at time t+. We compute its L" norm,
using the orthogonality of the increments, and we get

=EI Y,.E[XT+,--X)[**]I
EIY,.E[AT+--A*[**]1
E Y dAt
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Define the "norm" of a well adapted step process as this last integral. The
preceding relation allows the extension of the stochastic integral, by standard
Hilbert-space methods, to all well adapted processes which have a
finite "norm", and are equal to the limit of a convergent sequence (in the
sense of the "norm" just defined) of well adapted step processes. Among
them are all right continuous well adapted processes, but it seems hard to
show (though it is certuinly true) that the full class of well adapted processes
whose "norm" is finite has been ttained by this procedure.

Note added in proof. Some results concerning the uniqueness of the repre-
sentation of a supermartingale as a potential of a right continuous increasing
process will appear later in this journal.
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