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1. Introduction

1. In 1915, Georg Pick [2] made the following observation. Let u(x, y, z)
belong to the class K of all harmonic functions which are not identically zero,
moreover regular and nonnegative in the unit sphere x y2 -t- z < 1. We
expand u in a series of spherical harmonics"

(1.1) u(x, y, z) _,=o Hn(x, y, z),

where Hn is a homogeneous harmonic polynomial of degree n. We have then
for x -t- yS - z _-< 1,

(1.2) H1/Ho <= 3.

The constant 3 is the best possible one. Of course, H0 u(0, 0, 0) > 0.
Inequality (1.2) can be proved and generalized easily with the aid of the

well-known representation (cf. [1, p. 444])

(1.3) Hn(x, y, z) 2n -{- 1 r, ff4r
u(x’, y’, z’)P(cos , d’.

Here we use the polar equivalent r, 0, of the cartesian coordinates x, y, z.
The integration refers to xt, yt, z’ or 1, 0’, V, and denotes the spherical
distance of the points 1, t, and 1, 0’, ’ on the unit sphere; da’ is the surface
element at 1, 0’, ’, and P denotes Legendre’s polynomial. We find from
(1.3)

(1.4) H/Ho I<= 2n -k 1.

The bound is the best possible and is attained for the function

(1.5) u(x, y, z) 1 r (2n + 1)Pn(cos ,)r.
(1 2r cos -t- r) .--0

2. In 1927, I discussed [3] the following refinement of Pick’s inequality.
Let N be a nonnegative integer; we denote by K the class of finite
(terminating) harmonic polynomials

N(1.6) u(x, y, z) n=0 Un(x, y, z),

which are again not identically zero and nonnegative in the unit sphere. The
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refinement of (1.2) is then:

(1.7) H1/Ho <- 3pN,

where pN is the largest zero of the Legendre polynomial Pq+(t) if N 2q is
even, and the largest zero of the polynomial Pq+(t) Pq+(t) if N 2q - 1
is odd. In both cases, the bound 3p is sharp, i.e., attained for a suitable
member of the class K at a suitable point x, y, z of the unit sphere. The
exact range of the quotient H/Ho as u is arbitrary inK and x, y, z is arbitrary
in the unit sphere, is the closed interval [-3p, 3pN].

3. The purpose of the present note is to deal with the corresponding prob-
lem for the quotient H/Ho referring again to the class K. Thus we aim at
a refinement of the inequality (1.4) in the special case n 2. This case can
be treated by methods essentially similar to those used for n 1. The nature
of the result is however slightly different since for n 2 the range of the quo-
tient in question is a nonsymmetrical interval around the origin. The reason
for this discrepancy is that the range of Legendre’s polynomial Pn(x) in
--1 <= x <- 1 is the symmetrical interval [-1, + 1] if n is odd, and a certain
nonsymmetrical interval [-n, -1], 0 < n < 1, if n is even.
We shall prove the following

THEOREM. The range of the quotient H/Ho as u runs over the class K and
(x, y, z) runs in the unit sphere, is the interval

(1.8) 5. (3t’2 1)/2 -< H2/Ho <-_ 5. 3t"2 1)/2,

where t’ and t.’t denote the smallest and largest positive zero of P/l+2(t),
0 < t’ < < 1, respectively, provided IN/2] is even. The meaning of ’ is still
the same if IN/2] is odd, but t’ will be in the latter case the smallest positive zero

of the derivative P/I +2(t).

The general case, i.e., the corresponding refinement of (1.4) for the class
KN for an arbitrary n, n __> 3, seems to be rather difficult. There is, however,
no difficulty in determining the exact range of the quotient Hn/Ho for arbitrary
n if u c K. This is the interval [-#n(2n -- 1), 2n 1] where --n is the
minimum of Legendre’s polynomial Pn(t) for --1 < < 1. This minimum
is in fact --1 if n is odd, and it is the first relative minimum of P(t) from
the right end point of the interval -1 < < 1 if n is even (cf. [4, Theorem
7.3.1, p. 162]). The quantity t is decreasing with increasing n, n even, [5] and
converges for n-- to minus the absolute minimum of the Bessel function
J0(x) which is 0.4028.

4. As in the proof of (1.7), we shall make use of an important theorem of
F. Lukcs on polynomials f(t) which are nonnegative in the real interval
a -< =< b. If the degree of f(t) is n, we have the following representation"

(1.9) f(t) [A(t)] + (t a)(b t)[B(t)] if n is even, n 2q,
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and

(1.10) f(t) (t a)[C(t)] -- (b t)[D(t)] if n is odd, n 2q -- 1.

Here A, B, C, D are suitable polynomials of whose degrees do not exceed
q, q 1, q, q, respectively.

For the proof of this theorem, cf. for instance [4, p. 4].

2. Symmetrization. Reduction of the problem
1. For the proof of the theorem formulated above, we observe first that

in view of the extremum principle it is sufficient to consider only the points on
the unit sphere x + y - z 1. Also, any rotation of the unit sphere leaves
the class KN unchanged; thus it is sufficient to establish the range of the values
ofH2/H0forx- y 0, z 1, i.e.,forr 1,0 0. Now for everyn

(2.1) H(0, 0, 1) 2n W 1 ff4-
u(x’, y’, z’)P, (cos 0’) sin O’ dO’ dck’,

where (x’, y’, z’) (1, 0’, ’). Using the standard representation of the
surface harmonics (cf. [1, p. 444]), we see that

(2.2) 2-- u(x’, y’, z’)

is a zonal harmonic polynomial of the form

(2.3) f(cos

where the coefficients a are real. Obviously the associated solid harmonic
v P (cos O’n=0 an r belongs also to K, and the values H(0, 0, 1) do not

change when we pass from the original function u(x, y, z) to the
"symmetrized" zonal function (2.2).
Thus without impairing the generality we are led to the following reduced

PROBLEM. Let f(t) ,=oa, Pn(t) denote an arbitrary polynomial of
degree N which is not identically zero and moreover nonnegative in the interval
-1 <= <= 1. We have to determine the range of the ratio a:/ao.

2. The expression

(2.4) (f(t) A-f(-t))/2 g(t2) g(r)

represents a polynomial in of degree IN/2], and

if
+1 lf0f(t) dt g(-r)r-1/2ao - - dr,

f(t)P(t) dt g(.) 3r 1
a2 - - 2

"r dr,
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SO that

a0 2
r dr g(r) dr.

Here g(r) is an arbitrary polynomial of degree IN/2] which is not identically
zero and moreover nonnegative in the interval 0 =< r =< 1.

3. Now we apply the representation described in 1.4"
g(r) [A(r)] -t- r(1 r)[B(r)] if [N/2] is even, IN/2] 2q,

(2.6)
g(r) r[C(r)] + (1 r)[D(r)] if [N/2] is odd, [N/2] 2q -t- 1"

The degrees of the polynomials A, B, C, D are q, q 1, q, q, respectively. We
seek the range of the quotients"

(2.7)
2

r dr r(1 r)[B(r)]r-1/ dr,

fo ].3r--1 -z fotiC(r) 2
r dr tiC(r)lr-’/ dr,

a (-)[() .
In 3 we shall prove that the second range is contained in the first one.

Since in (2.5) and (2.6) we can choose B(r) --= 0, the range of (2.5) for
IN/2] even, will be identical with the range of the first quotient in (2.7). A
similar reasoning applies in the case when [N/2] is odd.

3. hhechcnical quadrature
1. To the integrals occurring in (2.7) we apply the formula of Gauss-

Jacobi [4, p. 47]. Let w(r) be an arbitrary weight function in the interval
0 =< r =< 1, pro(r) the associated orthogonal polynomial of degree m, r the
zeros of pro(r), ,v the corresponding Christoffel numbers, 1 =< v _-< m,
0 < r < 1,),v> 0. We have then

f01 3r-1 f01[S(r)] w(r) dr [S(r)]w(r) dr

(3.1)
h[S(r,)]: 3r 1 h[S(rv)]:,

where S(r) is any polynomial of degree s; these formulas hold provided
2s-l- 1 <- 2m- 1, s =< m- i. Ifsisgiven, wechoosem s-{- 1.
From the representation (3.1), we conclude that the range of the ratio in

(3.1), when S(r) runs over all polynomials not identically zero and of degree
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S, is the closed interval

(3.2) [(3r’ 1)/2, (3r’- 1)/2],

where r’ and r
pp denote the smallest and largest zero of pro(r) p+l(r), re-

spectively. Indeed, by prescribing the values of the polynomial S(r) at
m s 1 points, it will be uniquely determined. If the "data" are not all
zero, S(r) will be not identically zero. We use the fact that (3r 1)/2 is
monotonic for 0 < r < 1.

In (2.7), we have - 12 T--12(1 r),()= , (1-),

(3.3) s q, q 1, q, q,

m q + 1, q,q -t- 1, q + 1,

respectively.

2. Transforming the interval [0, 1] into the interval [-1, 1], we obtain the
following Jacobi polynomials corresponding to the cases (3.3) (notation as in
[4, Chapter I])"

(0,-1i2) p(a,12) ]9 (0,1/2) 19 (1,-1/2)
q+l (2r- 1) (2r- 1) (2r- 1) (2r- 1)tq+l tq+l

Substituting r and taking [4, (4.1.5), p. 59] into account, we find the
following polynomials"

--ID(1,1 --1 D(1,1)(3.4) Pq+(t), l+(t), P2+3(t), 12+t),

where P is Legendre’s polynomial and P(’)(t) denotes the Jacobi poly-
nomial associated with the weight function 1 in [-1, 1]. We remark
that P(I’) (t) is, except for a constant factor, identical with P’ +1 (t) (derivative
Of Pn+($); cf. [4, (4.21.7), p. 63]).

3. Let IN/2] 2q. Since the second function in (3.4) is, except for the
factor -, the derivative of the first one, the largest zero of the first function
will surpass that of the second function; a similar conclusion holds for the
smallest positive zeros of these functions.

Let [N/2] 2q + 1. The same as before holds for the largest zeros. But
the smallest positive zero of P’+3(t) is less than the smallest positive zero of
Pq+(t).

This establishes the assertion of the theorem announced in 1.
4. As an example, we treat the special eases N 1 and N 2 or 3. In

the first case a 0, and indeed P2(t) has only one positive zero which makes
the two quantities occurring in (1.8) vanish. In the second case (N 2
or 3), [N/2] 1 is odd. The polynomial P(t) t ]t has one positive
zero t", " , and P(t) zt ] has one positive zero t’, ’ k. Thus
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the range (1.8) will be

-1 =< a/ao=< 2.

This can be seen directly from the representation

(u0 + ul t) -t- (1 t)u aoPo(t) - al P(t) - a.P(t).

We have

and

1 2a0 u0 + u -{-u,

a 2u0 u,

a2 -Ul --u2

(u u)/(u + u + u)
has indeed the minimum -1 and the maximum 2.
For N 4 we obtain by an easy but more elaborate calculation the follow-

ing range"

--1.633 (5 3%/-0)/7 _-< a/ao <-_ (5 - 3/)/7 3.061.
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