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Let the column vectors

E= E2
E3

describe an electromagnetic field.
xl, x., x3 and the time by we put

O/Ox,

(.1)H= H2
H

Denoting the space coordinates by

. o/ot.

The "curl" operator is then represented by the matrix

C() 5 0 }1
-2

while the "divergence" oertor correupondu to the row vector

(5, i, 5).

Mxweli’s equtionu for homogeneous, isotroic, nonconducting medium in
the absence of charges then take the form

E C()H, -C()E, E O.

We consider now the cse of two medi separated b the plane 0.
The eld in the edium x 0, where the electric ccities shll hve vlues, , we denote by E, H. We require that

(la) E C(), ,H -C()E, E= H= 0 forx 0.

The need in the other medium, where the cpcitias shi hve vlues ’, ’,
we denote by E’, H’. For our purposes it is convenient to use in the second
field new nme x for the first spce coordinate x. Butting
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we have the equations

(lb)
for Xl => 0.

In order to formulate the transition conditions on the interface we introduce
the constants

p /’, q /’,
and the matrices

( Oi)P= 1 Q= 1
0 0

It is then required that

(lc) E P-E’, H Q-H’ for x x 0.

Finally the initial values of the field are prescribed"

(ld) E E, H H forx_<_ 0, 0

(le) E’ E’ H’ H’ for x > 0, 0

The problem to be solved consists in determining a solution of la, b, c, d, e)
for given initial data E, H, E, H. To insure consistency of the data we
assume that E, H, E’, H’ are of class C in their respective half-spaces,
satisfy

(2) E= H= ’E’= ’H’= 0,

and vanish identically near the boundary of those half-spaces.
The transient field corresponding to a pulse in one of the media has been

determined by H. Poritsky [7]. With varying degrees of generality this
problem has also been discussed by Sommerfeld [8], Gerjuoy [1], van der Pol
[10], Weyl [9], and Garnir [2]. The method used in the present paper is
based on a principle used previously by the author to solve the corresponding
acoustical problem. (See [3].) It furnishes the solution in terms of finite
quadratures extended over the initial values without intervention of any
Fourier and Laplace transforms. In fact the problem is reduced to that of
solving the boundary-initial value problem for the ordinary wave equation
in a half-space, which has a well known simple explicit solution. (See Freda
[6].) The resulting solution of the two-media problem obtained here lends
itself to the determination of the domains of dependence, which are found to
agree with those suggested by geometrical optics.

The principle
Given a field E’, H’ for x >- 0 and all satisfying Maxwell’s equations (lb),

there cannot exist more than one "complementary" field E, H for x -<_ 0
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satisfying Maxwell’s equations (la) and the transition conditions (lc).
Indeed (la), (lc) constitute a Cauchy problem (though an improperly
posed one), whose solution is determined uniquely by a well known theorem
of Holmgren [5] (see also John [4]). There does not always exist a comple-
mentary field. Take, for example, a time-independent field

H’ 0,E’ grad (x’, x2, x),

where is harmonic for xx => 0. Then there will not exist a complementary
field, unless can be continued as a harmonic function into the whole x x2 x-
space. We call a field E’, H’ compatible, if a complementary field exists.
We have then the following principle:

if
(3) pq g/’tt’ > 1

(i.e., the right-hand medium has the larger propagation speed), and if
E’(xl’, x2, x3, t), H’(xl, x., x3) form a compatible field, then the
complementary field E, H can be extended into the whole x xx-space.
Moreover with E’, H’ also the translated vectors E’(xl A-y, x2,x3,t),
H’ (x’ -4- y, x2 x t) form a compatible field for any positive constant y.

We shall see how this principle leads to the construction of the solu-
tion of the initial value problem (la, b, c, d, e) and will itself be verified by
that construction. Assume we had a solution of that problem. The principle
asserts that there exist functions e(x, y, x, x, t), h(x, y, x, x, t) for
y -> 0 satisfying

ere C()h, rh -C()e, e h 0(4)

for which
e(O, y, x x3 t) P-E’(y, x xa t),

h(O, y, x2 xa t) Q-1H’(y, x. x t).

We write again x’t for y, and consider e, h as functions of the independent
variables x, x, x2, x3, t, which satisfy (4) for xl _-> 0 and also

(5) e P-IE’, h Q-1H’ forxl 0, x >- 0,

(5a) e E, h H forx 0, x-< 0.

Equations (4:) imply that

(6) Le Lh 0 for Xl O, Xl O,

where L is the scalar wave operator
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From (5), (4), (lb) we get for x 0, x _>_ 0

0 er(e P-E’) C()h pP-C(’)H’ (C() pP-C(’)q)h,
0 ]ih- ’H’ (- ’Q)h.

If we introduce the vectors

(7a) u (C() pP-C(’)Q)h, v (C() qQ-C(’)P)e
and the scalars

(75) 4) (i- ’Q)h, (- ’P)e,

we have

(7c) u v = 0 forx 0, x_>_ 0.

Writing relations (7a, b) componentwise we observe that u and v vanish
identically, and that (7, b) are equivalent to the relations

(8a) h q’ h -t- 0,

(8b) 1 h

(8C) 1 ha

(8d) e

(8e) e

(8f) 1 e3

It is clear that also

(9) Lu Lv L Lb 0 forx __> 0.

Since u, v, , vanish on x 0 and the operator L is even in x, it follows
that u, v, , must be odd functions of x. We form now the operator

L’= r- (1/e’u’)((’ -t- ( -1- ().
By (lb) and (5)

Le L’h 0 forx 0, x __> 0.

It follows from relations (8a, b, c, d, e, f) and (7c) that then also

L’e l L’h 0 for x 0, x >_- 0.

L’e and L’h are then as functions of x, x, xa, solutions of the wave equa-
tion

L(L’e) O, L(L’h) 0 for x _-< 0

with vanishing Cauchy data on the plane x 0, and hence vanish identi-
cally:

(10) L’e L’h 0 for x _>- 0.



INITIAL VALUE PROBLEM FOR MAXWELL’S EQUATIONS 161

We finally introduce the operator

(11) A vt(L’ L) pq’l (pq 1)( + ).
By (6), (10), e and h satisfy the time-independent differential equations

(12) Ae Ah 0 forxl _-> 0.

The important point is that A is a hyperbolic operator by assumption (3)
with x as time-like direction.
The construction of the solution of our problem starts now with the de-

htermination of the initial values e, of e, h for 0. One first obtains
h for x > 0, x < 0 as the solution of the boundary-initial value probleme

(13a) Ae Ah 0 for x _-< 0, xl __> 0,

(13b) e E, h H forx =< 0, x 0,

hO= Q-H,O,e p-1E’,

(13c) 0 (C() pP-C(’)Q)h (C() qQ-1C(’)P)e

(- ’Q)h (- ’P)e forxl 0, xl ->_ 0.

(By (8a, b, c, d, e, f) relations (13c) amount to prescribing the Cauchy data
hof e, h on xl 0, x >= 0.) With the e, determined we form the functions

(13d) u (C() pP-lC(’)Q)h, v (C() qQ-C(’)P)e,
(13e) 4) (- ’Q)h, o= (_ ,p)e

for x _-< 0, Xl _-> 0. We extend these functions into the region x _>_ 0, xl >= 0
has odd functions of x. We then determine e, in the region x => 0, x -> 0

from the relations (13d, e) using the extended functions u, v, 0, h0, and
requiring that e P-1E, h Q-H on x 0, xl -> 0. In this way we

hobtain e, for x _-> 0 and all Xl, x, x. The vectors e, h can then be ob-
tained for x >= 0 and all x, x, xa, as solutions of the pure initial value
problem

(13f) Le Lh O,

(13g) e-- e, h h, ere C()h, trh- -C()e fort 0.

Finally the desired field vectors E, H, E’, H are given by

(13h) E e(x O, x. x t), H h(x O, x x t),

t) forxi > 0.t) H’ Qh(O, x x, x,(13i) E’ Pe(O, xl x2 x3

Verification of the solution

The first step in the construction consists in the solution of the Cauchy
hproblem (13a, b, c) for e, in the quarter-space x -<_ 0, x >= 0. Under

the assumptions made that the data are in C and vanish near the intersection
hof the planes x 0, x 0, a unique solution e, of class C will exist.
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The solution can be written conveniently by associating with the differential
operator A the metric represented by the quadratic form

1 , 1(14) R(y) R(yl y’I y2, y3) y yl (y d- y3).
pq 1

The solution e consists of a contribution of the initial values of e, e for
xl 0, xl -> 0 and of a contribution of the boundary values of e for xl 0,
x -< 0. The contribution of the initial values is identical with the solution
of the pure initial value problem obtained by extending the initial values of

e0 for x 0 to all x, x2, x as odd functions of x The contributione
to e at a point x (x, x, x., x) of the initial data is then given by the
formula

1 (:3 1 ffl e(y) do Jr" 1 1 ffR e(y) dw.(15a) 4r Oxi xi (y-x)=o x- (y-x)=o
Yi0 Yi0

The contribution of the boundary data is given by

pq 0 1 f] e(y) d.
(i5b) 2 Ox x

yi0
xi<Yi<0

Here in each case d represents the surface element induced by the metric
R, i.e., in (15a)

d xi dy dya
(pq 1)(xl y)

while in (15b)

xi dy2 dya
1)(x I"

Defining next u, v, o, o by (13d, e) we have that those expressions are in
C for xl -< O, x => O, satisfy

(i6a) hu= hv= A,= A= 0,

and vanish for x 0, x -> 0. By continuing them as odd functions of xl
into x => 0, xi >= 0, they stay solutions of (16a), and the extended functions
are of class C for x => 0.

hThe functions e, are obtained for xl >= 0, Xl _>- 0 by means of equations
(13d, e), using initial conditions e P-XE’, h Q-H’ for x 0, x -> 0.
Writing (13d) in the equivalent form (8a, b, c, d, e, f) with superscripts 0

hO h h can be obtained successively byadded, we see that e, e, ea, 2,

quadratures along the lines

p dxi d- dx’i dx2 dxa 0 respectively q dxi -4- dx dx2 dx3 O.
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Since p and q are positive, these lines issuing from points with xl 0, xl >- 0
cover the whole quarter-space x >= 0, x >- 0. The resulting extended func-

htions e, are again in C for all xl -> 0 and all x, x2, x3. Moreover they
again satisfy (13a), since Ae and Ah vanish for xl 0, and in addition
satisfy first order equations obtained from (13d, e) by applying the A-opera-
tor, with the inhomogeneous parts vanishing by (16a).
We now make use of the identity

(C() pP-1C(’)Q)C() + pp-1c(’)Q(C() qQ-C(’)P)
C2() pqp-ic2(ti,)p

(r pqp-,r) + pqp-i,r( ,p) AI,

where I denotes the unit-matrix, and r, ,r are the transposed vectors to
and ’, i.e., the gradient operators. Applying this identity to e, it becomes

(C() pP-IC(’)Q)C()e + pP-C(’)Qv
(16b)

(r pqp-,r)eO q.. pqp-,r,,o.
The first row of this identity reads

(16c) 3 v+v= (-q)e+q.
By (13c), (2) we have for x 0, xl => 0

e pe . g,o ,E,O O.

le =q’le =0 forx =0, x >-0,

since v and o vanish there. Moreover by (13b), (2)

e E =0 forx =0, xl-<0.

Then e is a solution of the differential equation

Ae 0 forx =< O, x => 0

wih vanishing boundary and initial daa. I follows ha e vanishes in he
quarter-space x =< 0, xl __> 0. Then also (1- q’)e vanishes there. By
(16c) this expression is an odd function of x, since v and o are odd. Hence
also

( q’)e 0 forx__> 0, xl __> 0.

Since e vanishes on x 0, x _>- 0, this implies that e 0 also for x => 0,
x >_- 0. Similarly for h. We have then

(16d) e h 0 for x >= 0.

Identity (16b) then yields that

(C() pP-1C(’)Q)e()e

Then also by (16c)
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and similarly
(C() qQ-1C((’)P)C()h

are odd in xl for xl -> 0.
The functions e, h of xl, xl, x2, x3, are defined for xt _>- 0 as solutions

of the pure initial value problem (13f, g). They can be obtained in terms of
e, h by an explicit formula of the type (15a), and are again of class C.
We have fort 0, x -> 0

ee C()h C()h- C()h O,

r(ere- C(()h) elr2e- C()lrh

e(Le)t=o -t- re -+- C(f;)e

e 0

as a consequence of (16d).
equation

Thus ere C()h is a solution of the hyperbolic

L(ere C(()h) 0

with vanishing initial data, and hence vanishes identically. Similarly for
urh -t- C(f;)e. Consequently e and h satisfy Maxwell’s equations

(16e) ere C()h, rh -C()e for xl -> 0.

These equations imply that (e and h are independent of t, and thus

(16f) e (h 0 for x -> 0,

since (16f) holds fort 0 by (16d).
We define u, v for x -> 0 by (7a). All these functions are annihilated by

the operator L. The initial values for u at 0 are

ru (C(() pP-C((’)Q)rh -(1/)(C() pP-C((’)Q)C()e.
Since these initial values have been shown to be odd functions of x, it fol-
lows that u is an odd function of x for all t. Similarly v is seen to be odd
in xl.
The field E’, H’ is defined by (13i). It is clear that E’, H’ are in C for

xl >- 0. We have by(16e)

e’rE’ C(’)H’ (e’rPe C(’)Qh)l=o

(p-P(C() pP-C((’)Q)h)-_o

(p-Pu)l=o 0

since the odd function u vanishes for xl 0. We see then that E’, H’ satisfy
Maxwell’s equations

(16g) e’rE’= C(’)H’, ’rH’= --C(’)E’ for xl => 0.
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The remaining equations

(16h) ’E’ ’H’ 0

follow from (16g), if we observe that E’, H’ have for 0 the initial values

(16i) E’= (Pe)t=o,,l=o (Pe),=o E’ H’= H’,
which satisfy (16h).

Finally the field E, H is defined by (13h) for all arguments xl, x2, x3, t.
It satisfies Maxwell’s equations as the special cse xx 0 of (16e, f). For

0, xl -< 0 we hve the initial values

E (e),i=o.t=o (e)xi=0 E, H H.
The transition conditions

E P-1E’, H Q-IH’ for x x 0

are a direct consequence of the definitions (13h, i) of E, H, E’, H’.
completes the solution of the original problem.

This

Discussion of the solution

We first consider the effect of an initial disturbance concentrated at a
single point (7’, 0, 0) of the medium with the larger speed, i.e., 7’ > 0. We
first have to determine the domain of influence on e, h. In the quarter-space
x _-< 0, x ->- 0 the vector e is given by formula (15a), since by assumption
the boundary values (13b) of e vanish. Since the initial data on x 0
are to be continued as odd functions of xl, only the point

y (y, y’, y2, y3) (0, 7’, 0, 0)

and the symmetric point

(y, -y’, y, ya) (0, -7’, 0, 0)

hmake a contribution. It follows that e, have their support in x _-< 0,
xl _-> 0 in the union of the cones

R(x y) x 1 (x. 7’):"-- 1 (x "-t- x:) O,
pq pq- 1

+ + =o.
pq pq- 1

The expressions u, 0, 0, 0 then have their support on the same cones. They
are continued into x 0, x 0 as odd functions of x and hence have their
support in that quarter-space again on the same cones. It follows that
u0, v0, 0, 0 vanish in the set

(xi-,’):-
pq pq- 1



166 FRITZ JOHN

hThe vectors e, are continued into xl ->_ 0, xl >= 0 by equations (13d, e).
We shall show that they also vanish in the set (17).
We write the equations (13d, e) in the form (8a, b, c, d, e, f). We have

e.g.
1 qtl h 4.

Using the identity

p(i- qi) (p q)A + q( pi) -{- (p q)(pq 1)( +
and the fact that Ah 0, we obtain for hi the second order equation

(18) Th p( q)
where

(19) T q(- p’) - (p q)(pq 1)( + ]).
Since T is a degenerate quadratic form, the differential equation (18) con-
nects the values of h and in each hyperplane px - x const.

Consider now a plane px -{- xl const. c > 0. In that plane we can
introduce x, x2, x3 as independent variables. The operator T in those
variables takes the form

(20) T qx + (p q)(pq 1) +
In that plane Thi and the initial data of h vanish for

(p q)(pq 1)

0 < x < c/p.

(x + x) < o;
p(p q)._]

For p > q the operator (20) is elliptic, and hence h is analytic in the set
(20). Moreover that set is connected and contains a neighborhood of the
point xl x x3 0, where the Cauchy data vanish. It follows that
vanishes everywhere in the set (20).

For p < q the operator T is hyperbolic. The set (21) in that case is
bounded by the plane xl 0, a portion of the plane x c/p and a portion
of one sheet of a hyperbolic surface. The asymptotic cone of the hyperbolic
surface is a characteristic cone with respect to the operator (20). It follows
that vanishing Cauchy data on x 0 imply again vanishing of h through-
out the set (21). Since every point of the set (17) lies in a suitable plane
px - x’ c, it follows that h vanishes throughout the set (17).
The same argument yields that e 0 in (17). Then also the remaining

components of e, h vanish in (17), since each of them is annihilated either
by 1 Ptl or 1 qtl in the set (17).
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For xl 0 we find that the initial values of E, H as solution of the differ-
ential equations LE LH 0 have their support in the set

1 i(22) xl- (x + x3) -> --7
’2

xl > 0.
pq- 1 pq

This set consists of the interior of one sheet of a hyperboloid of revolution
with focus at the point (’, 0, 0), vertex at (/d’/e ’, 0, 0), and center
at the origin. The field E, H is identical with the field obtained in a
material with constants , extending throughout the whole space and with
a suitable initial disturbance distributed over the set (22).
We introduce the propagation speeds in the two media, which are respec-

tively
c 1.//, c’= 1//-u’.

At the time the support of E, H will be in the ct-neighborhood of the set
(22). This neighborhood will be bounded by the outer parallel surface of
distance ct to the hyperbolic surface

(23) xl (x2 + x3) V’2, x > 0.
pq- 1 pq

The boundary surface of the ct-neighborhood of (22), i.e., the wave front at
the time t, can also be obtained by laying off the distance ct along the outer
normal of any point of (23). Only that portion of the wave front lying in
x =< 0 has physical meaning. Let F’ (v’, 0, 0) be the focus of the hyper-
boloid, which is also the location of the original disturbance in the second
medium. LetP (xl ,x2 ,x3) beapoint of (23),i.e., apointofthe apparent
wave front at the time 0. Let Q be the intersection of the plane xl 0
with the normal to the hyperboloid at P. One easily verifies that

(1/c)QP (1/c’)OF’,

and that the sines of the angles the lines QP and QF form with the x-axis
are in the ratio c/c’. That means that the points of the wave front at the
time with xl < 0 can also be obtained by moving from F’ with velocity c’
along a line leading to a point Q of x 0 and then proceeding with velocity
c along the direction obtained from Shell’s law of refraction. (See Figure 1.)
The points on the plane x 0 in which E, H can be different from 0 lie

in or on the sphere of radius c’t about the point F’ (v’, 0, 0), i.e., lie in the
set

c,2t2(24) x2 + x3 + ,/,2 <

The vectors E’, H’ for x’ 0 have their support in the same set by virtue of
the transition conditions. We can consider E’, H’ as solutions of the hyper-
bolic equations

L’E’ L’H’ 0 for x _>- 0,
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Xl Xl

C<C

Figure 1

which have their initial values for 0, xl >- 0 concentrated at F’, and
have nonvanishing boundary data on x’l 0 only in the portion (24) of the
boundary plane. The contribution of the initial disturbance to the state of
E’, H’ at the time is confined to the sphere

(25a) 7!)2(x + x2 x3 c’2.
One easily verifies that the contribution of the boundary data is confined to
the symmetric sphere

(25b) x’ -t-- , _1.. x2 -4- x3

Hence E’, H’ have their support at the time in the union of the sets (25a)
and (25b).
Next we consider the effect of an initial disturbance concentrated at a point

F (/, 0, 0) of the first medium:

/<0.

hThe vectors e, are solutions of the boundary-initial value problem (13a,
b, c) for xl -< 0, xx >_ 0. The initial data vanish, and the boundary data are
concentrated at the point y (y, y!, y2, y3) (7, 0, 0, 0). Formula

h(15b) shows that e, will have their support in the set R(y x) O, i.e.,
on

(26) (xl /) 1 ,. 1
----Xl (x+x) =0, xx-<_, x>- 0.

pq pq- 1
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The same holds for u, v, 4), h. Those quantities continued as odd functions
of xl will then have their support for xl _>- 0, xl -> 0 in the symmetric set

(x + n) 1 ,. 1
---Xl (x2+x) =0, x-> -, x>-0.

pq pq- 1

h > 0, xl > 0 are obtained by integrating along linesThe vectors e, for

p dx + dx’ dx2 dx3 0
or

q dx + dx’ dx. dx3 O.

hIt follows that the support of e, for x => 0, x -> 0 is confined to the set

(27) (x + v) 1
---x (x+x) _->0, x>_- -v, x->0.

pq pq- 1

h H.For Xl 0 the vectors e, reduce to E, It follows that the field E, H
can be obtained by solving a pure initial value problem for E, H as solutions
of

LE LH 0

with initial values for 0 confined to the point

F (7,0,0)
and to the conical set

(28) ( + ,): (x + x) >__ 0, x _>_ -,.
pq 1

It follows that at the time the field E, H has its support in the union of the
sphere

c2t(x ) + x + x

and of the ct-neighborhood of (28). The ct-neighborhood of the set (18)
consists of the truncated cone

x--n-t- %/pq 1 pq-- 1

and the spherical cap

C

(See Figure 2.)

(x] + x) >= 0, x >- -,- ct

--7-- ct <- x <__ --7-- ct

For the purpose of finding the support of the field E’, H we first find that
of e, h and then use that

E’= (Pe)l=0 H’= (Qh)=o.

hThe vectors e, have their support in the union of the sets (26), (27). For
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//t=o

\,,,

X Xl

C<C

Figure 2

any fixed Xl _>- 0 the vectors e, h are the solutions of the pure initial value
problem (13f, g). It follows that for fixed xl >= 0 and positive the support
of e, h is contained in the ct-neighborhood of the sets (26), (27) in xl x x-
space. The plane xl 0 in x x x-space lies outside the sets (26), (27).
A point of that plane lies in a ct-neighborhood of the sets (26), (27) if it
lies in a ct-neighborhood of a boundary point of one of the sets. Since the
boundaries of the sets (26), (27) are symmetric with respect to the plane
xl 0, we find that it is sufficient to consider the ct-neighborhood of the

t) H’(xl x. x3 t) can bedif-set (26). We see then thatE’(x,x2,x,
ferent from 0 for xl >= 0, > 0 only, if there exist yl, y2, y3 with

(29) (Yl 7) 1 ,. 1
--Nxl (y.+y) =0,

pq pq- 1

(30) y + (x y,) -t- (x- y) <= ct. Y <--7,

We can take here for yl, y, ys those quantities satisfying (29), for which the
left-hand side of (30) assumes its smallest value. Then

Yl X2 Y2
are proportional to

1
yl 7,

pq 1
y

Introducing

pq
y,(31) (zl z z) 7,

pq 1

x3 Y3
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we also have

(32) (z ,z. ,z) (Oy, Oy.-t- (1 O)x., Oy + (1- O)x)

where 0 v/Y lies between 0 and 1. By (29), (31)

+ +
(33)

(z V + xl) + z + z,
while by (32)

Y + (Y x) + (Y- x)

(34) (y z) + (y z) + (y z)

+ + +
It follows from (33), (34), (30) that

Introducing finally a, a:, aa by

al 0 a2 x2 z2, a xa za

we see that in order that E’, H’ do not vanish at the point (x, x, x) it is
necessary that there exist quantities a, aa such that

(35) c-, + a + a + c’- xl + (x a) + (xa aa) t.

Relation (35) expresses that there exists a point (0, a, a) such that moving
from (v, 0,0) to (0, a,aa) with speed c and then from (0, a,aa) to
(xi, x x) with speed c’ will take a total time at most t. That is, the sup-
port of E’, H’ due to an initial disturbance at (, 0, 0) is contained in the
set given by the law of refraction of geometrical optics.
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