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We consider Borel regions W in the n-dimensional Euclidean space R, and
two functions F1, F, such that f, dF, f, dF,. are nonnegative. The integral,, dF P1(W) is called the size of W. The integral f, dF. P.(W) will
be called the power of W.

A family L of regions in R, will be called an additive family if sums, inter-
sections, and differences of L are again in L.

In the following definitions and theorems all regions considered will be
regions of an additive family L. To avoid cumbersome language we shall
however just speak of regions. A most powerful region W will mean a region
of the family L such that P.(W) >= P(W’) for all W’ eL for which
P(W) P(W’). We shall also assume that our regions satisfy the follow-
ing condition.

(i If W is any region of size , and if 0 <= < o, then W has a subregion
of size .

Condition (i) obviously implies

(i’) If W is any region of size o, and if a .__ then W W
where Wi has size >- O.

LEMMA 1. Let W be a most powerful region of size a, and WI any subregion
of W of size <= a. Let K be any region of size and K n W empty. Then
P:(K) <-_

Otherwise the region W W1 -t- K would have size and higher power
than W.

LEMMA 2. Let W be a most powerful region of size o, and W* any subregion
of W of size <= . Let K be any region of size lc such that K n W is empty;
then

(1) ]cP,.(W*) >= P,(K).

Proof. If P(K) oo, then K must have a subregion K of size _<- such
that P,.(K) . By Lemma 1 this implies P,.(W*) , and (1) holds.
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If P2(K) is finite, choose e > 0 and arbitrary. Put n [l/e] 1. Divide K
into n regions of size k/n. In at least one of these regions, say in D1, we
must have P2(D1) <- e P.(K). Hence if 0 -< /i -< k/n, there is a region
D c K such that PI(D) /i, P2(D) <- e P.(K). Now let t m/i, m integral,
k =/cm/i [/m]/i -/i where/il </i. Let W* W, where W has size/i.

Let K K -- D, where P(K) /i, P(D) /i, P(D) <__ e P.(K).
Let p rain P.(W). By Lemma 1 we have p >- P2(K), whence

P(K) <= [tm]p + e P(K) <__ tcP.(W*) -- e P.(K).

Since e was arbitrary, (1) follows.

THEOnEM 1. Let W be a most powerful region of size a. Let W Wt
be regions, P(W) o and let pl pt be nonnegative numbers such
that

p ai a, p 1.

Then p P.(W) <- P:(W).

Proof. Suppose first that W W, Wi W. Let

PI(W- W W) , PI(W- W f WI) 2.

Suppose _-> :. Then P(W) is not decreased if W is replaced by the
region W W + W* where W* is a subregion of (W W n W1) of size .
If < , choose W* Wi W W of size , and replace it
by W W1 W.
Without loss of generality we may therefore assume that either W W

orWi W.
Now suppose W1 W, W

_
W. Let P(Wx W) ,

P(W W2) . If p tl => p ., replace W by W, and subtract from
W1 W a region W* of size (p/p).. Let the two new regions be
W’ W’ Then

p P(W) q- p PI(Wr) p P(W) + p P(W),

and (Lemma 2)

p P2(WrI) --k p P(W) p P(WI) q- p P(W) p P.(W*)

+ p. P.(W W.) >- p P.(W) + p P(W.).

If p/ < p. ., replace W by W and add a region W*

___
W W of size

p i/p to W..
We can continue this process until either Wi W for all W or W W

for all W, but then the equation ’ pP(W) a shows that all W are of
size a, and we can replace them by W. This proves Theorem 1.

COROLXY TO THEOREM 1. Let {W} be an infinite sequence of regions, and
{pi} a sequence of nonnegative numbers such that p P(Wi) P(W) and
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p 1, where W is a most powerful region. Then

p P.(W) <= P:(W).

If P(W) , then the corollary is obvious. If P(W) <
Theorem 1 we hve for every N

--:v pt P.(Wt) =< P2(W)

hence pi P.(Wt) converges and does not exceed P(W).

then by

THEOREM 2. Let S be a space, and Q a probability measure defined over S.
For every z e S let W(z) be a region in R, Let further

f Pl(W(z)) dQ

and assume that f P.(W(z) dQ exists. If W is a most powerful region of size
a, then

(2) f P(W(z)) dQ <- P(W).

We may assume that P2(W) < .
If a 0, then PI(W(z)) 0forasetofzofQ-measurel. Hence

P(W(z)) <= P(W) except in a set of Q-measure 0, and (2) follows. We
may therefore assume that > 0.

For every Q-measurable set St let Q(St) be the Q-measure of S. For
every el > 0, 1 > e > 0 we can find a covering {Sil of S such that

f P:(W(z) dQ P:(W(t.) )Q(Si) 7,

0<- m--< el,eSt,and

f P(W(z))dQ P(W(,))Q(St)-7, 171<= ea.

If 7 is positive, apply the Corollary to Theorem 1 to a most powerful sub-
region of W of size a 7. If 7 is negative, choose a most powerful region
W* of size a 7 containing W. Then

f P.(W(z)) dQ <= P:(W(t))Q(St) <= P(W*) P(W) + P2(W* W)

<= P.(W) -[- eFt(W).
This proves (2).

In a perfectly analogous manner we can also define a least powerful region
and obtain
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THEOREM 2a. Let S be a space, and Q a probability measure defined over S.
For every z e S, let W(z) be a region in R, Let further

f Pl(W(z)) dQ a,

and assume that fP(W(z)) dQ exists. If W is a least powerful region of
size a, then

(2a) f P2(W(z) dQ >= P2(W).

The proof of Theorem 2a can be obtained from that of Theorem 2 by minor
and fairly obvious changes and may be left to the reader.

Applications
The results we shall derive in this section are well known, but the proofs

given in the literature [1] are rather cumbersome. Here we obtain them by
simple substitutions in Theorem 2.

THEOREM 3. Let F(x) be a function with a nonincreasing and nonnegative
derivative, defined for x >= a. Let Q be a distribution over x >= a, and let E denote
mathematical expectation under Q. Then

(3) E(F(x) <= F(E(x) ).

Proof. In Theorem 2, put Fl(x) x a, F2 (x) F(x) F(a). Let L
be the additive class of regions generated by the intervals in [a, ). A mo-
ment’s reflection will show that the region (a, x) is a most powerful region of
size x a. Now put W(z) (a, z). Then Theorem 2 gives" If
E(z a) x a, then E(F(z) F(a)) <= F(x) F(a); and this is (3).

If in (3) we put F(x) log x, we get

(4) E(log x) <= log E(x),

or the geometric mean is less than or equal to the arithmetic mean.
If in (3) we put F(x) x, F2(x) x, k < 1, a O, then we obtain

(5) E(x) <- (E(x)),
where Q is any distribution over [0, ). If in (5) we put x , ply,
0 < p < v, weget

(6) (E(z) )1/ _<_ (E(z) )1/,
a well-known inequality. If in (6) we put p 1 and let Q be a discrete dis-
tribution where z takes the value x with probability p, we get

P X ( P X)1Iv.
Putting now 1Iv q- 1Iv’ 1, p t’/ t’, x z/t’/, we obtain
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the Hoelder inequality for v > 1, 1/v - 1Iv’ 1. Similarly if in (6) we put
v 1, then p < 1, and an analogous substitution leads to

E >__ (E
for p < 1, 1/p lip’ 1, the Hoelder inequMity for p < 1.

Let F(x) be a monotonic, continuous function in [0, such that

F(x -q- y) <= F(x) + F(y);

then F(x -q- y) F(x) <= F(y), so that, for Fl(x) x, F2(x) F(x), the
region [0, y] is a most powerful region provided F(0) 0. Hence we get
from Theorem 2 for any positive random variable x

(8) E(F(x) <= f(E(x) ).

A similar rgument shows, by using Theorem 2a, that F(O) O, F(x - y) >-
F(x) -q- F(y) implies

(8’) E(F(x) >_ F(E(x) ).

If we call a function convex if it sstisfies (8’) for every positive random
variable, and concave if it stisfies (8), we may state

THEOREM 4. Let F x be monotone, continuous, and defined in x >= O.
Let further F(O O. Then F(x) is concave if and only if
(9) F(x + y) <= F(x) + F(y).

F(x) is convex if and only if
(9’) F(x + y) >= F(x) + F(y).

That the conditions re sufficient has been proved above. To prove their
necessity consider a rndom variable taking two vlues 0, x, with probabilities
p, q respectively. Then (8) gives q F(x) <-_ F(qx) for q -< 1, and
soqF(x) >= F(qx) forq >- 1. Ify qx, q < 1, weget

F(x + y) F((1 + q)x) <= (1 + q)F(x) F(x) + q F(x)

<= F(x) + F(qx) F(x) + F(y).

The inequality (9’) follows from (8’) in the same wsy.
Applying the inequality (3) to the function GF-1, where G and F are mono-

tonic functions and GF- has a decreasing derivative, we get

E(GF-I(x) <_ GF-(E(x) ),

and replacing x by F(x) we get

(10) G-tE(G(x)) <= F-(EF(x)).

It my be amusing to mention the motivation for the inequality (2).
If we interpret Ft(x), F2(x) s distribution functions, then W becomes a
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most powerful critical region for testing the hypothesis that the random vari-
able has the distribution function Fl(x), when the only possible alternative
is the distribution F2(x). The variable z represents a random variable which
is unrelated to the hypothesis tested. If we consider a procedure by which
critical regions are determined by a random observation on z in such a way
that the first equation of Theorem 2 is satisfied, then (2) expresses the fact
that the power of our critical region cannot be increased by random experi-
ments which are not related to the hypothesis tested. Thus we have derived
Hoelder’s inequality from the fact that we cannot increase our knowledge on
the milk yield of cows by flipping a coin or by measuring the weight of herrings.
However, lest we trust our intuition too much in these matters, we shall show
by an example that the condition (i) is indeed necessary for Theorems 1 and 2.

Let be a random variable taking the values 0, 1, 2. Let

Fl(x) 0 for x < 0, F2(x) 0 for x < 1,

for 0__<x< 1, 1 for x_>- 1.- for 1 =< x < 2,

1 for 2 =< x;

All available regions of size have power 0. We can however get size - and
power 1/2 if we flip a coin and choose for W the point 1 whenever a head appears
and the point 3 whenever a tail appears.
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