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This note deals with the same subiect as a recent paper by Rademacher.
Let H denote the upper half-plane, F the modular group. The theorem in

question may be stated as follows"

THEOREM 1. Let F be a subgroup of finite index of F. Let f be regular and
bounded in H, and let

1 f(T’-) f(T)

for every transformation T’ of F and every point r ofH. Thenf is constant in H.

This will be proved in two stages" First the particular case F F will be
deduced from well-known properties of regular functions, then the general
result from the particular case.

THEOREM 2. Let S be a closed bounded set of points, contained in the domain
D. Let g be regular in D, and suppose that every value assumed by g(z) in D
is alread assumed in S. Then g is constant in D.

Proof. The set of the values assumed by g(z) in S has a greatest mem-
ber, but the set of the values assumed by g(z) in D has no greatest member
unless g is constant in D. By hypothesis, these two sets are the same. Hence
the result.

THEOREM 3. Let be regular and bounded in H, and let

(2)

for every transformation T of F and every point r of H. Then is constant in H.

Proof. Let
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Then, since we may take Tr r -}- 1, it follows from the hypotheses that
g(z) is regular and bounded for 0 < ]z < 1. Hence limz+0 g(z) exists, and,
defining g(0) as this limit, we have g regular also at 0. Thus, defining D as
the unit disc, we have g regular in D. Now let S consist of 0 and those points
z for which 0 < z < 1 and log z -> 2r, the logarithm having its principal
value. Then S is closed and bounded and contained in D. Thus all the
hypotheses of Theorem 2, other than the last, are satisfied. So is the last one
if, for every point z’ of D, there is a point z" of S such that g(z") g(z’).
If z’ 0, take z" 0. For any otherpoint z’ of D, wehave (log z’)/(2ri) H.
Hence there is a modular transformation T such that, putting

we have

(6)

and, by (2) and (3),

TI (log z’)/(2ri)} r,

veil,

1/2<rer_<_1/2,

(7) (r) { (log z’)/(2ri)} g(z’).

Now let z" e2i. Then, by (4),

(s) 0 < Iz"l <

By (5),--r < im (2rir) -< r, so that

(9) log z" 2rir,

and hence, by (6), log z"l >= 2r. This shows that z" e S. Also, by (3),
(8), (9), and (7), g (z") g (z’). Thus the last hypothesis of Theorem 2 is
also satisfied, and, by that theorem, g is constant in D, from which it easily
follows that is constant in H.

Proof of Theorem 1. Since f is continuous in H, it is sufficient to prove
that f cannot assume infinitely many values in H.

Let the index of F’ be k, and let the right cosets of F’ be 11, F2, Fk,
where I’1 1’. For m 1, 2, ], choose Tm from I’m, and let

(10) fro(r) f(Tm r).

In view of (1), fro(r) is independent of the choice of Tin. Then

(11) f,(r) f(r) (r ell),

and, for any member T of F, there is a permutation nl, n,., nk of the
numbers 1, 2, k, such that T T e I (m 1, 2, k). The formula
T T e F means that there is a member T’ of 1’ such that Tm T T’Tn.
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From this and (10) and (1) it follows that

f(Tr) f(T Tr) f(T’Tn r) f(Tn, r) fn(r).
Thus

(12) f( Tr) fn( r) (m 1, 2, k; re H).

Now let w be any point of H, and
k(13) (r) I-I-- {f(r) f(w)}.

Then, by (12),
k k(Tr) l= {f(r) f(w)} Hm=l {f(r) f(w)} (r) (r ell).

Thus (2) holds for every transformation T of F and every point r of H, and
it is trivial that is regular and bounded in H. Hence, by Theorem 3, is
constant in H. In particular, (w) (i). Now, by (13) and (11),
(w) 0. Hence (i) 0. From this and (13) it follows that

kII=: {f(/) f(w)} 0,

which means that f(w) cannot have any value other than f(i), f(i), ...,
f(i). Since this holds for every point w of H, the theorem is proved.
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