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1. Introduction

A set of ] distinct residues r, r., r modulo is called a difference set
if all nonzero residues modulo v occur ), times among the differences
r r. (i j). The integers v, It, are called the parameters of the set and
satisfy the relation ](] 1) (v 1). Difference sets arise in a natural
way in many combinatorial and statistical problems and have been exten-
sively studied. There is given in [8] a survey of all difference sets with
parameters v,/, , for which ] is in the range 3 =< ] -< 50.
The problem studied in this paper was suggested to the author by the follow-

ing theorem of Stanton and Sprott [10].

THEOREM. Let g be a primitive roo of both p and p - 2, where p and p 2
are a pair of $win primes. Then he numbers

1, g, g, g(-)’, 0, p-t-2, 2(p +2),... (p-- 1)(p +2)

form a difference set with parameters v p(p + 2), / (v 1)/2,, (v- 3)/4.

In the light of this theorem our problem may now be described as follows.
Let g denote a common primitive root of two distinct primes p and q. Let e
denote the greatest common divisor of p 1 and q 1, and let d be defined
by means of the equation (p 1)(q 1) de. We shall investigate the
conditions under which the set of numbers

(1 1) 1, g, g gd--1..., 0, q, 2q, ..., (p-- 1)q

constitutes difference set with the parameters

(1.2) v--pq, k (v- 1)/e, h (- 1- e)/e.
Necessary and sufficient conditions for the existence of such difference sets

are given in Theorem i of 3. Since k d - p, wehave at once the necessary
condition" q (e 1)p + 2. That this condition is ulso sufficient when
e 2 is a consequence of the Stanton-Sprott theorem. Indeed, we show in

4 that Theorem i with e 2 actually reduces to the Stanton-Sprott theorem.
In 5 we consider the case e 4. We prove in Theorem 4 that if g is suit-

ably selected, then the set of numbers (1.1) forms a difference set with the
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parameters (1.2) if and only if q 3p -t- 2 and (v 1)/4 is an odd square.
This result resembles a theorem of Chowla [5] which states that the biquadratic
residues modulo a prime p 4f q- 1 form a difference set if and only if
(p 1)/4 is an odd square. Theorem 4 exhibits a family of difference sets
not previously known. The simplest example in this family has the param-
eters v 901, k 225, X 56 and consists of the numbers

1, 5, 5, ..., 5207; 0, 53, 106, ..., 848.

It is of interest to digress and point out that the Stanton-Sprott theorem
has an important application in the theory of Hadamard matrices. These
are the square matrices with entries 4-1 and of order N such that HHr NI.
Here Hr is the transpose of H, and I is the identity matrix of order N. By
a theorem of Todd [11] the existence of a difference set with parameters

4t 1, / 2t 1, }, 1 implies the existence of a Hadamard
matrix of order 4t. Hence the Stanton-Sprott theorem implies the following
theorem of Gruner [7] " If p and p -- 2 are twin primes, then there exist
Hadamard matrices of order p(p -- 2) -- 1.
The method of this paper is based on cyclotomy. Since the modulus v in

(1.2) is composite, a modified approach is necessary. The usual formula-
tion of cyclotomic theory is based on the fact that if g is a primitive root of a
prime p, then the p 1 numbers g (s 0, 1, p 2) constitute a re-
duced residue system modulo p. However, if p and q are distinct primes, the
modulus v pq does not possess a primitive root. In 2 we get around this
difficulty by employing common primitive root g of p and q and establishing
the existence of a number x such that the (p 1)(q 1) numbers
gx (s 0,..., d 1; i 0, e 1) constitute a reduced residue
system modulo v.

In summary, we repeat that this paper is concerned with the cases e 2
and e 4; we plan in a later paper to discuss the cases e 6 and e 8.

2. Cyclotomy modulo v

Let v pq, where p and q are distinct primes. In this section we develop
the rudiments of a theory of cyclotomy modulo v. Lemma 1 overcomes the
difficulty that arises because v does not possess a primitive root. Although
our method is rather different, we follow the pattern of the modulo p case as
presented by Bachmann [1].
The main tool may be stated as follows.

LEMMA 1. Let g be a fixed primitive root of both p and q; let e denote the
greatest common divisor of p 1 and q 1, and put (p 1)(q 1) de.

A summry of the literature concerning the existence problem for Hadmrd
mtrices is vMlble in [2].

The uthor is indebted to Alfred Bruer for this reference. Gruner’s theorem ws
rediscovered by Bruer in [3].

The uthor wishes to thnk Professor N. J. Fine for kindly suggesting the proof of
Lemm 1.
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Then there exists an integer x such that the de integers gSx (s O,
i O, e 1) constitute a reduced residue system modulo v.

,d-l;

Proof. The existence of a common primitive root g of p and q is assured by
the Chinese remainder theorem. Let x, y be a pair of integers satisfying the
simultaneous congruences

x -= g (modp), y 1 (modp),
(2.)

x - 1 (modq), y-- g (modq).

That unique values of x and y exist modulo v is also assured by the Chinese
remainder theorem. Clearly we have xy =- g (mod v). By [9, p. 54] a com-
mon primitive root of p and q is at the same time a primitive )‘-root of pq.
Therefore the exponent to which g belongs modulo v is )‘(v), the least com-
mon multiple of p 1 and q 1. It follows that

)‘(v) (p 1)(q 1)/e d.

We shall prove that the integer x defined by (2.1) satisfies the asser-
tion of the lemma. For this purpose we first show that no power g"
(s 0, d 1) of g is congruent modulo v to a power x (i 0,
e 1) of x except when s i 0. This is true because the congruence
xSy =- x (mod v) in conjunction with (2.1) implies the divisibility relations
(p- 1) (s- i) and (q- 1) Is. Consequently eli and soi_-> eunless
i 0. It follows that the congruence

g’x =- gtxJ (mod v) (s,t 0,...,d 1; i,j 0,... e 1)

is not possible unless s and i j. The proof of Lemma i is thus complete"
We remark that the integer x of Lemma 1 is not unique. Thus the integer

y defined by (2.1) could serve equally well in the same role. We also point
out that a primitive ),-root of v is not necessarily a primitive root of both
p and q. For example, 2 is a primitive )‘-root of 21 and a primitive root of 3.
But 2 is not a primitive root of 7.

It is an immediate consequence of Lemm 1 and its proof that x is con-
gruent modulo v to a power of g. That is, the congruence

(2.2) x g (modv)

prevails for some fixed integer u such that 0 _-< u --< d 1. We note that
tt 1 because x cannot belong to the exponent (v) modulo v.

Let us now putp- 1 ef, q- 1 ef’, d elf’. Since (f,f’) 1,
f and f’ cannot both be even. If fft is odd, then-1 ---g/ (rood v).
But if ff’ is even, then there is no value of s (s 0,..., d 1) such
that the congruence --1 g8 (rood v) is satisfied. We therefore put
-1 g% (rood v) with 0 < i < e. Squaring both members of this con-
gruence and using (2.2), we find that the two assumptions 0 < i < 1/2e and
1/2e i e both lead to contradictions. The only remaining possibility is



110 ALBERT LEON WHITEMAN

i 1/2e. We have thus proved that

(2.3) 1 ------ \g2 (mod v) (ff’ even),
(mod v) (ff’ odd),

where is some fixed integer such that 0

_
-< d 1.

Lemma 1 provides the basis for our definition of the cyclotomic number
(i,j) (i,j)e. By means of this lemma the (p 1)(q 1) positive
integers less than v and prime to v are separated into e classes Co, Ce-1
each containing d numbers in the following manner. The integer a e C pro-
vided that

(2.4) a =- gSx (mod v)
for some s (s 0, d 1). For fixed integers i, j the cyclotomic con-
stant (i, j) denotes the number of members of the class C that are followed by
a member of C.. In other words, (i, j) is the number of solutions s, of the
trinomial congruence

(2.5) gSx + 1 =- gtx (modv),
where the values of s and are each selected from the integers 0, 1, d 1.
It is clear from (2.2) that the value of (i, j) is unaltered if either i or j is
augmented (or diminished) by a multiple of e.
We should keep in mind that the number (i, j) is a function of g and

x as well asv. Letg and x be given by Lemma 1. Keepgfixed, andlet
x’ be another integer with the property of x. Then x’ =-- gxk (mod v)
for some pair of integersu, ] (u 0,-.., d 1; / 0,..., e 1).
It follows from (2.2) that / is relatively prime to e. Indeed, if
(], e) i > 1, e el ti,/ /1 i, then x’1 g’+’k (mod v). The proof of
Lemma 1 shows that the last congruence is impossible. The correspondence
between the numbers (i, j)’ for g and x’ and the numbers (i, j) for g and x is
now given by the equation (i,j)’ (ki, ]j). Next, keep x fixed in Lemma 1,
and replace g by gr, where r is any integer prime to d. Then gr is also a common
primitive root of p and q. The set of powers of g modulo v is in some order
the same as the set of powers of g. Hence the correspondence between the
numbers (i, j) () for g and x and the numbers (i, j) for g and x is given by
the equation (i,j) (’ (i,j). It is, however, not necessarily the case that all
common primitive roots g of p and q are powers of a single one. Thus, if
(0, 0) and (0, 0)’ correspond to two roots g and g’ respectively, then the value
of (0, 0) does not necessarily equal the value of (0, 0)’. In this connection
see Lemma 6 in 5.

Let us suppose in the rest of this section that the choice of g and x in Lemma
1 is kept fixed. We proceed to develop two basic properties ((2.6) and (2.7))
of the symbol (i, j).

Multiplying both members of (2.5) by the reciprocal of its first term, we
get

g-’-x- - 1 gt-’x- (mod v),
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with t fixed by (2.2). The exponents - s and s uniquely determine
s and modulo d. Hence we obtain the formula

(2.6) (i, j) (e i, j i).

When fff is even, the congruence (2.5) may be written as

g+x+(e/) + 1 -- g+x+(1) (mod v),

where v is fixed by (2.3). On the other hand, when ff’ is odd, (2.5) may be
written as

g+(/)x + 1 g+()x (mod

We have therefore established the formula

(j + 1/2e, i + 1/2e) (ff’ even),
(2.7) (i, j) ],(j, i) (ff’ odd).

The following linear relation will be useful in later sections"- (V 2)(q 2) 1(2.s) (i, j) +
where we have made he definition

(2.9) 1 if ff’ is even and i -e or if ff’ is odd and i 0; 0 in all
other cases.

In order to prove (2.8) it is convenient to put N N(s) 1 + g’x for a
fixed value of i. Let N denote the number of values of s (s 0, d 1)
for which N is divisible by v. Then (2.3) and (2.9) are summurized in the
formula N . Also let N, denote the number of values of s for which N
is divisible by p but not by v. As s ranges from 0 to d 1, the least positive
remainders of g% modulo p range (q 1)/e times over euch of the integers
between 1 and p 1. Hence N f’ . Similurly, let Nq denote the
number of values of s for which N is divisible by q but not by v. We now
obtain Nq f i. The left member of (2.8) may be interpreted as the
number of vMues of N that are relatively prime to v. This number is clearly
equal to d N, N, Nq, which reduces to the right member of (2.8).
Formul (2.8) may be expressed alternatively as follows.

e--1

(2.10) ’ (j, i)
(p 2)(q- 2) 1 + e,

a-=o e

wherer lifi Oandv Oifl _-< i =< e- 1. Whether ff is even or
odd, (2.10) follows from (2.8) upon applying (2.7).

Finally, we return to the notation of (2.4); for fixed i (i O, e 1)
the class C consists of the numbers g’x (s O, d 1) modulo v. We
shall need the following lemma in 3 and 5.
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LEMMA 2. Let r be a fixed integer divisible by p or q but not by v.
number of solutions of the congruence

Then the

(2.11) y-- z-- r (modv)

with y in class C1 and z in class Co is given by (p 1)(q 1)/e2.

Proof. Because of symmetry we may assume without loss of generality
that r is divisible by p. Let g be a primitive root of p and q, and let x be de-
fined as in Lemma 1. Then x 1 (mod v), and gx 1 (mod p) for some
fixed integer u such that 0 =< u <- p 2. In order for the congruence

gSg x ------ r (mod v) (s, 0, d 1) to be solvable, it is necessary that
s u (mod p 1). Let s range over the set of integers/0, 1, d 1}.

We divide this set into (p 1 )/e disioint subsets each of which contains q 1
consecutive integers. Thus thejth (j 0, (p 1 e)/e) subset con-
sists of the integers

(2.12) j(q-- 1), j(q-- 1) -- 1, ..., j(q-- 1) --q--2.

For a fixed value of m (m 0, (q 1 e)/e) consider the q 1 dif-
ferences g’(P-)+8+x g8 as s ranges over the integers in (2.12). Each
of these differences is divisible by p, but no two of them are congruent
modulo v. Otherwise we would have the congruence x g--m(p-) (mod v)
in violation of the proof of Lemma 1. It follows that the q 1 differences are
congruent modulo v in some order to the integers p, 2p, (q 1)p. Con-
sequently, as m ranges from 0 to (q 1 e)/e and s ranges from 0 to d 1,
the fixed value of r occurs exactly (p 1)(q 1)/e times amongst the
differences under consideration. This completes the proof of Lemma 2.
The theory of cyclotomy modulo v initiated in this section is interesting

in its own right. The author is preparing a further development of the sub-
ject for publication elsewhere.

3. Difference sets modulo v

The obiect of this section is to establish a connection between the cy-
clotomic numbers (i, j) and difference sets of the type described by means of
(1.1) and (1.2). Our principal result may be stated as follows.

THEOREM 1. Let e denote the greatest common divisor of p 1 and q 1
where p and q are distinct primes, and put (p 1)(q 1) de. Let g be a
primitive root of both p and q. Then the numbers

(3.1) 1, g, g:, ..., g-i; 0, q, 2q, ..., (p- 1)q

form a difference set with parameters v pq, tc (v 1)/e, (v 1 e)/e
if and only if the following two conditions are satisfied"
(3.2)

(3.3)

q (e-- 1)p--2,

(i, 0) (e-- 1)((p-- 1)/e) (i- 0,1,... ,e-- J).
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It should be noted that the number (i, O) is function of g nd x in Lemm
1. However, when condition (3.3) is stisfied, 11 the (i, 0) re equal. The
vlue of (i, 0) is then no longer function of x.
The statement that the numbers in (3.1) form difference set of multi-

plicity , is equivalent to the statement that for every fixed integer r not
divisible by v there re , solutions of the congruence

(3.4) y- z-- r (mod

with y nd z selected from (3.1). For the ske of brevity we shll sy that
ech of the numbers 1, g, g, g- is in class Co nd that ech of the
numbers 0, q, 2q, (p 1)q is in class D. This is consistent with the
notation of (2.4). The proof of Theorem 1 will be expedited with the id of
the next two lemms.

LEMM_ 3. Let r be a fixed integer not divisible by q. Then the number of
solutions of the congruence (3.4) with y in class Co and z in class D is equal o
(p- 1)/e.

Proof. As in the proof of Lemm 2 we divide the set of integers
{0, 1,... d 1} into (p 1)/e disioint subsets ech of which contains
q 1 consecutive integers. For vlues of s in the jth subset (2.12), exactly
one of the numbers g r is divisible by q. Lemm 3 is thus established.

LEMMA 4. Le r be a fixed integer divisible by p bu no by q. Then he
number of solutions of the congruence (3.4) with y and z both in class Co is given
by (p- 1)(q- 1 e)/e.

Proof. Since the following proof is slight modification of the proof
of Lemm 2, we shll not present it in complete detail. A necessary con-
dition for the solvability of g’ g ----- r (mod v) (s, 0, d 1) is

s (modp 1). The exponent to which g belongs modulo v is d.
Therefore, for ech integer m 1,-.., (q 1 e)/e the difference
g-> 1 is divisible by p but not by v. But if m 0, this differ-
ence lso equals zero nd hence is divisible by v. It follows that for fixed
m (m 1, (q 1 e)/e) no two of the q 1 differences g->+ g
with s in (2.12) re congruent modulo v. As result, these q 1 differences
re congruent modulo v in some order to the integers p, 2p, (q 1)p.
Consequently, s m rnges from 1 to (q 1 e)/e nd s rnges from 0 to
d 1, the fixed vlue of r occurs (p 1)(q 1 e)/e times mongst the
differences under consideration. This completes the proof of Lemm 4.

Proof of Theorem 1. We first establish the necessity of conditions (3.2) nd
(3.3). Let us suppose that the numbers in (3.1) form difference set with
the prescribed pmmeters. Then (3.2) is n immediate consequence of the
relation ] d -5 p. To establish (3.3) it suffices to restrict our ttention to
ny fixed vlue of r relatively prime to v. The number of solutions of (3.4)
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with y and z both in class Co is the same as the number of solutions of
r -t- 1 y (rood v), with z 1 (rood v). From the definition of the cy-
clotomic number in (2.5) it follows that if r is in class C (i 0, e 1),
then this number is also equal to (i, 0). Moreover, by Lemma 3 the number
of solutions of (3.4) with y in class Co and z in class D is (p 1)/e. Again,
by Lemma 3 the number of solutions of (3.4) with y in class D and z in class
Co is (p 1)/e. The multiplicity }, of the difference set under consideration
is therefore equal to (i, 0) + 2(p 1)/e. Making use of (3.2) we now
deduce (3.3). This completes the proof of necessity.
To prove the sufficiency of conditions (3.2) and (3.3), let us hence-

forth suppose that (3.2) is satisfied and that all the numbers (i, 0)
(i 0, .-., e 1) are equal. Then (2.10) yields

e(i, O) E-o (j, O) (e 1)(p 1)/e

for each integer i 0, e 1. Hence the common value of the numbers
(i, 0) is in fact the right member of (3.3). Let us also note that (3.2) in con-
junction with the relation/c d - p implies that lc (v 1)/e.
To complete the proof we have to show that the numbers in (3.1) form a

difference set of multiplicity k (v 1 e)/e. There are three cases to
consider.

(i) The integer r in (3.4) is divisible by p. By Lemma 3 the number
of solutions of (3.4) with y in class Co and z in class D is (p 1)/e. Again,
by Lemma 3 the number of solutions of (3.4) with y in class D and z in class
Co is also (p 1)/e. By Lemma 4 the number of solutions of (3.4) with y
and z both in class Co is (p 1)(q 1 e)/e2. Employing (3.2) we derive
the result that the number of solutions of (3.4) with y and z each selected
from(3.1) isk- (pq 1- e)/e.

(ii) The integer r in (3.4) is divisible by q. By Lemma 4 (with p and q
interchanged) the number of solutions of (3.4) with y and z both in class
Co is (p 1 e)(q 1)/e. It is also clear that the number of solutions of
(3.4) with y and z both in class D is equal to p. For if z takes on any one of
the p values in class D, then y is in class D and is uniquely determined. The
total number of solutions in this case again turns out to equal X.

(iii) The integer r in (3.4) is relatively prime to v. We have already
demonstrated (in the necessity portion of the proof) that if r is in class
C (i 0,... e 1), then the number of solutions of (3.4) with y and z
selected from (3.1) is equal to (i, 0) - 2(p 1)/e. Replacing (i, 0) by its
value in (3.3) we find again that the number in question reduces to, (pq 1 e)/e. Thus the proof of Theorem 1 is in all cases complete.
The purpose of the next theorem is to show that Theorem 1 cannot be in-

voked to produce a difference set when (p 1) (q 1)/e is odd. Specifically,
we shall prove the following result.



A FAMILY OF DIFFERENCE SETS 115

THEOREM 2. Let the hypotheses in the first two sentences of Theorem 1 be
satisfied. Furthermore, put p 1 ef, q 1 eft. Then the numbers
(3.1) cannot form a difference set of the type prescribed in Theorem 1 if ff’ is odd.

Proof. Throughout the proof of Theorem 2 we shall assume that ff’ is odd.
The symbol (i, 0) takes on e values as i ranges from 0 to e 1. We shall
show that exactly one of these values is odd, and the remaining e 1 are
even. As a result, condition (3.3) of Theorem i fails to be satisfied.
By (2.6) we have (i, i) (e i, 0). Hence it suffices to show that ex-

actly one of the values (i, i) (i 0, ..., e 1) is odd, and that the re-
maining e 1 are even. Let r be an integer in class C (i 0, e 1).
Since ff’ is odd, it follows from (2.3) that v r is also in class C. The symbol
(i, i) counts the number of pairs r, r -- 1 (r 0, v 1) such that r and
r -- 1 are both in class C. For every such pair there corresponds a pair
v r 1, v r (v- r- 1 0,... ,v- 1) of the same type. There-
fore the contribution to the cyclotomic number (i, i) is even unless there is an
r such that r v r 1. In other words, the cyclotomic number (i, i) is
odd or even according as (v 1)/2 belongs to the class C or not. Theorem 2
is thus established.

4. The case e 2

In this section we first obtain exact formulas for the cyclotomic numbers
(i,j) in the case e 2. We then show that the Stanton-Sprott theorem in 1
is an immediate consequence of Theorem 1 in 3.
The number of common primitive roots modulo v of p and q is

(p-- 1)(q-- 1). Now lete-- 2sothat d (p 1)(q 1)/2, and
let g be one such root. Then the other common primitive roots of p and q
are those powers g for which r is relatively prime to d. The set of powers of
gr modulo v is in some order the same as the set of powers of g. Consequently
the value of (0, 0) does not depend upon the selection of g. Indeed, it turns
out that the values of the four constants (i, j) with i, j 0, 1 are all inde-
pendent of g and x in Lemma 1.
We now evaluate the (i, j) explicitly. There are two sets of cyclotomic

formulas according as ff’ is even or odd.
Case 1. Let ff’ be even. By (2.6) and (2.7) we have (0, 0) (1, 0)

(1, 1). Applying (2.8) with i 0 and i 1 we obtain at once

(4.1) (0 0) (p 2)(q 2) - 1 (0, 1) (p 2)(q 2) 3
4 4

Case 2. Let ff’ be odd. In this case we derive from (2.6) and (2.7) the
relations (0, 1) (1, 0) (1, 1). Applying (2.8) again with i 0 and
i 1 we get

(4.2) (0, 0) (p 2)(q 2) -t- 3 (0, 1)
(p 2)(q- 2) 1

4 4



1 ] 6 ALBERT LEON WHITEMAN

We now have on hand the necessary formulas for the application of Theorem
1 with e 2. We shall prove the following formulation of the theorem of
Stanton and Sprott.

THEOREM 3. Let g be a common primitive root of the primes p and q; let
(p 1, q 1) 2 and d (p 1) (q 1)/2. Then the set of numbers

1, g, g -1..., g 0, q, 2q, ..., (p- 1)q

is a difference set with parameters v pq, / (v 1)/2, X (v 3)/4 if
and only if q p 2.

Proof. For the deduction of Theorem 3 from Theorem 1 with e 2 we
need consider only Case 1 in view of Theorem 2. Actually in Case 2, (4.2)
implies that (0, 0) (1, 0). Therefore condition (3.3) of Theorem 1 fails
to be satisfied. Turning to Case 1 we see that (3.2) states that q p - 2.
When this condition is satisfied, (4.1) yields (0, 0) (1, 0) (p 1)/2)
so that condition (3.3) is also satisfied. Conversely, the validity of (3.3) im-
plies the validity of (3.2). We note as well that d 1 (p 3)/2 when
q p - 2. The proof of Theorem 3 is thus complete.

Stanton and Sprott [10] have generalized Theorem 3. Their result estab-
lishes the existence of the abelian difference set (see [10] for the definition)
with parametersv pn(pn_ 2),/ (V 1)/2, X (v 3)/4, where
pn and qm pn

_
2 are both prime powers.

5. The case e 4

The purpose of this section is to produce a family of difference sets con-
forming to Theorem 1 with e 4. We shall require precise formulas for the
cyclotomic numbers (i, j) (i, j)4. When e 4, both primes p and q in
the product v pq are of the form 4n + 1. By a well-known theorem
[9, p. 128] there are exactly two representations of v in the form v a + 4b
with a 1 (rood 4) and the sign of b indeterminate. Let

(5.1) v a2+4b, v a’+4b’ (a= a’---- 1 (mod4))

denote these two representations. Let g be a common primitive root of p and
q, and let x be selected as in Lemma 1;let (i, j) be the cyclotomic number
defined by means of (2.5). We now prove

LEMMA 5. When e 4 the sixteen cyclotomic constants (i,j) (i,j 0,
depend solely upon one of the two decompositions in (5.1).

Proof. With the aid of (2.6) and (2.7) the sixteen constants (i,j)4 can be
expressed in terms of just five of these numbers. These relations are exhibited
schematically in the following two tables. In each table the entry in row i
and column j is equal to (i, j)4
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(5.2)

ff’ even ff’ odd
0 1 2 3 0 1 2 3

A B C D

E E D B

A E A E

E D B E

A B C D

B D E E

C E C E

D E E B

At this point it is convenient to divide the discussion into two cases ac-
cording as ff’ is even or odd.

Case 1. Let ff’ be even. By means of (2.4) the (p 1)(q 1) integers
in a reduced residue system modulo v are separated into four classes Co, C1,
C2, C3each containing d (p- 1) (q 1)/4 numbers. Exploiting a cyclo-
tomic device due to Gauss [6, p. 81] we consider the number N of solutions of
the congruence

(5.3) 1 +a ++3"---- 0 (modv),

where a e Co, e C1,3" e C2. We proceed to calculate the number N in two
ways.

In the first place, let a run over the d integers in Co. Then -a runs
over the d integers in C2 in view of (2.3). By the first table in (5.2) the
number of times that 1 + a e Ci is A, B, C, or D according as i 0, 1, 2, or 3.
For a fixed a such that 1 -t- a e Ci, the corresponding number of solutions in, 3" of (5.3) is E, D, B, or E according as i 0, 1, 2, or 3. By (2.3) there
is no value of a for which 1 - a is divisible by v. There are (q 1)/4 values
of a for which 1 + a is divisible by p, and (p 1)/4 values of a for which
1 + a is divisible by q. Consider now a fixed value of a for which 1 + a is
divisible by either p or q. The corresponding number of solutions in , 3" of
(5.3) is then the same as the number of solutions of (2.11) in Lemma 2 with
e 4. Applying Lemma 2 we see that this number is (p 1) (q 1)/16.
Collecting the results in this paragraph we now get

N (p- 1)(q- 1)2/64
(5.4)

q- (p 1)2(q 1)/64 if- AE q- BD q-- BC q-- DE.

In the second place, let in (5.3) run over the d integers in C1. By the
first table in (5.2) the number of times that 1 q- e Ci is E, E, D, or B
according as i 0, 1, 2, or 3. For a fixed such that 1 q- C, the cor-
responding number of solutions in a, 3’ of (5.3) is A, E, A, or E according as
i 0, 1, 2, or 3. By (2.3) there is no value of for which 1 q- is divisible
by v. There are (q 1)/4 values of for which 1 q- is divisible by p, and
(p 1)/4 values of for which 1 q- is divisible by q. Consider first a
fixed value of for which 1 q- is divisible by p. The corresponding number
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of solutions in a, , of (5.3) is then the same as the number of solutions of (3.4)
in Lemma 4 with e 4. Applying Lemma 4 we see that this number is
(p 1)(q 5)/16. Similarly, for a fixed such that 1 + is divisible by
q this number is (p 5) (q 1)/16. The combined results in this paragraph
now yield

N (p- 1)(q- 1)/64 -{- (p- 1)(q- 1)/64
(5.)

(p-- 1)(q-- 1)/8+AE+E+AD +BE.
Equating the values of N in (5.4) and (5.5) we get at once

(5.6) (p- 1)(q- 1)/8 E + AD +BE-- BD BC- DE.

Next we simplify (5.6). For this purpose we employ the equations

A +BWCWD =M,

(5.7) B+D+2E M,
A +E 1/2(M+ 1),

which follow from (2.8) and the first table in (5.2). Here we have put
M ((p 2)(q 2) --1)/4. Using the relations in (5.7) we may trans-
form (5.6) as follows.

2(p-- 1)(q-- 1) 16(E+AD- BE-- BD +AB-- DE)

(5.8) 4(4E + 4E- 1 8AE -+- 4A + (D B))
(4(E--A) + 1)+4(D- B) + 4M 1.

Substituting the value of M in (5.7) we find that the last equation in (5.8)
reduces to

(5.9) v pq (4(E-- A) + 1)+4(D- B).
The quadratic partition in (5.9) is clearly one of the two decompositions in

(5.1), say the first. Accordingly we put

(5.10) a 4(E- A) + 1, b D- B.

The values of the cyclotomic numbers in the first table of (5.2) are now deter-
mined by (5.7), (5.9), and (5.10). We deduce the following formulas im-
mediately.

8(0,0) -a+2M+ 3, 8(0, 1) -a 4b + 2M 1,

(5.11) 8(0,2) 3a+2M- 1, 8(0,3) --a + 4b + 2M 1,

8(1,0) a+2M+ 1.

Case 2. Let ff’ be odd. The analysis in this case is completely similar to
that in Case 1. We omit the details and give only the formulas for the (i, j).
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8(0,0) 3a-2M+5, S(0,1) --a- 4b +2M + 1,

(5.12) 8(0, 2) --a + 2M + 1, 8(0, 3) -a 4b - 2M - 1,

8(1,2) a- 2M- 1.

Lemm 5 is thus established. We recognize, moreover, the following possi-
bility. A change in the choice of g my led to the replacement of a nd b in
formulas (5.11) nd (5.12) by a’ nd b’ respectively. We shll next discuss
the question of distinguishing between these two lterntives.
When e 4, the common primitive roots of p nd q cn be separated into

two classes G, G’. If g G, g’ G’, then every root in G is power of g, while
every root in G’ is power of g’. The cyclotomic number (0, 0) my be de-
fined s the number of solutions of the congruence

(5.13) g+ 1 --- g (modv) (0_<- s,_-< d- 1).

Correspondingly, (0, 0)’ may be defined as the number of solutions of (5.13)
with g replaced by g’. It is clear that the value of (0, 0) does not depend
upon the choice of g in G. The natural supposition that (0, 0) differs in
value from (0, 0)’ is. correct but rather difficult to prove. Indeed the follow-
ing result, which we formulate as a lemma, has been demonstrated in another
paper [4].

LEMM/k 6. If (0, O) and (0, 0)’ are he cyclotomic numbers corresponding o
g e G and g’ e G’ respectively, then the following inequality holds"

(5.4) (0, 0) (0, 0)’.

Lemma 6 has the following interpretation. The first and last formulas in
(5.11) state that 8(0,0) -a-l- 2M W 3 and 8(1,0) a- 2M- 1,
where a appears in the first decomposition of (5.1). The lemma now asserts
that 8(0, 0)’ --a’ W 2M W 3 and 8(1, 0)’ a’ W 2M W 1, where a’ ap-
pears in the second decomposition of (5.1). Essential use of this interpreta-
tion will be made in the proof of the next theorem. We are now in the position
to state our main result as follows.

THEOREM 4. Let p and q be wo primes such hat (p 1, q 1) 4, and
le d (p 1)(q 1)/4. In he notation of Lemma 6 let g e G and g’ e G’.
Then one (but not both) of he sets

(5.15a) 1, g, g, g-; 0, q, 2q, ..., (p 1)q,

(5.15b) 1, g’, g’, ..., g’-; O, q, 2q, ..., (p- 1)q,

is a difference set with parameters v pq, ( 1)/4, (v 5)/16
if and only if q 3p - 2 and v 1)/4 is an odd square.

Proof. Theorem 4 is a consequence of Theorem 1 with e 4 and Lemma 5.
In view of Theorem 2 we need consider only Case 1 of Lemma 5. Actually
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in Cse 2 we my deduce immediately from (5.12) that condition (3.3) of
Theorem 1 cnnot be stisfied. For the relation (0, 0) (2, 0) implies
a -1. But a 4((1, 2) (0, 2)) + 1, ndhence a 1 (mod4).
This contraction disposes of Cse 2.
We now turn to Cse 1. When e 4, condition (3.2) of Theorem 1 states

that q 3p + 2. Suppose, to begin with, that g is root for which condition
(3.3) is stisfied. In view of the first tble in (5.2) this condition is equiv-
lent to the relation (0, 0) (1, 0) 3 ((p 1)/4). Equating the vlues
of (0,0) nd (1,0) in (5.11) we find at oncethta 1 orv 1 +4b.
Since/c d p nd d is even, it follows that (v 1)/4 is n odd squre.
Furthermore, the common vlue of (0, 0) nd (1, 0) is (M 1)/4, which
reduces to 3 ((p 1)/4) when q 3p 2. Conversely, suppose that
(v -1 )/4 is n odd squre. Then we may write v 1 4b, where b is odd.
Hence in (5.1) either a 1 or a’ 1. We now ppel to the first nd lst for-
muls of (5.11) in conjunction with Lemm 6. The lemm clearly implies that
either (0,0) (1,0) (M + 1)/4or (0,0)’ (1,0)’ (M - 1)/4.
Hence condition (3.3) of Theorem 1 is stisfied for one of the two sets (5.15),
(5.15b) when q 3p 2. The proof of Theorem 4 is thus complete.
Let us now seek examples to illustrate Theorem 4. It is convenient to

putc 2(3f-t- 1),wherep 4f+ 1. Then the conditionsq 3p 2,
(v 1)/4 b (b odd) led to the Pell equation

(5.16) c- 3b= 1.

The fundamental solution of (5.16) is given by c 2, b 1. The general
positive solution of (5.16) is given by Cn, bn, where for n _-> 2 the numbers
c nd b stisfy the recurrence relations

Cn 4en--1- Cn--2 (Cl 2, C2--- 7),
(5.17)

bn 4bn_ bn-2 (b 1, b 4).

Values of Cn and bn have been computed for n 1 (1) 15. In this range the
values for n 3 and n 9 are the only two such thatp 4f+ land
q 3p - 2 are both primes.
The solution c 26, ba 15 yields p 17, q 53, d 208, v 901,

lc 15, }, 56. Selecting g 5 as the common primitive root of 17 and
53 we find that (0, 0) (1, 0) 48. Condition (3.3) of Theorem 1 is now
satisfied, and the validity of the example given in the introduction is thereby
confirmed.
The solution c 70226, b 40545 leuds to the puir of primes p 46817,

q 140453; hence d 1643850208. By condition (3.3) of Theorem 1 there
is a common primitive root g of p and q for which (0, 0) 1, 0) 410950848.
For this g the numbers in (5.15a) form a difference set with parameters
v 6575588101,/c 40545, 410974256. The actual calculation of g in
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this example has not yet been carried out; the author intends to accomplish
this task with the aid of computing machine.
We conclude with the remark that there re no further difference sets with

v < 10is coming under the scope of Theorem 4.
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