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1. Introduction
This paper gives a short treatment of the problem appearing in Fine [2],

which is as follows. Consider periodic sequences a (... a_, a0, a,
with period n and with a. limited to the q values 1, 2, q. If two se-
quences are taken to be equivalent when they can be made alike either by a
shift in origin or by a permutation of the element values 1, 2, q, or by
both, how many distinct (inequivalent) sequences, or symmetry types of
sequences are there?
An example given by Fine is repeated here for concreteness. For n 3,

q 2 there are two types, namely (111 and (112) (111) and (222) are
equivalent by the permutation (12), and the six remaining sequences (112),
(121), (211), (221), (212), (122), are equivalent either by this permutation
or a shift in origin.

Section 4 is devoted specifically to Fine’s problem. Depending on the in-
tended application, a group G of symmetry transformations (possibly differ-
ent from Fine’s) may be allowed. If only translations (a -- a+) are allowed,
G is a cyclic group C. This case appears in [5] in connection with counting
necklaces made from n beads of q different kinds (translations merely rotate
the necklace). It also arises in problems of coding and genetics [3]. The
special case n 12, q 2 occurs in finding the number of distinct musical
chords (of 0, 1,.-. or 12 notes) when inversions and transpositions to
other keys are equivalences. Turning over the plane of necklace (a -- a_)produces a new "mirror image" necklace. If this symmetry is permitted
as well as the translations, then G is a dihedral group D. Permutations of
the element values 1, 2, q form a symmetric group S. Thus, in Fine’s
problem, G is a product group C S. This problem has some applica-
tions to switching theory. For example, consider a switching network to
control q lights, one at a time, in a periodic cycle; here a is the name of the
light which changes its state at the i step. In counting the number of dis-
tinct sequences possible, translations merely start the cycle at a different
point and permutations of 1, ..., q merely give the lights new names. If
sequences which operate the lights in reverse order are also considered equiv-
alent, then G becomes D S. More details on the music and switching
applications appear in Section 6.
Our treatment of C ( S is related to a special case of one of the theorems

in de Bruijn [1]. By its use it is also easy to treat the case Dn Sz.
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2. PSlya’s lemma
As Fine has noted, a sequence of period n also has period En, so it is useful

to distinguish sequences of primitive period n, that is of period n but no smaller
period. If F*q(n) is the number of period n, Fq(n) the number of primitive
period n, then (Fine’s equation (1))

(1) F*q(n) 1 Fq(d);

this has the inverse

(la) Fq(n) 1, (n/d)F (d),

where t(n) is the MSbius function" t(1) 1, (n) (-1) if n is a prod-
uct of r distinct primes, (n) 0 otherwise.
When only translation symmetries are allowed, the number of types of

period n is

(2) F*q(n) (l/n) dl, (d)q"/ (G C,),

(see [5, p. 162]) with (d) the Euler totient function. The number of types
with primitive period n is

Fq(n) Zd[n #(d)qn/d (G Cn).

This follows from (2) by using (la) or may be derived by a simple direct
argument [3]. A proof of (2) will serve to introduce a lemma used by PSlya
[4] in his proof of what de Bruijn calls his "fundamental theorem in enumera-
tive combinatorial analysis," namely,

LEM. If G is a finite group, of order g, of transformations operating on a

finite set of objects, and if two objects are equivalent when one is transformed into
the other by a transformation of G, then the number of inequivalent objects is

T g- I(t),

where I(t) is the number of objects left invariant by transformation of G, and
he sum is over all g members of G.

In the present instance, the group G is the cyclic group of order n, repre-
sented by R’, s 1, 2, n, where R is the permutation (1, 2, .-., n)
in cyclic form. If a sequence a of period n is invariant under R’, then for all j

a- a.+s a’+2s

Since a is of period n, the indices j ]s, k O, 1, are integers mod n;
the number of these which are distinct is n/(n, s) where (n, s) is the greatest
common divisor of n and s. The (n, s) numbers al,"’, a(.a) may be
chosen in q(n.8) ways. So, by the lemma

T F*q (n) (l/n) Zsn=l q(’8) (l/n) 1, q(d)qn/,
the latter by classifying the ’ by their cycle structure.
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If we now consider both kinds of equivalence, those arising from permu-
tations of the element values as well as those arising from shifts in the origin,
the group G, as noted by Fine [2], is the direct product of the cyclic group
C, and the symmetric group S. If is an arbitrary element of the latter,
any element of G may be written in the form Rs, with R as above.
The lemma will again give the number Fq* (n) of types of sequences of

period n when we find the number I(R%) of sequences which a typical ele-
ment of C, X S leaves invariant. If Rr leaves the sequence a invariant,
then for all j

a ra+ 7r a’+2 ....
Let d n/(n, s). The sequence a is again specified completely by
a,..., a/. Now however, some of 1, 2,..., q may be forbidden as
choices for the a. Since

d d
a1 7r a+sd a

the value of a. must belong to a cycle of 7r which has length dividing d. If
r has k cycles of length i (i 1, 2, q), then each of the n/d elements
a may be one of only

(3) m(d) ld c1c

possibilities. Thus, I(R’r) {re(d)} n/d which, together with the lemma,
is a solution.

Again, the lemma gives a formula for Fq* (n) which simplifies when terms
R%r with like cycle structure are combined. For a given divisor d of n,
there are (d) translations R which have cycle structure dn/ (i.e., n/d
cycles of length d). For a given partition kl H- 2k. -F -F qkq q, the
number of permutations which have cycles of length i (i 1,... q)
is

(h ,..., ) q!/(1! 2 q).

Thus, combining terms,

(4) F*q (n) (l/q! n) .k ,(d)N(kl kq) (m(d))nld (G C.
where the sum is over all divisors d of n and all partitions

]1 -4- 2]2 -- "3
t- q]q q.

3. A theorem
We now show a connection between (2) and (3) and a theorem of de Bruijn.

For this purpose we introduce the cycle indexes (see [5, Chapter 6])
C,(xl,..., Xn) and Sq(xl,"’, Xq) of the groups C, and

hid(5) C,(x, x,) (1/n)l,,(a)x
(6) Sq(xl, xq) (l/q!) (q!//]l! ]q!)Xl(x2/2) k2 (Xq//q)

In the sums the coefficient of x x. x3 is the number of group elements
which produce a cycles of length 1, b of length 2, c of length 3, etc.
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Now, (2) and (3) can be written (in the style of de Bruijn)

(2a) FSq(n) Cn(l ,..., n)Y (V-- On),

(3a) Fq(n) Cn((l ,..., n)t.q(Yl ,’’’, yq) (G Cn X t..q),

where
y. expj(zj - z2j + ...), O/Oz

and the evaluation is at zl- z. O.
To verify (2a) and (3a), observe that

kl ,k2(7) yl y exp (E" z. Eclc/c) exp (El zl re(j)),

.kl. k2 kl k2(8) ti.(yly. m(3) yly

Since y is the cycle index for a group of degree q consisting only of the
identity element, both (2a) and (3a) are instances of the following theorem
proved by de Bruijn [1]. (It is a special case both of his Theorem 1 and of
his Theorem 2, when weight functions appearing are ignored.) In the
terminology of [5, Chapter 6], it reads as follows:

THEOREM (de Bruijn). If n objects are chosen independently from a store
of q different objects, if equivalence for objects is specified by a group Jq with
cycle index Jq(xl Xq), and equivalence for order of choice by a group
with cycle index Hn(X, Xn), then the number of inequivalent choices is
given by

(9) Pn,q Hn(O/Oz ,..., O/Ozn)Jq(y ,..., yq)

evaluated at z z 0; yk exp [k(zk -- z2 -t- )].

This theorem may be proved by the same argument that derived (2a) and
(3a). The group G is now Hn X Jq with elements xr ( e Hn - e Ja). To
find I(xr), let x have ed cycles of length d (d 1,... n), and let have
ki cycles of length i (i 1,... q). A sequence a, left invariant by x,
is determined by prescribing values for one element a. in each of the

el -4- - en

cycles of x. For an element in a cycle of length d, the number of allowed
choices from 1, 2, q is again m(d), given by (3). Thus

I(xr) m(1)em(2) m(n).
By using the lemma and combining terms of like cycle structure,

F*q (n) (1/hj) -, (e en)N(kl q) II {m(d)}

(G Hn X Jq),

where h and j are the orders of Hn and Jq, (e, en) is the number of
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permutations x of cycle structure 1 el, n, N(kl kq) is again the
number of permutations of cycle structure 1kl ..., qk, and the sum is
over all partitions el -t- 2e2 -- -t- ne, n, ]c -- -t- qkq q. The
expression Pn,a of (9) is a shorthand for this as may be verified using (7)
and (8).

4. Application of the theorem (G C S)
Equation (3a) is a particularly useful form because of the following gen-

erating function [5, p. 68] for the cycle index of S
F-_0 x&(, , )

(10)
exp [xy + (x2/2)y2 + + (xn/n)yn -t- ].

Then if
Pn(x) Eq=o xqPn,

is the generating function for the numbers P,, by (3a),

(11) Pn(X) (l/n) dl (d)(O/Ozd) exp (xy -t- (x/2)Y + ),

again evaluated at z z. 0, and with de n,

Yk exp [k(zk -- zk - )].

To compute the derivative in (11), first set z z, and z 0 for all i d,
in the function exp (xy + (x/2)y2 -- ). The desired derivative is

-+ (e 1

(1--x)-(O) x(eexp 1
C

Hence, if polynomials Ad,n(X) are defined by the exponential generating
function

(12) :=oAa,,(x)z/n! exp’la (x/c)(e 1),

equation (11 is evaluated by

(13) (1 x)P(x) (l/n) el, (d)Ae,(x), de n,

which completely determines the differences Pn,q Pn,q-, the variables
with the simplest structure. Note that Pn,1 1. The difference

Qn,q Pn,q- Pn,q-1

itself is combinatorially significant as the number of types of periodic se-
quences in which each of 1, 2, q actually appears as some a..
Turn now to the polynomials A,(x). First, by expansion of (12),

A,o(X) 1, A,(x)
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Next, for d 1
_,’2...o Al,,(x)z’/n! exp x(e 1),

so that [5, p. 76] A.,(x) am(x), the enumerator of permutations by number
of ordered cycles. Note that

a,(x) ..o S(n, k)x,
with S(n, k) A0/k!, the Stirling number of the second kind. Thus, the
polynomials Ad.,(x) are a generalization of Stifling number polynomials
a,(x).
For numerical results, the following recurrence relation, obtained by

differentiation of (12), is convenient (the prime denotes a derivative)

(14) Ad,,+l(x) A,,(x)A,,(x) -F xA,,(x).
The first few values (omitting arguments) are as follows

A:. x+3x+2x8+x4,
A. x+x+3x8+2x4+x6.

TABLE I
Number of Types F (n) with Period n

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

3
4
6
8
14
20
36
60
108
188
352
632

1,173
2,192
4,116
7,712
14,602
27,596
52,488

Symmetry Group G

D

2
3
4
6
8
13
18
30
46
78
126

CnX S.

1
2
2
4
4
8
10
2O
30
56
94

224
380
687

1,224
2,250
4,112
7,685
14,310
27,012

180
316
596

1,096
2,068
3,856
7,316
13,798
26,272

Dn X S

1
2
2
4
4
8
9
18
23
44
63
122
190
362
612

1,162
2,056
3,912
7,155
13,648
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The first few values of Qn(x) (1 x)Pn(x), again omitting arguments,
are as follows:

Q1 x, Q, x-}-3xq-2x8-}-x,
Q x-q-x, Q5 x q- 3x q- 5x q- 2x q-x,
Q x-t-x-+-x, Q6 xW7xq- 18x-{- 13xq-3xs-{-x6.

Note that for p a prime

Q(x) p-l[a(x) -q- (p 1)(x q- x)].

Since Q,(x) is a polynomial with integral coefficients, this entails

aT(x) x- x’ (modp),

a congruence known otherwise [5, p. 81].

5. Addition of mirror inversion

Adding the equivalence of mirror inversion is accomplished by replacing
the cyclic group by the dihedral group Dn. The cycle index Dn(xl, Xn)
of Dn [3, p. 150] is given by

TABLE II
Number of Types F.(n) with Primitive Period n

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

2
1
2
3
6
9
18
3O
56
99
186
335
630

1,152
2,182
4,080
7,710
14,532
27,594
52,377

Symmetry Group G

2
3
6
8
16
24
42
69
124
208
378
668

1,214
2,220
4,110
7,630
14,308
26,931

Cn X S=

1
1
1
2
3
5
9
16
28
51
93
170
315
585

1,091
2,048
3,855
7,280
13,797
26,214

Dn X

1
1
1
2
3
5
8
14
21
39
62
112
189
352
607

1,144
2,055
3,883
7,154
13,602
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m--12Dn(xl Xn) Cn(Xl Xn) + (X21 X2 + x2 )/2, n 2m,

2D,,(xl,..., x,,) Cn(x,’", x,,) -xx2, n 2m-F 1.

Hence if Rn,q is the number Fq* (n) of inequivalent sequences for G D X Sq
and

Rn(x) _.q--o xqRn.q

it follows from the theorem and some simple calculations that

(15)
2R2(x) P2,,(x) -F (1 --x)-lA2,n(X)

2R.+l(x) P2n+l(X) 2r- x(1 x)-l-’."=0 (])A,(x).
6. Some calculations

The results of Section 5 gave Fq* (n) when G C Sq for n =< 6 and
all values of q. Table I extends these results to n -<_ 20 for binary sequences
(q 2) only. Numbers of types with primitive period n appear in Table
II. Fine gave numerical results for G Ca X Sq, 1 <- n <- 10, which agree
with ours.

Musical chords are related to a number F (12) as follows. Number the
notes of the scale in order.-., -1, 0, 1, 2,..., say with 0 at middle C.
A chord specifies a sequence a with a. 1 if note j is in the chord, and with
a. 0 otherwise. In naming chords (G major, C minor, etc.) inversion is
considered an equivalence; thus, we restrict attention to sequences a of
period 12 (one octave). The 12 possible transpositions of chords into other
keys form a cyclic group C1.. If these are allowed as symmetries, then all
12 major chords will count as just one chord type,all minor chords will be
another, etc. The number of chord types is F(12) for the group C2,
namely 352. From Table II, only 335 of these types have primitive period
12. Among the 17 chords with shorter periods are found" silence (period 1);
all notes played at once (period 1); 6 notes separated by whole-tone steps

TABLE III
Number of Even Types with q 2, Period n

2
4
6
8
10
12
14
16
18
20

Symmetry Group G

2
4
8

20
56
180
596

2,068
7,316
26,272

Dn

2
4
8
18
44
122
362

1,162
3,914
13,648

cn x s2

1
3
4
12
28
94

298
1,044
3,658
13,164

Dn X S

3
4
12
22
71
181
618

1,957
6,966
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(period 2); diminished seventh chords (period 3); augmented chords (period
4).

Section 1 cited a switching application. One must distinguish between
the cycles of operations of the lights (which Tables I and II count) and cycles
of states of the lights. For example, 1, 2, 2, 3, 1, 2, 2, 3,... represents a
cycle in which operations have period 4; however, after 4 operations, lights
1 and 3 have changed state. The corresponding sequence of states of the
lights has period 8. Thus, we are also led to counting types of even sequences
of period n, i.e., sequences in which each of 1, 2, q appears an even
number of times within a period. The theorem of Section 3 is inadequate
for this because not all qn sequences are to be classified. The lemma still
applies if objects are restricted to be even sequences. For example, in
computing I(R%-), (n, s) n/d values al, a(n,8) are to be chosen from
m(d) possibilities as in Section 2. However, there is now an additional
restriction to make the sequence even. If the value of a- is chosen from a
cycle of r of length c (where c divides d), each of the c values in this cycle
appears d/c times among as, a+(n.), a’+2(n,) in one period. Thus,
cycles with d/c even may be chosen freely, but cycles with d/c odd must
each be chosen an even number of times.

There are
E Ed/c Cc

values in cycles with d/c even. If d 2bD with D odd, there are

cycles with d/c odd. Let their lengths be called cl, c.. Then

I(RB-) 2--Mx=+/- (X C + + XC, + E) (n’8),
where the sum extends over all 2" choices of -4-1 for xl, x..

Again, the lemma provides a solution in which terms of like cycle structure
may be combined. There is no further simplification as in Section 4. Table
III lists some numbers of types of even sequences when q 2 and

n-- 2, 4,...,20.
There are no even sequences for odd n.
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